专题13概率-备战2019年高考数学(理)之纠错笔记系列Word版含解析
- 格式:doc
- 大小:1.63 MB
- 文档页数:27
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。
从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。
高考总复习 概率(附参考答案)1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=,236112136472222222=++++++)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?3已知向量()1,2a =-,(),b x y =.(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-的概率;(2)若实数,x y ∈[]1,6,求满足0a b >的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900,+∞)频数 48 121 208 223 193 165 42 频率(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m 、n 为递减的等差数列,且第一组与第八组 的频数相同,求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期,分别记它们的平均 温度为x ,y ,求事件“||5x y ->”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人?气温(℃) 频数 频率[5,1]-- x = 0.03 [0,4] 8 [5,9] 12 [10,14] 22 [15,19] 25 [20,24] t = [25,29] m = [30,34] n = 合计 1001频率0.150.200.250.300.350.40O19题图181716151413秒频率组距0.060.080.160.320.38(2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.7某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组[)14,13;第二组[)15,14,……,第五组[]18,17.右图是按上述分组方法得到的频率分布直方 图.(I )若成绩大于或等于14秒且小于16秒认为 良好,求该班在这次百米测试中成绩良好的人数;(II )设m 、n 表示该班某两位同学的百米测试成绩,且已知[][18,17)14,13,⋃∈n m , 求事件“1>-n m ”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。
2019高考全国一卷为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)首先根据题意,随机试验一轮试验共4个结果,我们用符号+-分别表示治愈和未治愈。
则甲+乙+,甲+乙-,甲-乙+,甲-乙-。
p甲乙=(1-)p(X=0)= 甲乙+甲乙=p甲乙=(1-)所以的分布列为:(2)当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。
假设四轮试验都是甲+乙—,则甲药比乙药多四只,认为甲药更有效。
此时甲药得分为4分,乙药得分为-4分,所以甲药、乙药在试验开始时都赋予4分。
(0,1,,8)ip i=表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p=表示四轮试验都是甲-乙+,乙药有效,81p=表示四轮试验都是甲+乙-,甲药有效。
概率问题中的递推数列一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是12,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是13,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是35,出现绿灯的概率是25,记开关第n 次闭合后出现红灯的概率为P n 。
(1)求:P 2;(2)求证:P n <12 (n ≥2) ;(3)求lim n n P →∞。
解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。
于是P 2=P 1·13+(1-P 1)·35=715。
(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·13+(1-P n -1)·35=-415P n -1+35,再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919∴{P n -919}为首项为(P 1-919)、公比为(-415)的等比数列P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1∴当n ≥2时,P n <919+138=12(3)由(2)得lim n n P →∞=919。
【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为1236P n -1;② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-1236)(1-P n -1)。
2019年新课标全国卷(1、2、3卷)理科数学备考宝典13.排列组合、概率统计一、2018年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——13.排列组合、概率统计一、考试大纲1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.4.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.5.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.6..随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.7.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.8.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.9.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.10.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.11.统计案例——了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归分析的基本思想、方法及其简单应用.二、新课标全国卷命题分析排列组合、概率统计在新课标全国卷高考中一般考查2小1大,概率中古典概型和几何概型是重点,一般以小题或解答题中的一小问出现,计数原理常考题型有:(1)排列组合;(2)二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.概率与统计的解答题,全国卷更注重统计的应用,而统计更多的是实际生活和生产中的广泛应用.散型随机变量是高考考点之一,随机变量分布是热点话题,正态分布和二项分布都以小题出现,且在基础题位置,难度较低,在平时复习时不宜研究难题.所以高三复习时,提高自己阅读理解能力的同时,更要关注统计中的概率分布直方图、线性回归方程、随机变量概率分布的数字特征和独立性检验等概念.三、典型高考试题讲评题型1 随机抽样例1 (2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.故选C.题型2 根据统计图判断例2 (2018·新课标Ⅰ,理3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列选项中不正确的是:A.新农村建设后,种植收入减少。
