人教版数学七年级下《第五章相交线与平行线》单元测试题含答案.doc
- 格式:doc
- 大小:553.00 KB
- 文档页数:11
12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条.A.1B.2C.3D.4 3、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85°D.95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BDA BCDE(第10题)水面入水点运动员(第14题)ABC D EFG H第13题7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
第五章《相交线与平行线》单元测试题一、选择题1.如图,直线AB与直线CD相交于点,是内一点,已知,,则的度数是A.B.C.D.2.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三结果是每人的两句话中都只说对了一句,则可判断第一名是A. 甲B. 乙C. 丙D. 丁3.下列命题:两直线平行,内错角相等;如果,,那么;等边三角形是锐角三角形,其中原命题和它的逆命题都正确的有A. 1个B. 2个C. 3个D. 0个4.下列说法正确的是A. 不相交的两条线段是平行线B. 不相交的两条直线是平行线C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线5.如图,已知,,则的度数是A.B.C.D.6.如图,已知,,,则的度数是A.B.C.D.7.将如图所示的图案通过平移后可以得到A. B. C. D.8.如图,长方形ABCD中,,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形,第2次平移将长方形沿的方向向右平移5个单位,得到长方形,第n次平移将长方形沿的方向平移5个单位,得到长方形,若的长度为2016,则n的值为A. 400B. 401C. 402D. 4039.下列生活中的现象,属于平移的是A. 抽屉的拉开B. 汽车刮雨器的运动C. 坐在秋千上人的运动D. 投影片的文字经投影变换到屏幕二、填空题10.如图,在方格中平移三角形ABC,使点A移到点M,点,应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形如果直接把三角形ABC平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗?11.字母,,,各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为______ .12.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.13.如图,在中,,将沿着BC的方向平移至,若平移的距离是3,则图中阴影部分的面积为______ .14.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积阴影部分间距均匀是______ .三、解答题15.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品若把从0时到24时的每十分钟作为一个时间段共计144个时间段,请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?要求写出具体的操作步骤16.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上,点A的坐标是,将沿y轴正方向平移3个单位得到,画出,并写出点的坐标.17.经过平移,小鱼上的点A移到了点B.请画出平移后的小鱼;该小鱼是怎样从点A移到了点B?上下左右18.如图,将三角形ABC沿射线AB的方向平移2个单位到三角形DEF的位置,连接CF,点,,的对应点分别是点,,.直接写出图中所有平行的直线;直接写出图中与AD相等的线段;若,则______ ;若,求的度数.为2m的曲折的小路,求这块草地的绿地面积.【答案】1. B2. B3.A4.D5.C6.A7.B8.C9.A10. 解:如图所示,直接把平移,使A点移到点N,它和前面先移到M后移到N 的位置相同.11.12. 解:如图所示:.13. 3014. 1215. 解:方法一:用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;在144个小物品大小相同的小纸片或小球等上标出1到144个数;把这144个小物品用袋箱装好,并均匀混合;每次从袋箱中摸出一个小物品,记下上面的数字后,将小物品返回袋中并均匀混合;将上述步骤4重复30次,共得到30个数;对得到的每一个数除以60转换成具体的时间.方法二:用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;使计算器进入产生随机数的状态;将1到144作为产生随机数的范围;进行30次按键,记录下每次按键产生的随机数,共得到30个数;对得到的每一个数除以60转换成具体的时间.16. 解:如图,点的坐标为,.17. 解:所画图形如下所示:观察图形即可看出,先向右平移9个方格,再向下平移5个方格或先向下平移5个方格,再向右平移9个方格.18. 519. 解:绿地的面积为:,答:这块草地的绿地面积是.。
人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版七年级数学下册第5章相交线与平行线单元测试题一.选择题(共10小题)1.如图,从点A到点B有3条路,其中走ADB最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短2.如图是一段台阶的截面示意图(AH≠GH),若要沿A﹣B﹣C﹣D﹣E﹣F﹣G铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次B.3次C.4次D.6次3.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线4.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34°B.36°C.38°D.68°5.下列命题是真命题的是()A.两直线平行,同位角相等B.面积相等的两个三角形全等C.同旁内角互补D.相等的两个角是对顶角6.如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°7.如图,A是直线l外一点,点B,E,D,C在直线l上,且AD⊥l,D为垂足,如果量得AB=7cm,AE=6cm,AD=5cm,AC=11cm,则点A到直线l的距离为()A.11cm B.7cm C.6cm D.5cm8.直线AB∥CD,直线EF与AB,CD分别交于点E,F,EG⊥EF.