传送带类运送物块的归类认识
- 格式:pdf
- 大小:199.20 KB
- 文档页数:2
拓展课传送带模型和板块模型(答案在最后)目标要求1.会对传送带上的物体进行受力分析,掌握传送带模型的一般分析方法.2.能正确解答传送带上的物体的运动问题.3.建立板块模型的分析方法.4.能运用牛顿运动定律处理板块问题.拓展1传送带模型【归纳】1.基本类型传送带运输是利用货物和传送带之间的摩擦力将货物运送到其他地方去,有水平传送带和倾斜传送带两种基本模型.2.分析流程3.注意问题求解的关键在于根据物体和传送带之间的相对运动情况,确定摩擦力的大小和方向.当物体的速度与传送带的速度相同时,物体所受的摩擦力有可能发生突变.【典例】例 1 传送带是现代生产、生活中广泛应用的运送货物的运输工具,其大量应用于工厂、车站、机场、地铁站等.如图,地铁一号线的某地铁站内有一条水平匀速运行的行李运输传送带,假设传送带匀速运动的速度大小为v,且传送带足够长.某乘客将一个质量为m的行李箱轻轻地放在传送带一端,行李箱与传送带间的动摩擦因数为μ.当行李箱的速度与传送带的速度刚好相等时,地铁站突然停电,假设传送带在制动力的作用下立即停止运动,求行李箱在传送带上运动的总时间.例 2 某飞机场利用如图所示的传送带将地面上的货物运送到飞机上,传送带与地面的夹角θ=37°,传送带两端A、B之间的长度L=11 m,传送带以v=2 m/s的恒定速度向上运动.在传送带底端A轻轻放上一质量m=2 kg的货物,货物与传送带间的动摩擦因数μ=0.8.,sin 37°=0.6,cos 37°=0.8)求货物从A端运送到B端所需的时间.(取g=10ms2例 3 如图所示,传送带与水平地面间的倾角为θ=37°,从A端到B端长度为s=16 m,传送带在电机带动下始终以v=10 m/s的速度逆时针运动,在传送带上A端由静止释放一个质量为m=0.5 kg的可视为质点的小物体,它与传送带之间的动摩擦因数为μ=0.5,假设最大静摩擦力与滑动摩擦力大小相同,g取10m,sin 37°=0.6,求:小物体从A到B所用的s2时间.总结提升倾斜传送带向下传送物体,当物体加速运动与传送带速度相等时:(1)若μ≥tan θ,物体随传送带一起匀速运动;(2)若μ<tan θ,物体不能与传送带保持相对静止,物体将以较小的加速度a=g sin θ-μg cos θ继续做加速运动.拓展2板块模型【归纳】滑块—木板类(简称板块模型)问题涉及两个或多个物体,并且物体间存在相对滑动,属于多物体多过程问题,知识综合性较强,对能力要求较高.1.解题方法技巧(1)分析题中滑块、木板的受力情况.(2)画好运动草图,找出位移、速度、时间等物理量间的关系.(3)知道每一过程的末速度是下一过程的初速度.(4)两者发生相对滑动的条件:①摩擦力表现为滑动摩擦力;②二者加速度不相等.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度.(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.注意摩擦力的突变当滑块与木板速度相同时,二者之间的摩擦力通常会发生突变,由滑动摩擦力变为静摩擦力或者消失,或者摩擦力方向发生变化,速度相同是摩擦力突变的一个临界条件.【典例】例 4 长为1.0 m的长木板B静止放在水平冰面上,小物块A以某一初速度从长木板B 的左端冲上长木板B,直到A、B的速度达到相同,大小为v′=0.4 m/s.再经过t0=0.4 s的时间A、B一起在水平冰面上滑行了一段距离后停在冰面上.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25.(g取10 m/s2)求:(1)长木板与冰面间的动摩擦因数;(2)小物块相对长木板滑行的距离.教你解决问题读题提取信息→ 画运动示意图例5 如图,一平板车以某一速度v0=5 m/s匀速行驶,某时刻一货箱(可视为质点)无初m,货箱放入车上的同时,平板车开速度地放置于平板车上,货箱离车后端的距离为l=316始刹车,刹车过程可视为做加速度a=3 m/s2的匀减速直线运动.已知货箱与平板车之间的.求:摩擦因数为μ=0.2,g=10ms2(1)货箱放上平板车时加速度的大小和方向;(2)货箱做匀加速直线运动,平板车做匀减速直线运动,求出速度相等时两者的位移,判断货箱是否从车后端掉下来.例 6 (多选)如图所示,一质量为M的长木板静置于光滑水平面上,其上放置质量为m 的小滑块.木板受到水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图所示,重力加速度g=10 m/s2,下列说法正确的是()A.小滑块的质量m=2 kgB.小滑块与长木板之间的动摩擦因数为0.2C.当水平拉力F增大时,小滑块的加速度一定增大D.当水平拉力F=7 N时,长木板的加速度大小为3 m/s2拓展课八传送带模型和板块模型拓展1[例1] 解析:行李箱所受的合外力等于滑动摩擦力,根据牛顿第二定律有μmg =ma ,解得a =μg .经过一段时间t 1,行李箱和传送带刚好速度相等,则t 1=vμg ;停电后,行李箱的加速度大小也是μg ,则减速时间t 2=v μg,故行李箱在传送带上运动的总时间为t =t 1+t 2=2vμg.