2019年高考真题理科数学解析分类汇编13 概率1.【2019高考辽宁理10】在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或。
又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
2.【2019高考湖北理8】如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π【答案】A考点分析:本题考察几何概型及平面图形面积求法.【解析】令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。
2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS 。
在扇形OAD 中21S 为扇形面积减去三角形OAC面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,选A.3.【2019高考广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B.13 C.29 D.19【答案】D【解析】法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有2555=⨯个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有2054=⨯,所以9120255=+=P .故选D .法二:设个位数与十位数分别为y x ,,则12-=+k y x ,=k 1,2,3,4,5,6,7,8,9,所以y x ,分别为一奇一偶,第一类x 为奇数,y 为偶数共有251515=⨯C C 个数;第二类x 为偶数,y 为奇数共有201514=⨯C C 个数。
2019年新课标全国卷(1、2、3卷)理科数学备考宝典13.排列组合、概率统计一、2018年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——13.排列组合、概率统计一、考试大纲1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.4.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.5.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.6..随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.7.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.8.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.9.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.10.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.11.统计案例——了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归分析的基本思想、方法及其简单应用.二、新课标全国卷命题分析排列组合、概率统计在新课标全国卷高考中一般考查2小1大,概率中古典概型和几何概型是重点,一般以小题或解答题中的一小问出现,计数原理常考题型有:(1)排列组合;(2)二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.概率与统计的解答题,全国卷更注重统计的应用,而统计更多的是实际生活和生产中的广泛应用.散型随机变量是高考考点之一,随机变量分布是热点话题,正态分布和二项分布都以小题出现,且在基础题位置,难度较低,在平时复习时不宜研究难题.所以高三复习时,提高自己阅读理解能力的同时,更要关注统计中的概率分布直方图、线性回归方程、随机变量概率分布的数字特征和独立性检验等概念.三、典型高考试题讲评题型1 随机抽样例1 (2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.故选C.题型2 根据统计图判断例2 (2018·新课标Ⅰ,理3) 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列选项中不正确的是:A.新农村建设后,种植收入减少。
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:card (A) m(1) 等可能性事件(古典概型)的概率:P(A)= card。
)=~n ;等可能事件概率的计算步骤:计算一次试验的基本事件总数n;设所求事件A,并计算事件A包含的基本事件的个数m;P(A) m依公式n求值;答,即给问题一个明确的答复•(2) 互斥事件有一个发生的概率:P(A + B) = P(A) + P(B);特例:对立事件的概率:P(A) + P( A) = P(A+ A) = 1.(3) 相互独立事件同时发生的概率:P(A • B) = P(A) • P(B);k k n k特例:独立重复试验的概率:Pn(k) = C nP (1 p).其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4) 解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:等可能事件互斥事件独立事件第一步,确定事件性质n次独立重复试验即所给的问题归结为四类事件中的某一种■和事件第二步,判断事件的运算积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.等可能事件:P(A)巴n互斥事件:P(A B) P(A) P(B)独立事件:P(A B ) P(A) P (B )第三步,运用公式n次独立重复试验:UK C n k p k d P)nk求解第四步,答,即给提出的问题有一个明确的答复例1. 在五个数字12 345中,。