若∠1=58°,则∠2的度数为()A.18°B.32°C.48°D.62°9.如图,在四边形ABCD中,连结BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD10.如图,直尺经过一块三角板DCB的直角顶点B,若将边AB绕点B顺时针旋转,∠ABC=20°,∠C=30°,则∠DEF度数为()A.25°B.40°C.50°D.80°二.填空题(共8小题)11.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为m212.如图所示,直线l1、l2被l3所截:①命题“若∠2=∠3,则l1∥l2”的题设是“∠2=∠3”,结论是“l1∥l2”;②“若l1∥l2,则∠1=∠4”的依据是“两直线平行,同位角相等”;③“若∠3≠∠2,则l1不平行l2”的依据是“两直线平行,内错角相等”;④“若l1∥l2,则∠4=∠3”依据是“两直线平行,同位角相等”;⑤“若∠3+∠5=180°,则l1∥l2”的依据是“两直线平行,同旁内角互补”.上面说法正确的是(填序号).13.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=78°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转.14.如图,直线a,b被直线c,d所截若∠1+∠2=180°,∠3=68°,则∠4的度数为.15.如图,已知∠1=∠2,∠B=45°,则∠DCE=.16.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.则下列结论正确的有:.(只填序号)①∠BAD+∠ADC=180°;②AF∥DE;③∠DAF=∠F;④若CD=DF,则DE=AF.17.如图,已知AB∥CD,AE、CE分别平分∠FAB、∠FCD,∠F=30°,则∠E=°.18.在同一平面内,直线AB 与直线CD 相交于点O ,∠BOC :∠BOD =4:5,射线OE ⊥CD ,则∠BOE 的度数为 .三.解答题(共7小题)19.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠1与∠2互余,求证:AB ∥CD .20.如图,一条直线分别与直线AF 、直线DF 、直线AE 、直线CE 相交于点B ,H ,G ,D 且∠1=∠2,∠A =∠D .求证:∠B =∠C .21.复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零这是一种常见的数学解题思想.(1)如图1,直线l 1,l 2被直线l 3所截,在这个基本图形中,形成了 对同旁内角.(2)如图2,平面内三条直线l 1,l 2,l 3两两相交,交点分别为A 、B 、C ,图中一共有 对同旁内角.(3)平面内四条直线两两相交,最多可以形成 对同旁内角.(4)平面内n 条直线两两相交,最多可以形成 对同旁内角.22.如图,直线AB 、CD 相交于点O ,OM ⊥AB .(1)若∠1=∠2,证明:ON ⊥CD ;(2)若∠1=∠BOC ,求∠BOD 的度数.23.已知:如图,点D 是△ABC 边CB 延长线上的一点,DE ⊥AC 于点E ,点G 是边AB 一点,∠AGF =∠ABC ,∠BFG =∠D ,试判断BF 与AC 的位置关系,并说明理由.24.如图,直线l 1,l 2相交于点O ,点A 、B 在l 1上,点D 、E 在l 2上,BC ∥EF ,∠BCA =∠EFD .(1)求证:AC ∥FD ;(2)若∠1=20°,∠2=15°,求∠EDF 的度数.25.在如图所示的方格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫格点,三角形ABC 的三个頂点都在格点上.(1)画出三角形ABC向上平移4个单位后的三角形A1B1C1(点A,B,C的对应点为点A1,B 1,C1);(2)画出三角形A1B1C1向左平移5个单位后的三角形A2B2C2(点A1,B1,C1的对应点为点A 2,B2,C2);(3)分别连接AA1,A1A2,AA2,并直接写出三角形AA1A2的面积为平方单位.参考答案与试题解析一.选择题(共10小题)1.【分析】根据两点之间线段最短的性质解答.【解答】解:从点A到点B有3条路,其中走ADB最近,其数学依据是两点之间的所有连线中,线段最短.故选:C.【点评】本题考查了两点之间线段最短的应用,正确应用线段的性质是解题关键.2.【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,据此判断即可.【解答】解:测出a的值即为所有台阶的高的和,测出b的值,即为所有台阶的宽的和,测两次即可.故选A.故选:A.【点评】此题考查了生活中的平移现象,此题的本质可理解为将台阶的长向下平移至b,将台阶的高向左平移至a.3.【分析】根据对顶角、线段的性质、补角和平行线的概念判断即可.【解答】解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.【点评】此题考查平行线,关键是根据对顶角、线段的性质、补角和平行线的概念解答.4.【分析】由角平分线的性质可得∠GEB=∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【解答】解:∵EG平分∠BEF,∴∠GEB=∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点评】本题考查了平行线的判定和性质,灵活运用这些性质进行推理是本题的关键.5.【分析】根据平行线的性质对A、B进行判断;根据全等三角形的判定方法对B进行判断;根据对顶角的定义对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项为真命题;B、面积相等的两个三角形不一定全等,所以B选项为假命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、相等的两个角不一定为对顶角,所以D选项为假命题.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【分析】根据平行线的判定定理对四个选项进行逐一分析即可.【解答】解:A、若∠EAD=∠B,则AD∥BC,故此选项错误;B、若∠BAD=∠ACD,不可能得到BE∥CD,故此选项错误;C、若∠EAD=∠ACD,不可能得到BE∥CD,故此选项错误;D、若∠EAC+∠ACD=180°,则BE∥CD,故此选项正确.故选:D.【点评】本题考查了平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角.7.【分析】根据点到直线的距离是点与直线上垂足间线段的长,可得答案.【解答】解:点A到直线l的距离是AD的长,故点A到直线l的距离是5cm,故选:D.【点评】本题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是点与直线上垂足间线段的长.8.【分析】先根据对顶角相等求出∠EFD的度数,再由平行线的性质求出∠BEF的度数,根据EG⊥EF即可得出结论.【解答】解:∵∠1=58°,∴∠EFD=∠1=58°.∵AB∥CD,∴∠EFD+∠BEF=180°,∴∠BEF=180°﹣58°=122°.∵EG⊥EF,∴∠GEF=90°,∴∠2=∠BEF﹣∠GEF=122°﹣90°=32°.故选:B.【点评】本题考查了两直线平行,同旁内角互补的性质,对顶角相等的性质,以及垂直的定义,是基础题.9.【分析】根据平行线的性质和判定逐个判断即可.【解答】解:A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.【点评】本题考查了平行线的判定,能正确根据平行线的判定进行推理是解此题的关键.10.【分析】利用三角形的外角的性质求出∠DAB,再利用平行线的性质解决问题即可.【解答】解:∵∠DAB=∠C+∠ABC,∠C=30°,∠ABC=20°,∴∠DAB=20°+30°=50°,∵EF∥AB,∴∠DEF=∠DAB=50°,故选:C.【点评】本题考查旋转的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共8小题)11.【分析】直接利用平移道路的方法得出草地的绿地面积=(20﹣2)×(10﹣2),进而得出答案.【解答】解:由图象可得,这块草地的绿地面积为:(20﹣2)×(10﹣2)=144(m 2). 故答案为:144.【点评】此题主要考查了生活中的平移现象,正确平移道路是解题关键.12.【分析】直接利用平行线的判定与性质分别判断得出答案.【解答】解:①命题“若∠2=∠3,则l 1∥l 2”的题设是“∠2=∠3”,结论是“l 1∥l 2”,正确;②“若l 1∥l 2,则∠1=∠4”的依据是“两直线平行,同位角相等”,错误,∠1,∠4不是同位角;③“若∠3≠∠2,则l 1不平行l 2”的依据是“两直线平行,内错角相等”,正确; ④“若l 1∥l 2,则∠4=∠3”依据是“两直线平行,同位角相等”,正确;⑤“若∠3+∠5=180°,则l 1∥l 2”的依据是“两直线平行,同旁内角互补”,正确. 故答案为:①,③,④,⑤.【点评】此题主要考查了命题与定理,正确掌握平行线的判定与性质是解题关键.13.【分析】根据OD ∥AC ,两直线平行,同位角相等,求得∠BOD'=∠A ,即可得到∠DOD'的度数,即旋转角.【解答】解:∵OD ∥AC ,∴∠BOD'=∠A =70°,∴∠DOD'=78°﹣70°=8°.故答案是:8°【点评】本题考查了旋转角以及平行线的性质及判定定理,理解旋转角的定义是关键14.【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:如图,∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴a ∥b ,∴∠4=∠3=68°,故答案为:68°.【点评】本题考查的是平行线的判定与性质,熟知同旁内角互补,两直线平行是解答此题的关键.15.【分析】根据∠1=∠2,可得AB∥CE,进而可得∠DCE=∠B.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠DCE=∠B=45°,则∠DCE的度数为45°.故答案为45°.【点评】本题考查了平行线的判定和性质,解决本题的关键是掌握平行线的判定和性质.16.【分析】根据平行线的判定和性质解答即可.【解答】解:∵AB⊥BC于点B,DC⊥BC于点C,∴AB∥CD,∴①∠BAD+∠ADC=180°,正确,∵AB∥CD,∴∠AFD+∠BAF=180°,∵∠BAF=∠EDF,∴∠AFD+∠EDF=180°,∴②AF∥DE,正确;∴∠DAF=∠ADE,∵DE平分∠ADC交BC于点E,∴∠ADE=∠CDE,∵AF∥DE,∴∠F=∠CDE,∴③∠DAF=∠F,正确;∵CD=DF,无法得出DE=AF,故④错误;故答案为:①②③【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.17.【分析】延长EA交CD于G,由平行线的性质得出∠AGD=∠EAB,由角平分线的定义得出∠EAF=∠EAB=∠AGD,∠ECF=∠ECD,由三角形的外角性质和三角形内角和定理即可得出答案.【解答】解:延长EA交CD于G,如图所示:∵AB∥CD,∴∠AGD=∠EAB,∵AE、CE分别平分∠FAB、∠FCD,∴∠EAF=∠EAB=∠AGD,∠ECF=∠ECD,∵∠AGD=∠ECD+∠E,∴∠EAF=∠ECF+∠E,∵∠CHF=∠AHE,∴∠F+∠ECF=∠EAF+∠E,即∠F+∠ECF=∠ECF+∠E+∠E,∴∠E=∠F=15°.故答案为:15.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线定义等知识;熟练掌握平行线的性质和三角形内角和定理是解题的关键.18.【分析】首先根据叙述作出图形,根据条件求得∠COB的度数,分两种情况根据角的和与差即可求解.【解答】解:∵∠BOC:∠BOD=4:5,∵∠BOC=×180°=80°,①如图1,OE在AB的上方时,又∵OE⊥CD,∴∠COE=90°,∴∠BOE=90°+80°=170°②如图2,OE在AB的上方时,同理得∠BOE=90°﹣80°=10°,综上,∠BOE的度数为170°或10°.故答案是:170°或10°.【点评】本题考查了角度的计算,理解垂直的性质,根据条件正确作出图形是关键.三.解答题(共7小题)19.【分析】根据角平分线定义可得∠ABD=2∠1,∠BDC=2∠2,然后再证明∠ABD+∠BDC =180°即可.【解答】证明:∵∠1与∠2互余,∴∠1+∠2=90°.∵BE平分∠ABD,DE平分∠CDB,∴∠ABD =2∠1,∠BDC =2∠2.∴∠ABD+∠BDC =2∠1+2∠2=2(∠1+∠2)=180°.∴AB ∥DC .【点评】此题主要考查了平行线的判定,关键是掌握同旁内角互补,两直线平行.20.【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE ∥DF ,由AE ∥DF 利用“两直线平行,同位角相等”可得出∠AEC =∠D ,结合∠A =∠D 可得出∠AEC =∠A ,利用“内错角相等,两直线平行”可得出AB ∥CD ,再利用“两直线平行,内错角相等”可证出∠B =∠C .【解答】证明:∵∠1=∠2,∴AE ∥DF ,∴∠AEC =∠D .又∵∠A =∠D ,∴∠AEC =∠A ,∴AB ∥CD ,∴∠B =∠C .【点评】本题考查了平行线的判定与性质,牢记各平行线的判定定理及性质定理是解题的关键.21.【分析】根据同旁内角的定义,结合图形确定同旁内角的对数.【解答】解:(1)直线l 1,l 2被直线l 3所截,在这个基本图形中,形成了2对同旁内角.(2)平面内三条直线l 1,l 2,l 3两两相交,交点分别为A 、B 、C ,图中一共有6对同旁内角.(3)平面内四条直线两两相交,最多可以形成24对同旁内角.