例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).p CL 丄 2C3 5 4 10 ■[解答过程]0.3提示:2例2•—个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为热反应的概率为 ___________ .(精确到0.01) [考查目的]本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以 及推理和运算能力. [解答提示]至少有3人出现发热反应的概率为C 0.803 0.202 Cs 0.804 0.20 C f 0.805 0.94故填0.94.离散型随机变量的分布列 1. 随机变量及相关概念① 随机试验的结果可以用一个变量来表示, 这样的变量叫做随机变量, 常用希腊字母E 、 n等表示.② 随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 .③ 随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量 2. 离散型随机变量的分布列①离散型随机变量的分布列的概念和性质般地,设离散型随机变量 可能取的值为X1, x 2 ,……,X i ,……,取每一个值X i ( i 1, 2,……)的概率P (Xi)=R ,则称下表为随机变量 的概率分布,简称的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1) P 0, i 1 , 2,…;(2) P P 2 …=1. ②常见的离散型随机变量的分布列: (1 )二项分布n 次独立重复试验中,事件A 发生的次数 是一个随机变量,其所有可能的取值为 0, 1,2,…k k n kn ,并且Pk P ( k) C n p q ,其中o k n , q 1 P ,随机变量的分布列如下:称这样随机变量 服从二项分布,记作 ~B(n,P ),其中n 、p 为参数,并记:[解答过程]100 120 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发k k n kC n P q b(k; n , p)(2)几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数 是一个取值为正整数的离散型 随机变量,“ k ”表示在第k 次独立重复试验时事件第一次发生 随机变量的概率分布为:12 3kPpqp2q pk 1q p例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机 抽取一定数量的产品做检验,以决定是否接收这批产品•(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(□)若厂家发给商家 20件产品中,其中有3件不合格,按合同规定该商家从中任取 2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数 的分布列及期望E ,并求出该商家拒收这批产品的概率[解答过程](I)记“厂家任取 4件产品检验,其中至少有 1件是合格品”为事件 A(n) 可能的取值为0,1,2 .2C 17136C 20190目_2_C ;0 19012P136 51 3 190190190136 27 1 -190 95 .27所以商家拒收这批产品的概率为95.13533 0 - 1 -2 -1919191E用对立事件A 来算,有41 0.251 190记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率2 C20例12.否则即被某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,4 3 2淘汰•已知某选手能正确回答第一、二、三轮的问题的概率分别为5、5、5 ,且各轮问题能否正确回答互不影响•(I)求该选手被淘汰的概率;(n)该选手在选拔中回答问题的个数记为,求随机变量的分布列与数学期望•(注:本小题结果可用分数表示)[解答过程]解法一:(I)记“该选手能正确回答第i轮的问题”的事件为A(i 123),则4 3 2P(A)匚P(A2):P(A3)-5, 5, 5,该选手被淘汰的概率P P(A A A2 A2A2A3)P(瓦)P(A)P(A2)P(A)P(A2)P(A3)1 42 43 3 1015 5 5 5 5 5 125 .1P( 1) P(A)-(n) 的可能值为123, 5,4 2 8P( 2) P(AA2) P(A)P(A2)5 5 25 ,4 3 12P( 3) P(AA2) P(A)P(A2)----5 5 25的分布列为1 8 12 57E 1 2 3 -5 25 25 25 .4A (i 12 3) P(A1)—解法二:(I)记“该选手能正确回答第i轮的问题”的事件为A(i也3),贝y 5,3 2P(AJ — P(A3)-5, 5.,4 3 2 101该选手被淘汰的概率P 1 P(AA2A3) 1 P(A)P(A2)P(A3) 5 5 5 125 .(n)同解法一.(3 )离散型随机变量的期望与方差随机变量的数学期望和方差(1)离散型随机变量的数学期望:E x1p1 X2p2…;期望反映随机变量取值的平均水2 2 2⑵离散型随机变量的方差:D (X 1 E ) P l (X 2 E ) P 2…(X n E ) P n ...; 方差反映随机变量取值的稳定与波动,集中与离散的程度2⑶基本性质:E (a b) aEb ; D(ab) a D.⑷ 若 〜B(n , p),贝UEnp; D =npq (这里 q=1-p );E1 _q_E— 2如果随机变量 服从几何分布,P( k) g(k,p),贝y p, D = p 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等, 所得次品数分别为£、n,£和n 的分布列如下:例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为1 2 3 4 5 P0.40.20.20.10.1商场经销一件该商品,采用 1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为 300元.表示经销一件该商品的利润.(I)求事件 A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A );思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值, 看出次品数的波动情况,即方差值的大小 . 解答过程:工人甲生产出次品数s 的期望和方差分别为: E 0 — 1 10 即期望;二是要11030.7102 1 20.7)2 (2 0.7)2106 10工人乙生产出次品数n 的期望和方差分别为:D (0 0.7)2(1 —0.891100.7)2 5 10(10.7)2 130 (20.7)22 0.664 10技术水平相当,但D s >Dq ,可见乙的技术比较方差反映随机变量取值的稳定与波动, 集中与离(n)求的分布列及期望E.[解答过程](I)由A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A表示事件“购买该商品的3位顾客中无人采用1期付款”P(A )(10.4)20.216P(A)1 P(A) 1 0.2160.784(n)的可能取值为200元, 250 元,300 元.P(200)P(1) 0.4P(250)P(2) P(3)0.2 0.2 0.4P(300)1P( 200)P(250) 1 0.4 0.40.2的分布列为200250300P0.40.40.2E 200 0.4 250 0.4 300 0.2240 (元).