(4)平面内n 条直线两两相交,最多可以形成n (n ﹣1)(n ﹣2)对同旁内角 故答案为:(1)2;(2)6;(3)24;(4)n (n ﹣1)(n ﹣2)【点评】此题考查同旁内角问题,本题是规律总结的问题,应运用数形结合的思想求解.22.【分析】(1)利用垂直的定义得出∠2+∠AOC =90°,进而得出答案;(2)根据题意得出∠1的度数,即可得出∠BOD的度数.【解答】证明:(1)∵OM⊥AB,∴∠AOM=∠BOM=90°,∴∠1+∠AOC=90°,∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,∴ON⊥CD;(2)∵∠1=∠BOC,∴∠BOM=2∠1=90°,解得:∠1=45°,∴∠BOD=90°﹣45°=45°【点评】此题主要考查了垂直的定义以及邻补角、对顶角等知识,正确把握垂直的定义是解题关键.23.【分析】根据平行线的判定得到FG∥BC,再根据平行线的性质与判定得到BF∥DE,再根据平行线的性质即可求解.【解答】解:BF⊥AC,理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠GFB=∠FBC,∵∠GFB=∠D,∴∠FBC=∠D,∴BF∥DE,∵DE⊥AC∴BF⊥AC.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.【分析】(1)延长CA,FE交于点H,由平行线的性质可得∠BCA=∠H=∠EFD,可得结论;(2)由三角形内角和定理可求∠AGO的度数,由平行线的性质可求解.【解答】解:(1)如图,延长CA,FE交于点H,∵BC∥EF,∴∠BCA=∠H,又∵∠BCA=∠EFD,∴∠EFD=∠H,∴AC∥FD;(2)∵∠1=20°,∠2=15°=∠GAO,∴∠AGO=145°,∵AC∥DF,∴∠EDF+∠CGD=180°,∴∠EDF=35°.【点评】本题考查了平行线的判定和性质,灵活运用这些性质进行推理是本题的关键.25.【分析】(1)将三个顶点分别向上平移4个单位,再首尾顺次连接即可得;(2)将三个顶点分别向左平移5个单位,再首尾顺次连接即可得;(3)直接利用三角形面积公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)△AA 1A 2的面积为×4×5=10(平方单位),故答案为:10.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.。
第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是( )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是( )图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是( )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是( )A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是( )A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( )A.4组B.5组C.6组D.7组10.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为( )A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD 时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.参考答案第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是(D)A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是(D)A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为(A)A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是(D)A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(A)A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C)A.4组B.5组C.6组D.7组10.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是(C)A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=270°.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF 平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.解:答案不唯一,如:已知:如图,AB⊥BC,CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∠ABC=∠DCB=90°.又∵BE∥CF,∴∠EBC=∠FCB.∴∠ABC-∠EBC=∠DCB-∠FCB,即∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C 之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).。
人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为 D,则点 B 到直线 CD的距离是指()A.线段 BC的长度B.线段 CD的长度C.线段 AD 的长度D.线段 BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按如下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°9.如图,将三角板与直尺贴在一同,使三角板的直角极点C(∠ ACB=90°)在直尺的一边上,若∠ 2=56°,则∠ 1的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠2的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠ A=70°,O 是 AB 上一点,直线OD 与 AB 所夹的∠ AOD=100°,要使 OD∥ AC,直线OD 绕点 O 按逆时针方向起码旋转.15.将一块 60°的直角三角板DEF搁置在 45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为 a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线A B∥ CD,而且被直线 MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,七年级人教版数学下册第 5 章订交线与平行线单元测试题人教版七年级数学下册第 5 章订交线与平行线单元检测题一、选择题:1.下边四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点起码有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线订交所成的四个角中,假如此中有一个角是直角,那么其他三个角也必定相等.此中错误的选项是()A. ( 1)( 2)( 4)B. ( 1)( 3)( 4)C.( 2)( 3)( 4)D.(1)( 2)( 3)2.点 P为直线 MN外一点 , 点 A、B、C为直线 MN上三点 ,PA=4 厘米 ,PB=5 厘米 ,PC=2 厘米 , 则 P到直线MN的距离为()A.4 厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图 , 以下结论错误的选项是()A. ∠1与∠ B是同位角B.∠ 1与∠ 3 是同旁内角C. ∠2与∠ C是内错角D.∠ 4与∠ A是同位角4.如图, AB∥CD, CD⊥EF,若∠ 1=125°,则∠ 2=()A.25 °B.35°C.55°D.65°5.如图, a∥ b,将三角尺的直角极点放在直线 a 上,若∠ 1=40°,则∠ 2=()A.30 °B.40°C.50°D.60 °6. 将如下图的图案经过平移后能够获得的图案是()A. B. C. D.7.如图,AB ∥ CD,AE 均分∠CAB交 CD于点 E, 若∠C=50°, 则∠AED=()A.65 °B.115 °C.125 °D.130 °8.如图, AE∥BD,∠ 1=120°,∠ 2=40°,则∠ C的度数是()A.10 °B.20°C.30°D.40°9.如下图,已知AB∥CD, EF均分∠ CEG,∠ 1=80°,则∠ 2 的度数为 ()A.20°B.40°C.50°D.60°10.如图,若两条平行线EF, MN与直线 AB, CD订交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A. ①②B.②③人教版七年级数学下册第 5 章订交线与平行线单元测试题(分析版)一.选择题(共10 小题)1.如图各图中,∠ 1 与∠ 2 是对顶角的是()A.B.C.D.2.以下表达中正确的选项是()A.相等的两个角是对顶角B.若∠ 1+∠2+ ∠ 3= 180°,则∠ 1,∠ 2,∠ 3 互为补角C.和等于 90°的两个角互为余角D.一个角的补角必定大于这个角3.在如图图形中,线段PQ 能表示点P 到直线 L 的距离的是()A.B.C.D.4.在以下图形中,由条件∠1+∠ 2= 180°不可以获得AB∥ CD 的是()A.B.C.D.5.如图,已知∠1=68°,要使AB∥ CD ,则须具备另一个条件()A .∠ 2= 112°B .∠ 2= 122°C.∠ 2=68°D.∠ 3= 112°6.如下图,点 E 在AC 的延伸线上,以下条件中能判断AB∥ CD ()A.∠1=∠2B.∠3=∠ 4C.∠ D =∠ DCE D.∠D +∠ ACD= 180°7.如图,直线a∥ b, AC⊥ AB, AC 交直线 b 于点C,∠1=55°,则∠ 2 的度数是()A .35°B .25°C. 65°D. 50°8.如图,已知AB∥ DE,∠ ABC = 75°,∠ CDE = 145°,则∠BCD的值为()A .20°B .30°C. 40°D. 70°9.如下图是一条街道的路线图,若 AB∥ CD ,且∠ ABC = 130°,那么当∠CDE等于()时, BC∥ DE.A .40°B .50°C. 70°D. 130°10.如图,在直角三角形ABC 中,∠ BAC= 90°, AB= 3,AC= 4,将△ ABC 沿直线 BC 平移 2.5 个单位获得三角形DEF ,连结 AE.有以下结论:① AC∥ DF;② AD∥BE,AD=BE ABE DEF ED ACA.4 个B.3 个C.2 个D.1 个二.填空题(共8 小题)11.在体育课上某同学立定跳远的状况如下图,l 表示起跳线,在丈量该同学的实质立定跳远成绩时,应丈量图中线段PC 的长,原因是.12.如图,直线 AD 与 BE 订交于点O,∠ COD = 90°,∠COE = 70°,则∠ AOB=.13.如图,直线a, b 与直线 c 订交,给出以下条件:① ∠ 1=∠ 2;② ∠ 3=∠ 6;③ ∠ 4+∠ 7= 180°;④ ∠ 5+∠ 3= 180°;⑤ ∠ 6=∠ 8,此中能判断a∥b 的是(填序号)14.如图:请你增添一个条件能够获得DE∥AB15.如图, AB∥ EF ,设∠ C= 90°,那么x, y,z 的关系是.16.如图,将一张矩形纸片按图中方式折叠,若∠1= 63°,则∠ 2 为度.17.如图,已知长方形纸片的一条边经过直角三角形纸片的直角极点,则图中∠1与∠2之间的数目关系为.18.如下图,一块正方形地板,边长60cm,上边横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是.三.解答题(共7 小题)19.如图,点O 在直线 AB 上, CO⊥ AB,∠ BOD﹣∠ COD = 34°,求∠ AOD 的度数.20.如图, AO⊥ CO, DO⊥ BO.(1)∠ AOD 与∠ BOC 相等吗?为何?(2)已知∠ AOB= 140°,求∠ COD 的度数.21.已知:如图,直线AB 与 CD 被 EF 所截,∠ 1=∠ 2,求证: AB∥ CD .22.如图,∠ DAC +∠ACB= 180°, CE 均分∠ BCF ,∠ FEC =∠ FCE ,∠ DAC = 3∠ BCF ,∠ACF =20°.(1)求证: AD ∥ EF;(2)求∠ DAC、∠ FEC 的度数.23.如图,在△ ABC 中,GD ⊥ AC 于点 D,∠AFE =∠ ABC,∠1+∠ 2= 180°,∠ AEF =65°,求∠ 1 的度数.解:∠ AFE =∠ ABC(已知)∴(同位角相等,两直线平行)∴∠ 1=∠(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴(等量代换)∴EB∥ DG∴∠ GDE=∠ BEAGD⊥ AC(已知)∴(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠﹣∠= 90°﹣ 65°= 25°(等式的性质)24.如图,已知∠1=∠ 2= 50°, EF∥ DB .(1)DG 与 AB 平行吗?请说明原因.(2)若 EC 均分∠ FED ,求∠ C 的度数.25.直线AB、 CD 被直线EF 所截, AB∥ CD ,点 P 是平面内一动点.设∠PFD =∠ 1,∠PEB=∠ 2,∠ FPE =∠α.