抽样方法与总体分布的估计抽样方法1. 简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样•常用抽签法和随机数表法•2•系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)•3•分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确•总体分布:总体取值的概率分布规律通常称为总体分布当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图•当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线•典型例题例1.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2: 3: 5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件•那么此样本的容量n= •2 1016 80解答过程:A种型号的总体是10,则样本容量n= 2 •例2.—个总体中有100个个体,随机编号0, 1, 2,…,99,依编号顺序平均分成10个小组,组号依次为1, 2, 3,…,10・现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为 m ,那么在第k 组中抽取的号码个位数字与 mk 的个位数字相同,若m 6,则在第7组中抽取的号码是解答过程:第K 组的号码为(k 1)10 , (k 1)10 1 ,•••,% 1)10 9,当m=6时,第k 组抽取 的号的个位数字为 m+k 的个位数字,所以第 7组中抽取的号码的个位数字为 3,所以抽取号码为63.正态分布与线性回归1.正态分布的概念及主要性质(1 )正态分布的概念常数,并且> 0,则称 服从正态分布,记为 ~N ( ,2).2(2)期望E = □,方差D . (3 )正态分布的性质 正态曲线具有下列性质:① 曲线在x 轴上方,并且关于直线 x =y 对称.② 曲线在x= 时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低 ③ 曲线的对称轴位置由卩确定; 曲线的形状由 确定, 越大,曲线越"矮胖”;反之越"高瘦”. 三d 原则即为数值分布在(卩一d ,卩+ d )中的概率为0.6526数值分布在(卩一2d ,卩+2d )中的概率为 0.9544 数值分布在(卩一3d ,卩+3d )中的概率为 0.9974 (4)标准正态分布当=0, =1时 服从标准的正态分布,记作 ~N (0, 1)(5 )两个重要的公式 ①(x) 1(x),② P(a b) (b) (a).2(6) N(-)与 N©1)二者联系.〜N(0,1)2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法如果连续型随机变量 的概率密度函数为f(x)1 eJ 2其中、2、 P(a②若〜N(,),则b)(b —)(—)完美WORD 格式专业知识分享变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确 定性的两个变量之间往往仍有规律可循 .回归分析就是处理变量之间的相关关系的一种数量 统计方法.它可以提供变量之间相关关系的经验公式具体说来,对n 个样本数据(Xl ,yi ), (),…,(X n ,y n ),其回归直线方程,或经验公式 n b 片 y i nxyi 1 a y b x, n ,a y 为:? bx a .其中 X in (x)2 i 1 ,其中x ,y 分别为| x*、| y|的平均数. 例1.如果随机变量E 〜 N 2),且 E E =3, D E =1,贝U P (— 1<E< 1=等于()A.2 0( 1)— 1B. Q( 4)—Q( 2)C. Q( 2)—Q( 4)D.①(一4)—①(一2) 解答过程:对正态分布,=E E =3,c 2=DE =1,故 P (— 1 <EW 1) =Q (1 — 3)—① 1 — 3) =Q( — 2)—① (—4) =Q( 4)- -①(2). 答案:B例2•将温度调节器放置在贮存着某种液体的容器内,调节器设定在d C,液体的温度E (单 位:C)是一个随机变量,且E 〜 N(d , 0.52 ).(1 )若d=90°,则E <89的概率为; (2)若要保持液体的温度至少为 80 C 的概率不低于0.99 ,则d 至少是 ?(其中若n 〜 N (0, 1),则①(2) =P (n <2) =0.9772,①(一2.327 ) =P (n <-2.327 ) =0.01 ).89 90解答过程:(1) P(E <89) =F (89)二①(0.5 )二①(-2) =1 —①(2) =1 — 0.9772=0.0228.(2)由已知 d 满足 0.99 < P (E> 80),即 1 — P (E <80)> 1 — 0.01 ,••• P (E <80)< 0.01.80 d.•©(0.5 )< 0.01=①(—2.327 ).80 d • 0.5 <— 2.327.• d w 81.1635.故d 至少为81.1635.N( 0, 1) . (2)标准正态分布的密度函数 f ( x ) 是偶函数,x<0时,f (x )为增函数,x>0时,f ( x )为减函数小结:(1 )若三〜N ( 0, 1),贝打。
易错点1 忽略概率加法公式的应用前提致错某商店日收入(单位:元)在下列范围内的概率如下表所示:已知日收入在[1000,3000)(元)范围内的概率为0.67,求月收入在[1500,3000)(元)范围内的概率.【错解】记这个商店日收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000) (元)范围内的事件分别为A,B,C,D,则日收入在[1500,3000)(元)范围内的事件为B+C+D,所以P(B+C+D)=1-P(A)=0.88.【错因分析】误用P(B+C+D)=1-P(A).事实上,本题中P(A)+P(B)+P(C)+P(D)≠1,故事件A与事件B+C+D 并不是对立事件.【试题解析】因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.在应用概率加法公式时,一定要注意其应用的前提是涉及的事件是互斥事件.对于事件A,B,有()()()P A B P A P B=+,只有当事件A,B互斥时,等号才成立.1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?【答案】得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.【名师点睛】本题主要考查了等可能事件的概率,考查了互斥事件的概率加法公式,关键是明确互斥事A B C D表件和的概率等于概率的和,属于中档试题,着重考查了分析问题和解答问题的能力.分别以,,,示事件:从袋中任取一球“摸到红球”,“摸到黄球”,“摸到绿球”,则由题意得到三个和事件的概率,求解方程组,即可得到答案.