( 1)若点 P 在直线 CD 上,如图①,∠α= 50°,则∠ 1+∠ 2=°;(2)若点 P 在直线 AB、CD 之间,如图②,试猜想∠α、∠ 1、∠ 2 之间的等量关系并给出证明;(3)若点 P 在直线 CD 的下方,如图③,( 2)中∠α、∠ 1、∠2 之间的关系还建立吗?请作出判断并说明原因.人教版七年级数学下册第 5 章订交线与平行线单元测试题参照答案与试题分析一.选择题(共10 小题)1.【剖析】依据对顶角的定义判断即可.【解答】解:依据两条直线订交,才能构成对顶角进行判断,A、C、 B 都不是由两条直线订交构成的图形,错误,D是由两条直线订交构成的图形,正确,应选: D.【评论】本题主要考察了对顶角的定义,有一个公共极点,而且一个角的两边分别是另一个角的两边的反向延伸线,拥有这类地点关系的两个角,互为对顶角.2.【剖析】依据余角、补角、对顶角的定义进行判断即可.【解答】解: A、两个对顶角相等,但相等的两个角不必定是对顶角;故 A 错误;B、余、补角是两个角的关系,故 B 错误;C、假如两个角的和是一个直角,那么这两个角互为余角;故 C 正确;D 、锐角的补角都大于这个角,而直角和钝角不切合这样的条件,故 D 错误.应选: C.【评论】本题考察对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.3.【剖析】依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点判断.P 到直【解答】解:图A、B、C中,线段PQ不与直线L 垂直,故线段PQ 不可以表示点线 L 的距离;图 D 中,线段 PQ 与直线 L 垂直,垂足为点 Q,故线段 PQ 能表示点 P 到直线 L 的距离;应选:D.【评论】本题考察了点到直线的距离的观点,重点是依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点解答.4.【剖析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解: A、∠ 1 的对顶角与∠ 2 的对顶角是同旁内角,它们互补,因此能判断AB∥CD;B、∠ 1 的对顶角与∠ 2 是同旁内角,它们互补,因此能判断AB∥ CD;C、∠ 1 的邻补角∠BAD =∠ 2,因此能判断AB∥CD ;D 、由条件∠ 1+ ∠ 2=180°能获得AD ∥ BC,不可以判断AB∥ CD;应选: D.【评论】本题考察了平行线的判断,解题的重点是注意平行判断的前提条件一定是三线八角.5.【剖析】欲证 AB∥ CD,在图中发现AB、CD 被向来线所截,且已知∠ 1= 68°,故可按同旁内角互补,两直线平行增补条件.【解答】解:∵∠ 1= 68°,∴只需∠ 2= 180°﹣ 68°= 112°,即可得出∠ 1+∠2= 180°.应选: A.【评论】本题主要考察了判断两直线平行的问题,可环绕截线找同位角、内错角和同旁内角.本题是一道探究性条件开放性题目,能有效地培育学生“执果索因”的思想方式与能力.6.【剖析】依据平行线的判断分别进行剖析可得答案.【解答】解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得C、依据内错角相等,两直线平行可得 D 、依据同旁内角互补,两直线平行可得应选: A.BD ∥AC,故此选项错误;BD ∥AC,故此选项错误;BD ∥ AC,故此选项错误;【评论】本题主要考察了平行线的判断,解答此类要判断两直线平行的题,可环绕截线找同位角、内错角和同旁内角.7.【剖析】依据平行线的性质求出∠3,再求出∠ BAC= 90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3= 55°,∵AC⊥ AB,∴∠ BAC= 90°,∴∠ 2= 180°﹣∠ BAC﹣∠ 3= 35°,应选: A.【评论】本题考察了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.8.【剖析】延伸 ED 交 BC 于 F,依据平行线的性质求出∠MFC =∠ B= 75°,求出∠ FDC = 35°,依据三角形外角性质得出∠C=∠ MFC ﹣∠ MDC ,代入求出即可.【解答】解:延伸ED 交 BC 于 F,如下图:∵AB∥DE ,∠ABC=75°,∴∠ MFC =∠ B= 75°,∵∠ CDE= 145°,∴∠ FDC = 180°﹣ 145°= 35°,∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,应选: C.【评论】本题考察了三角形外角性质,平行线的性质的应用,解本题的重点是求出∠ MFC 的度数,注意:两直线平行,同位角相等.9.【剖析】第一利用平行线的性质定理获得∠BCD = 130°,而后利用同旁内角互补两直线平行获得∠ CDE 的度数即可.【解答】解:∵ AB∥CD ,且∠ ABC = 130°,∴∠ BCD=∠ ABC= 130°,∵当∠ BCD +∠ CDE = 180°时 BC∥ DE,∴∠ CDE= 180°﹣∠ BCD= 180°﹣ 130°= 50°,应选: B.【评论】本题考察了平行线的判断与性质,注意平行线的性质与判断方法的差别与联系.10.【剖析】依据平移的性质获得AC∥ DF ,AB∥ DE ,AD ∥ CF,AD = CF= 2.5,∠ EDF =∠BAC=90°,则利用平行线的性质得∠ ABE=∠ DEF ,利用垂直的定义得 DE ⊥ DF ,于是依据平行线的性质可判断 DE⊥ AC.【解答】解:∵将△ ABC 沿直线向右平移 2.5 个单位获得△ DEF ,∴ AC∥ DF ,AB ∥ DE,AD ∥ CF , AD= CF = 2.5,∠ EDF =∠ BAC=90°,∴∠ ABE=∠ DEF ,DE⊥ DF ,∴ DE⊥ AC,∴ ①②③④ 都正确.应选: A.【评论】本题考察了平移的性质:把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样;新图形中的每一点,都是由原图形中的某一点挪动后获得的,这两个点是对应点.连结各组对应点的线段平行(或共线)且相等.二.填空题(共8 小题)11.【剖析】依据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的原因是依据垂线段最短.故答案为:垂线段最短.【评论】本题主要考察了垂线段的性质,重点是掌握性质定理.12.【剖析】由题意可知∠DOE= 90°﹣∠ COE,∠ AOB 与∠ DOE 是对顶角相等,由此得解.【解答】解:∵已知∠COD = 90°,∠ COE= 70°,∴∠ DOE= 90°﹣ 70°= 20°,又∵∠ AOB 与∠ DOE 是对顶角,∴∠ AOB=∠ DOE= 20°,故答案为: 20°.【评论】本题考察了对顶角与邻补角,利用余角的定义、对顶角的性质是解题重点.13.【剖析】直接利用平行线的判断方法分别剖析得出答案.