学科&网易错点2 混淆“等可能”与“非等可能”从5名男生和3名女生中任选1人去参加演讲比赛,求选中女生的概率.【错解】从8人中选出1人的结果有“男生”“女生”两种,则选中女生的概率为.【错因分析】因为男生人数多于女生人数,所以选中男生的机会大于选中女生的机会,它们不是等可能的.【试题解析】选出1人的所有可能的结果有8种,即共有8个基本事件,其中选中女生的基本事件有3个,故选中女生的概率为.利用古典概型的概率公式求解时,注意需满足两个条件:(1)所有的基本事件只有有限个;(2)试验的每个基本事件是等可能发生的.2.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A.1999B.11000C.9991000D.12【答案】D【名师点睛】本题主要考查了概率的基本概念及应用,其中熟记随机事件的概率的基本概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.由题意投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,即可得到答案.学科.网错点3 几何概型中测度的选取不正确在等腰直角三角形ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求AM<AC的概率;(2)在∠ACB的内部,以C为端点任作一条射线CM,与线段AB交于点M,求AM<AC的概率. 【错解】(1)如图所示,在AB上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===. (2)在∠ACB 的内部作射线CM,则所求概率为2AC AC AB AB '==. 【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度.【试题解析】(1)如图所示,在AB 上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===.(2)由于在∠ACB 内作射线CM,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB,又1(18045)67.52ACC '∠=-=,90ACB ∠=, 所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.3.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P = A .23 B .12 C .49D .29【答案】D【名师点睛】由题意结合几何概型计算公式求解满足题意的概率值即可.数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.学科.网易错点4 错解随机变量的取值概率而致错从4名男生和2名女生中任意选择3人参加比赛,设被选中的女生的人数为X .(1)求X 的分布列;(2)求所选女生的人数至多为1的概率.【错解】(1)由题设可得X 的可能取值为0,1,2,且3436A 1(0)A 5P X ===,214236A A 1(1)A 5P X ===,3(2)1(0)(1)5P X P X P X ==-=-==, 所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为2(1)(0)(1)5P X P X P X ≤==+==. 【错因分析】产生错解的原因是对随机变量的取值概率求解错误,事实上随机变量X 服从参数为6N =,2M =,3n =的超几何分布.【试题解析】(1)由题设可得X 的可能取值为0,1,2,且3436C 1(0)C 5P X ===, 122436C C 3(1)C 5P X ===,212436C C 1(2)C 5P X ===,所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为4(1)(0)(1)5P X P X P X ≤==+==.4.大豆是我国主要的农作物之一,因此,大豆在农业发展中占有重要的地位,随着农业技术的不断发展,为了使大豆得到更好的种植,就要进行超级种培育研究.某种植基地培育的“超级豆”种子进行种植测试:选择一块营养均衡的可种植4株的实验田地,每株放入三粒“超级豆”种子,且至少要有一粒种子发芽这株豆苗就能有效成活,每株成活苗可以收成大豆2.205kg .已知每粒豆苗种子成活的概率为12(假设种子之间及外部条件一致,发芽相互没有影响). (1)求恰好有3株成活的概率;(2)记成活的豆苗株数为ξ,收成为()kg η,求随机变量ξ分布列及η数学期望E η. 【答案】(1)3431024;(2)见解析.(2)记成活的豆苗株数为ξ,收成为=2.205ηξ,则ξ的可能取值为0,1,2,3,4,且ξ~74,8B ⎛⎫ ⎪⎝⎭, 所以ξ的分布列如下表:4 3.58E ξ∴=⨯=,()()= 2.205 2.2057.7175kg E E E ηξξ=⋅=.学科@网【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:①阅读理解关;②概率计算关;③公式应用关.(1)利用对立事件求出每株豆子成活的概率,再结合独立事件概率公式得到结果; (2)记成活的豆苗株数为ξ,收成为=2.205ηξ,且ξ~74,8B ⎛⎫⎪⎝⎭,从而得到随机变量ξ的分布列及η的数学期望E η.易错点5 对超几何分布的概念理解不透彻而致错盒中装有12个零件,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.【错解】由题意可知,X 服从超几何分布,其中12N =,3M =,3n =,所以在取得正品之前已取出次品数X 的分布列为339312C C (0,1,2,3)C ()k k P X k k -===,所以已取出次品数X 的分布列为 【错因分析】错解中未理解超几何分布的概念.本题是不放回抽样,“1X =”表示“第一次取到次品,第二次取到正品”,“2X =”表示“前两次都取到次品,第三次取到正品”,属于排列问题.而超几何分布是一次性抽取若干件产品,属于组合问题.【试题解析】由题易得X 的可能取值为0,1,2,3.19112()C 30C 4P X ===,1139212C C 9()1A 44P X ===,2139312A C 92A 2()20P X ===,3139412A C 13A 2()20P X ===,所以已取出次品数X 的分布列为求随机变量的分布列的关键是熟练掌握排列、组合知识,求出随机变量每个取值的概率,注意概率的取值范围(非负),在由概率之和为1求参数问题中要把求出的参数代回分布列进行检验.5.某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A 、B 两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A 组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B 组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》. (1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率; (2)若从A 、B 两组中各任选2人,设X 为选出的4人中选听《生活趣味数学》的人数,求X 的分布列和数学期望()E X . 【答案】(1)2140;(2)见解析. 【解析】(1)设“选出的3人中恰有2人选听《校园舞蹈赏析》”为事件M ,则()2173310C C 21C 40P M ==,学科&网答:选出的3人中恰有2人选听《校园舞蹈赏析》的概率为21 40.所以X的数学期望为:()9123160123502510255E X=⨯+⨯+⨯+⨯=.【名师点睛】本题主要考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,属于中档题.(1)利用相互独立事件与古典概率计算公式即可得出;(2)X可能的取值为0,1,2,3,利用相互独立事件、互斥事件的概率计算公式即可得出概率、分布列与数学期望.掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.易错点6 混淆互斥事件与相互独立事件而致错甲投篮命中率为0.9,乙投篮命中率为0.8,每人投3次,两人都恰好投中2次的概率是多少?【错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B , 则“两人都恰好投中2次”为事件A B ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B =+=⨯⨯+⨯⨯=0.627.【错因分析】产生错解的原因是把相互独立事件同时发生当成互斥事件来考虑,将“两人都恰好投中2次”理解为“甲恰好投中2次”与“乙恰好投中2次”的和.【试题解析】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,且A ,B 相互独立, 则“两人都恰好投中2次”为事件AB ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B ==⨯⨯⨯⨯⨯=0.093312.1.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.6.一张储蓄卡的密码共有6位数字,每位数字都可以从09~中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为A .25 B .310 C .15D .110【答案】C【解析】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为: P =19110109+⨯=15. 故选C .学科.网【名师点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.一、随机事件与概率 1.事件关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.基本事件个数的计算方法 (1)列举法; (2)列表法; (3)利用树状图列举.3.求互斥事件概率的两种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算. (2)间接求法:先求此事件的对立事件,再用公式P (A )=1-()P A 求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法往往会较简便. 二、古典概型1.求古典概型的基本步骤 (1)算出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件数m . (3)代入公式P (A )=mn ,求出P (A ).2.基本事件个数的确定方法(1)列举法:此法适用于基本事件较少的古典概型.(2)列表法:此法适用于从多个元素中选定两个元素的试验,也可看成是坐标法. 3.求与古典概型有关的交汇问题的方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算. 三、几何概型1.求解与长度(角度)有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).2.求解与体积有关的几何概型的方法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.3.求解与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.四、离散型随机变量分布列的常见类型及解题策略(1)与排列组合有关分布列的求法.可由排列组合、概率知识求出概率,再求出分布列.(2)与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.(3)与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.(4)与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.(5)超几何分布的特点超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.五、n次独立重复试验与二项分布1.条件概率的两种解法(1)定义法:先求P(A)和P(AB),再由P(B|A)()=()P ABP A求P(B|A).(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A).,再求事件AB所包含的基本事件数n(AB),得P(B|A)()() n ABn A =.2.求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁琐或难以入手时,可从其对立事件入手计算.4.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)()()=()()P AB n ABP A n A=,其中,在实际应用中P(B|A)=()()n ABn A是一种重要的求条件概率的方法.5.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).6.n次独立重复试验中,事件A恰好发生k次可看作是C kn个互斥事件的和,其中每一个事件都可看作是k 个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.1.(2018年全国卷II理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118【答案】C【名师点睛】先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(1)列举法. 学科!网(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4C.0.6 D.0.7【答案】B【解析】设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付.则()()()()P A B C P A P B P C =++.因为()()0.45,0.15P A P C ==,所以()0.4P B =.故选B.【名师点睛】本题主要考查事件的基本关系和概率的计算,属于基础题.由公式()()()()P A B C P A P B P C =++计算可得.