【解答】解:① ∵∠ 1=∠ 2,∴ a∥ b,故此选项正确;② ∠ 3=∠ 6 没法得出a∥b,故此选项错误;③ ∵∠ 4+∠ 7= 180°,∴ a∥ b,故此选项正确;④ ∵∠ 5+∠ 3= 180°,∴∠ 2+∠ 5= 180°,∴ a∥ b,故此选项正确;⑤ ∵∠ 7=∠ 8,∠ 6=∠ 8,∴∠ 6=∠ 7,∴a∥ b,故此选项正确;综上所述,正确的有①③④⑤ .故答案为:①③④⑤ .【评论】本题主要考察了平行线的判断,正确掌握平行线的几种判断方法是解题重点.14.【剖析】依照平行线的判断条件进行增添,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠ EDC =∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA=180°,则 DE∥ AB,故答案为:∠ EDC=∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA= 180°等.【评论】本题主要考察了平行线的判断,正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.【剖析】过 C 作 CM ∥AB ,延伸 CD 交 EF 于 N,依据三角形外角性质求出∠CNE= y ﹣z,依据平行线性质得出∠ 1= x,∠ 2=∠ CNE ,代入求出即可.【解答】解:过 C 作 CM∥ AB,延伸 CD 交 EF 于 N,则∠ CDE=∠ E+∠ CNE,即∠ CNE= y﹣ z∵CM∥ AB,AB∥ EF,∴CM∥ AB∥EF,∴∠ ABC= x=∠ 1,∠ 2=∠ CNE,∵∠ BCD= 90°,∴∠ 1+∠ 2= 90°,∴x+y﹣ z=90°,∴z+90 °= y+x,即 x+y﹣ z= 90°.【评论】本题考察了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补,题目比较好,难度适中.16.【剖析】依据平行线的性质和平角的定义即可获得结论.【解答】解:∵ a∥ b,∴∠ 5=∠ 1= 63°,∠ 2=∠ 3,又由折叠的性质可知∠4=∠ 5,且∠ 3+∠ 4+∠ 5= 180°,∴∠ 3= 180°﹣∠ 5﹣∠ 4= 54°,∴∠ 2= 54°,故答案为: 54.【评论】本题主要考察平行线的性质和判断,掌握平行线的判断和性质是解题的重点,即①两直线平行 ? 同位角相等,②两直线平行 ? 内错角相等,③两直线平行 ? 同旁内角互补,④ a∥ b, b∥ c? a∥c.17.【剖析】先依据平角的定义得出∠3= 180°﹣∠ 2,再由平行线的性质得出∠4=∠ 3,依据∠ 4+∠ 1= 90°即可得出结论.【解答】解:∵∠ 2+∠ 3=180°,∴∠ 3= 180°﹣∠ 2.∵直尺的两边相互平行,∴∠ 4=∠ 3,∴∠ 4= 180°﹣∠ 2.∵∠ 4+∠ 1= 90°,∴ 180°﹣∠ 2+∠1= 90°,即∠ 2﹣∠ 1= 90°.∴∠ 1 与∠ 2 之间的数目关系为:∠2﹣∠ 1=90°,故答案为:∠2﹣∠ 1= 90°.【评论】本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.【剖析】由题意可知:利用“挤压法”,将图形中的花纹挤去,求出节余的正方形的边长,即可求出白色部分的面积.【解答】解:( 60﹣ 2× 5)2,=50×50,=2500(平方厘米);∴空白部分的面积是 2500 平方厘米.故答案为: 2500平方厘米【评论】本题考察了生活中的平移现象,解答本题的重点是:利用“挤压法”,求出节余的长方形的边长,从而求其面积.三.解答题(共7 小题)19.【剖析】依据垂直的定义获得∠AOC=∠ BOC= 90°,获得∠ BOD +∠ COD =90°,根据已知条件即可获得结论.【解答】解:∵ CO⊥ AB,∴∠ AOC=∠ BOC= 90°,∴∠ BOD+∠ COD = 90°,∵∠ BOD﹣∠ COD = 34°,∴∠ COD = 28°,∴∠ AOD=∠ AOC+∠ COD = 118°.【评论】本题主要考察了垂线以及角的计算,正确掌握垂线的定义是解题重点.20.【剖析】( 1)依据垂线的定义获得∠AOC=∠ BOD= 90°,依据余角的性质即可获得结论;(2)依据角的和差即可获得结论.【解答】解:( 1)∠ AOD=∠ BOC,原因:∵ AO⊥ CO,DO⊥ BO,∴∠ AOC=∠ BOD= 90°,∵∠ COD =∠ COD ,∴∠ AOC﹣∠ COD =∠ BOD ﹣∠ COD ,∴∠ AOD=∠ BOC;(2)∵∠ AOB=140°,∠ BOD = 90°,∴∠ AOD=∠ AOB﹣∠ BOD = 50°,∴∠ COD =∠ AOC﹣∠ AOD =40°.【评论】本题考察了垂线,余角的定义,娴熟掌握垂线的定理是解题的重点.21.【剖析】依据对顶角相等,等量代换和平行线的判断定理进行证明即可.【解答】证明:∵∠ 2=∠ 3(对顶角相等),又∵∠ 1=∠ 2(已知),∴∠ 1=∠ 3,∴ AB∥ CD (同位角相等,两直线平行).【评论】本题考察的是平行线的判断,掌握平行线的判断定理是解题的重点.22.【剖析】( 1)依据同旁内角互补,两直线平行,可证BC∥ AD,依据角均分线的性质和已知条件可知∠FEC =∠ BCE ,依据内错角相等,两直线平行可证BC∥ EF,依据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥ EF;( 2)先依据CE 均分∠ BCF,设∠ BCE=∠ ECF =∠ BCF=x.由∠ DAC=3∠ BCF可得出∠ DAC = 6x,由平行线的性质即可得出x 的值,从而得出结论.【解答】( 1)证明:∵∠ DAC +∠ACB= 180°,∴ BC∥ AD,∵ CE 均分∠ BCF ,∴∠ ECB=∠ FCE ,∵∠ FEC=∠ FCE ,∴∠ FEC=∠ BCE,∴BC∥ EF,∴AD∥ EF;(2)设∠ BCE=∠ ECF =∠ BCF = x.由∠ DAC =3∠ BCF 可得出∠ DAC= 6x,则6x+x+x+20°= 180°,解得 x=20°,则∠ DAC 的度数为120°,∠ FEC 的度数为20°.【评论】本题考察的是平行线的判断,平行线的性质,用到的知识点为:同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;两直线平行,同旁内角互补.23.【剖析】依据平行线的性质和判断可填空.【解答】解:∠ AFE =∠ ABC(已知)∴EF∥ BC(同位角相等,两直线平行)∴∠ 1=∠ EBC(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴∠ EBC+∠ 2= 180°(等量代换)∴EB∥ DG (同旁内角互补,两直线平行)∴∠ GDE=∠ BEA (两直线平行,同位角相等)GD⊥ AC(已知)∴∠ GDE= 90°(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠ BEA﹣∠ AEF = 90°﹣ 65°= 25°(等式的性质)故答案为: EF∥ BC ,∠ EBC,∠ EBC +∠ 2= 180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE ,∠ BEA,∠ AEF .