学科^网3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4D .0.3【答案】D【名师点睛】分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能个数及事件“选中的2人都是女同学”的总可能个数,代入概率公式可求得概率.应用古典概型求某事件的步骤: 第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; 第三步,利用公式()mP A n=求出事件A 的概率. 4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是A .13 B .16 C .14D .112【答案】A【解析】幼童把这三张卡片进行随机排列,基本事件总数n =23C =3, ∴该幼童能将这句话排列正确的概率p =13.故选A.【名师点睛】先排好医字,共有23C种排法,再排国字,只有一种方法.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.5.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=A.0.4 B.0.5C.0.6 D.0.7【答案】A6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683该运动员三次投篮恰有两次命中的概率为A.15B.35C.310D.910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数,故所求概率为3 10.故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的可以通过列举得到共3组随机数,根据概率公式,得到结果.7.传说战国时期,齐王与田忌各有上等,中等,下等三匹马,且同等级的马中,齐王的马比田忌的马强,但田忌的上、中等马分别比齐王的中、下等马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜.如果齐王将马按上,中,下等马的顺序出阵,而田忌的马随机出阵比赛,则田忌获胜的概率是A .B .C .D .【答案】C8.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A.13B.23C.34D.14【答案】B【解析】设点P到点O的距离小于等于1的概率为P1,由几何概型,得P1=322π13π12VV⨯⨯⨯半球圆柱==13,故点P到点O的距离大于1的概率P=1-13=23.学科*网故选B.9.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是A.0.01×0.992B.0.012×0.99C.13C0.01×0.992D.1-0.993【答案】D【名师点睛】本题主要考查了互斥事件概率的求法,解题的关键是熟练掌握互斥事件的概率和为1,属于基础题.根据题意求出事件“三盒中没有次品”的概率,然后根据互斥事件的概率和为1,即可得到答案.10.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数是增函数的概率为A.B.C.D.【答案】C【解析】该程序的运行过程如下:x=-3,输出,输出,输出,输出,输出,输出,输出y=15,程序结束,故A={3,0,-1,8,15},其中有3个正元素,可使得函数是增函数,故所求概率为.故选C.11.设函数f(x)=e,01ln e,1ex xx x⎧≤<⎨+≤≤⎩在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是A.1eB.1﹣1eC.e1e+D.11e+【答案】B12.(2018新课标I卷理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC △的面积为112S bc =, 黑色部分的面积为22221πππ2222c b a S bc ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+⋅-⋅-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2221π4442c b a bc ⎛⎫=+-+⎪⎝⎭ 22211π422c b a bc bc +-=⋅+=,其余部分的面积为2231π1π2242a a S bc bc ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =. 故选A.【名师点睛】该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.学科&网13.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】310【名师点睛】先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.古典概型中基本事件数的探求方法:(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.14.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_____. 【答案】15【解析】编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个, 从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况, 所有的事件总数为:35C =10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2,共两个, 所以这三个砝码的总质量为9克的概率是:210=15, 故答案为:15. 【名师点睛】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.15.已知向量()()2,1,,x y ==,a b 若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量∥a b 的概率为_______. 【答案】16【名师点睛】本题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.先求出基本事件的个数,利用向量平行确定满足∥a b 的基本事件个数,然后代入古。
易错点1 忽略概率加法公式的应用前提致错某商店日收入(单位:元)在下列范围内的概率如下表所示:已知日收入在[1000,3000)(元)范围内的概率为0.67,求月收入在[1500,3000)(元)范围内的概率.【错解】记这个商店日收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000) (元)范围内的事件分别为A,B,C,D,则日收入在[1500,3000)(元)范围内的事件为B+C+D,所以P(B+C+D)=1-P(A)=0.88.【错因分析】误用P(B+C+D)=1-P(A).事实上,本题中P(A)+P(B)+P(C)+P(D)≠1,故事件A与事件B+C+D 并不是对立事件.【试题解析】因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.在应用概率加法公式时,一定要注意其应用的前提是涉及的事件是互斥事件.对于事件A,B,有()()()P A B P A P B=+,只有当事件A,B互斥时,等号才成立.1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?【答案】得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.【名师点睛】本题主要考查了等可能事件的概率,考查了互斥事件的概率加法公式,关键是明确互斥事A B C D表件和的概率等于概率的和,属于中档试题,着重考查了分析问题和解答问题的能力.分别以,,,示事件:从袋中任取一球“摸到红球”,“摸到黄球”,“摸到绿球”,则由题意得到三个和事件的概率,求解方程组,即可得到答案.易错点2 混淆“等可能”与“非等可能”从5名男生和3名女生中任选1人去参加演讲比赛,求选中女生的概率.【错解】从8人中选出1人的结果有“男生”“女生”两种,则选中女生的概率为.【错因分析】因为男生人数多于女生人数,所以选中男生的机会大于选中女生的机会,它们不是等可能的. 【试题解析】选出1人的所有可能的结果有8种,即共有8个基本事件,其中选中女生的基本事件有3个,故选中女生的概率为.利用古典概型的概率公式求解时,注意需满足两个条件:(1)所有的基本事件只有有限个;(2)试验的每个基本事件是等可能发生的.2.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999 B .11000C .9991000D .12【答案】D【名师点睛】本题主要考查了概率的基本概念及应用,其中熟记随机事件的概率的基本概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.由题意投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,即可得到答案. 错点3 几何概型中测度的选取不正确在等腰直角三角形ABC 中,直角顶点为C .(1)在斜边AB 上任取一点M,求AM <AC 的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM,与线段AB 交于点M,求AM <AC 的概率. 【错解】(1)如图所示,在AB 上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===.(2)在∠ACB 的内部作射线CM,则所求概率为2AC AC AB AB '==. 【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度. 【试题解析】(1)如图所示,在AB 上取一点C',使AC'=AC,连接CC'. 由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===.(2)由于在∠ACB 内作射线CM,等可能分布的是CM 在∠ACB 内的任一位置(如图所示), 因此基本事件的区域应是∠ACB, 又1(18045)67.52ACC '∠=-= ,90ACB ∠= , 所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.3.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P = A .23 B .12 C .49D .29【答案】D【名师点睛】由题意结合几何概型计算公式求解满足题意的概率值即可.数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.易错点4 错解随机变量的取值概率而致错从4名男生和2名女生中任意选择3人参加比赛,设被选中的女生的人数为X .(1)求X 的分布列;(2)求所选女生的人数至多为1的概率.【错解】(1)由题设可得X 的可能取值为0,1,2,且3436A 1(0)A 5P X ===,214236A A 1(1)A 5P X ===,3(2)1(0)(1)5P X P X P X ==-=-==,所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为2(1)(0)(1)5P X P X P X ≤==+==. 【错因分析】产生错解的原因是对随机变量的取值概率求解错误,事实上随机变量X 服从参数为6N =,2M =,3n =的超几何分布.【试题解析】(1)由题设可得X 的可能取值为0,1,2,且3436C 1(0)C 5P X ===, 122436C C 3(1)C 5P X ===,212436C C 1(2)C 5P X ===,所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为4(1)(0)(1)5P X P X P X ≤==+==.4.大豆是我国主要的农作物之一,因此,大豆在农业发展中占有重要的地位,随着农业技术的不断发展,为了使大豆得到更好的种植,就要进行超级种培育研究.某种植基地培育的“超级豆”种子进行种植测试:选择一块营养均衡的可种植4株的实验田地,每株放入三粒“超级豆”种子,且至少要有一粒种子发芽这株豆苗就能有效成活,每株成活苗可以收成大豆2.205kg .已知每粒豆苗种子成活的概率为12(假设种子之间及外部条件一致,发芽相互没有影响). (1)求恰好有3株成活的概率;(2)记成活的豆苗株数为ξ,收成为()kg η,求随机变量ξ分布列及η数学期望E η. 【答案】(1)3431024;(2)见解析.(2)记成活的豆苗株数为ξ,收成为=2.205ηξ,则ξ的可能取值为0,1,2,3,4,且ξ~74,8B ⎛⎫ ⎪⎝⎭, 所以ξ的分布列如下表:4 3.58E ξ∴=⨯=, ()()= 2.205 2.2057.7175kg E E E ηξξ=⋅=.【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:①阅读理解关;②概率计算关;③公式应用关.(1)利用对立事件求出每株豆子成活的概率,再结合独立事件概率公式得到结果; (2)记成活的豆苗株数为ξ,收成为=2.205ηξ,且ξ~74,8B ⎛⎫⎪⎝⎭,从而得到随机变量ξ的分布列及η的数学期望E η.易错点5 对超几何分布的概念理解不透彻而致错盒中装有12个零件,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.【错解】由题意可知,X 服从超几何分布,其中12N =,3M =,3n =,所以在取得正品之前已取出次品数X 的分布列为339312C C (0,1,2,3)C ()k k P X k k -===,所以已取出次品数X 的分布列为【错因分析】错解中未理解超几何分布的概念.本题是不放回抽样,“1X =”表示“第一次取到次品,第二次取到正品”,“2X =”表示“前两次都取到次品,第三次取到正品”,属于排列问题.而超几何分布是一次性抽取若干件产品,属于组合问题. 【试题解析】由题易得X 的可能取值为0,1,2,3.19112()C 30C 4P X ===,1139212C C 9()1A 44P X ===,2139312A C 92A 2()20P X ===,3139412A C 13A 2()20P X ===,。