【评论】本题考察了平行线的判断和性质,灵巧运用平行线的性质和判断解决问题是本题的重点.24.【剖析】(1)依照 EF ∥ DB 可得∠ 1=∠ D,依据∠ 1=∠ 2,即可得出∠ 2=∠ D,从而判断 DG∥ AC;( 2)依照 EC 均分∠ FED ,∠ 1=50°,即可获得∠DEC =∠ DEF=65°,依照DG∥AC,即可获得∠C=∠ DEC= 65°.【解答】解:( 1) DG 与 AB 平行.∵EF∥ DB∴∠ 1=∠ D,又∵∠ 1=∠ 2,∴∠ 2=∠ D,∴DG ∥AC;( 2)∵ EC均分∠FED ,∠ 1=50°,∴∠ DEC=∠DEF =×( 180°﹣ 50°)= 65°,∵DG ∥AC,∴∠ C=∠ DEC= 65°.【评论】本题考察了平行线的性质和判断的应用,能正确运用定理进行推理是解本题的重点.25.【剖析】( 1)依据平行线的性质即可获得结论;(2)过点 P 作 PG∥ AB,依据平行线的性质即可获得结论;(3)过点 P 作 PG∥ CD ,依据平行线的性质即可获得结论.【解答】解:( 1)∵ AB∥ CD ,∴∠ α= 50°,故答案为: 50;(2)∠α=∠ 1+∠2,证明:过点P 作 PG∥∵ AB∥ CD,∴PG∥ CD,∴∠ 2=∠ 3,∠ 1=∠ 4,∴∠ α=∠ 3+∠ 4=∠ 1+ ∠2;( 3)∠α=∠ 2﹣∠ 1,证明:过点P 作 PG∥ CD ,∵AB∥ CD ,∴ PG∥ AB,∴∠ 2=∠ EPG,∠ 1=∠ 3,∴∠ α=∠ EPG﹣∠ 3=∠ 2﹣∠ 1.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.。
第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
第五章《相交线与平行线》单元测试题
一、选择题
1.如图,直线AB与直线CD相交于点是内一点,已知
,则的度数是
A.
B.
C.
D.
2.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:
丁第二,
我第三结果是每人的两句话中都只说对了一句,则可判断第一名是
A. 甲
B. 乙
C. 丙
D. 丁
3.下列命题:
两直线平
行,内错角相等;
如果
,那么;
等边三角
形是锐角三角形,
其中原命题和它的逆命题都正确的有
A. 1个
B. 2个
C. 3个
D. 0个
4.下列说法正确的是
A. 不相交的两条线段是平行线
B. 不相交的两条直线是平行线
C. 不相交的两条射线是平行线
D. 在同一平面内,不相交的两条直线是平行线
5.如图,已知,则的度数是
A.
B.
C.
D.
6.如图,已知,则的度数是
A.
B.
C.
D.
7.将如图所示的图案通过平移后可以得到
A. B. C. D.
8.如图,长方形ABCD中,,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到
长方形,第2次平移将长方形沿的方向向右平移5个单位,得到长方形,第n次平移将长方形沿的方向平移5个单位,得到长
方形,若的长度为2016,则n的值为
A. 400
B. 401
C. 402
D. 403
9.下列生活中的现象,属于平移的是
A. 抽屉的拉开
B. 汽车刮雨器的运动
C. 坐在秋千上人的运动
D. 投影片的文字经投影变换到屏幕
二、填空题
10.如图,在方格中平移三角形ABC,使点A移到点M,点应移动
到什么位置?再将A由点M移到点N?分别画出两次平移后的三角
形如果直接把三角形ABC平移,使A点移到点N,它和前面先移
到M后移到N的位置相同吗?
11.字母各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用
字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为______ .
12.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.
13.如图,在中,将沿着BC的方向
平移至,若平移的距离是3,则图中阴影部分的面积为
______ .
14.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积阴影部分间距均匀是______
.
三、解答题
15.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品若把从0时到24
时的每十分钟作为一个时间段共计144个时间段,请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?要求写出具体的操作步骤
16.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上,点
A的坐标是将沿y轴正方向平移3个单位得到,画出,并
写出点的坐标.
17.经过平移,小鱼上的点A移到了点B.
请画出平移后的小鱼;
该小鱼是怎样从点A移到了点B?上下左右
18.如图,将三角形ABC沿射线AB的方向平移2个单位到三角形DEF的位
置,连接CF,点的对应点分别是点.
直接写出图中所有平行的直线;
直接写出图中与AD相等的线段;
若,则______ ;
若,求的度数.
19.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折
的小路,求这块草地的绿地面积.
【答案】
1. B
2. B
3.A
4.D
5.C
6.A
7.B
8.C9.A
10. 解:如图所示,直接把平移,使A点移到点N,它和前面先移到M后移到N的位置相同.
11.
12. 解:如图所示:
.
13. 30
14. 12
15. 解:方法一:
用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;
在144个小物品大小相同的小纸片或小球等上标出1到144个数;
把这144个小物品用袋箱装好,并均匀混合;
每次从袋箱中摸出一个小物品,记下上面的数字后,将小物品返回袋中并均匀混合;
将上述步骤4重复30次,共得到30个数;
对得到的每一个数除以60转换成具体的时间.
方法二:
用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有144个编号;
使计算器进入产生随机数的状态;
将1到144作为产生随机数的范围;
进行30次按键,记录下每次按键产生的随机数,共得到30个数;
对得到的每一个数除以60转换成具体的时间.
16. 解:如图,点的坐标为.
17. 解:所画图形如下所示:
11 观察图形即可看出,先向右平移9个方格,再向下平移5个方格或先向下平移5个方格,再向右平移9个方格.
18. 5
19. 解:绿地的面积为:, 答:这块草地的绿地面积是.。