答案:2vμg[例2] 解析:货物放在传送带上,开始相对传送带向下运动,故所受滑动摩擦力的方向沿传送带向上.货物由静止开始做初速度为0的匀加速直线运动.以货物为研究对象,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma解得a =0.4 m/s 2货物匀加速直线运动的时间t 1=va =5 s货物匀加速直线运动的位移x 1=12at 12=5 m<L =11 m经计算μmg cos 37°>mg sin 37°故此后货物随传送带一起向上做匀速运动,运动的位移x 2=L -x 1=6 m 匀速运动的时间t 2=x2v =3 s货物从A 到B 所需的时间t =t 1+t 2=8 s. 答案:8 s[例3] 解析:开始时,物体相对传送带沿斜面向上滑,所以摩擦力的方向沿斜面向下,由牛顿第二定律,有a 1=mg sin 37°+μmg cos 37°m =10 m/s 2当物体与传送带共速时,物体的位移x 1=v 2−02a 1=5 m ,经历的时间t 1=va 1=1 s则此时距离B 端的距离x 2=s -x 1=11 m又因为mg sin 37°>μmg cos 37°则物体与传送带不能保持相对静止,此后物体的加速度 a 2=mg sin 37°−μmg cos 37°m=2 m/s 2根据位移与时间关系有x 2=vt 2+12at 22代入数据解得t 2=1 s总耗时为t =t 1+t 2=2 s ,故物体从A 端运动到B 端需要的时间为2 s. 答案:2 s 拓展2[例4] 解析:(1)设长木板与冰面间的动摩擦因数为μ2,A 、B 一起运动时,根据牛顿第二定律有:2μ2mg =2ma又知v ′=at 0 解得μ2=0.1.(2)共速前,对A 有:加速度大小a 1=μ1g =2.5 m/s 2 对B 有:μ1mg -μ2×2mg =ma 2, 加速度大小a 2=0.5 m/s 2则知相对运动的时间t =v ′a 2=0.8 s小物块A 的初速度v 0=v ′+a 1t =2.4 m/s 则相对位移Δx =v 0t -12a 1t 2-12a 2t 2代入数据解得:Δx =0.96 m. 答案:(1)0.1 (2)0.96 m[例5] 解析:(1)货箱:μmg =ma 1,得a 1=2.0 m/s 2,方向向前. (2)假设货箱能与平板车达到共速,则箱:v =a 1t ,车:v =v 0-a 2t ,得:t =1.0 s , 箱:s 1=0+v 2t =1 m ,对平板车:s 2=v 0t -12a 2t 2=5×1-12×3×1 m =3.5 m.此时,货箱相对车向后移动了Δx =s 2-s 1=2.5 m<316 m ,故货箱不会掉下.答案:(1)2 m/s 2,向前 (2)不会 [例6] 解析:由图乙可得,当拉力等于6 N 时,小滑块和长木板刚好要发生相对滑动,以M 、m 为整体,根据牛顿第二定律可得F =(M +m )a以m 为对象,根据牛顿第二定律可得μmg =ma 其中F =6 N ,a =2 m/s 2联立解得m +M =3 kg ,μ=0.2当拉力大于6 N 时,长木板的加速度为a =F−μmg M=F M −μmg M可知a F 图像的斜率为k =1M =2−06−4kg -1=1 kg -1联立解得M =1 kg ,m =2 kg ,故A 、B 正确;当水平拉力大于6 N 时,长木板与小滑块已经发生相对滑动,此后F 增大,小滑块的加速度也不再增大,而是保持不变,故C 错误;当水平拉力F =7 N 时,长木板的加速度大小为a =F−μmg M=7−0.2×2×101m/s 2=3 m/s 2,故D 正确;故选ABD.答案:ABD。
高一物理传送带知识点总结物理课程是高中学习中重要的一门科学课程之一,其中传送带是我们在机械运动与能量传递中必须要学习的一个重要概念。
在这篇文章中,我将总结并介绍一些高一物理中与传送带相关的知识点,希望能够为同学们的学习提供一些帮助。
1. 传送带的基本概念传送带是一种能够将物体沿指定方向传递的装置。
它由驱动装置(通常是电动机)、托辊和输送带等组成。
传送带的运动可以分为带动运动和被动运动两种形式。
2. 传送带的分类根据传送带的用途和结构特点,我们可以将其分为多种类型。
常见的有连续式传送带、滚筒传送带、网式传送带等。
每种类型的传送带都有其特定的应用领域。
3. 传送带的工作原理传送带的工作原理基于驱动装置的动力,通过托辊的转动来带动输送带的运动。
物体通过与输送带接触,并随着输送带的运动而移动。
这种运动方式能够实现物体的连续传输。
4. 传送带的速度计算对于给定的传送带长度和驱动装置的转速,我们可以计算出传送带的线速度。
线速度的计算公式为:线速度 = 传送带长度 / 驱动装置转速。
了解线速度的计算方法对于实际应用中的物体传输与生产调度非常重要。
5. 传送带的应用领域传送带广泛应用于工矿、港口、物流等领域。
在工厂中,传送带能够将原材料或成品快速转移,提高生产效率。
在港口和物流行业,传送带则用于大量货物的输送和装卸。
6. 传送带的优缺点传送带相比于其他物体传输方式,具有传输距离远、连续性强的特点。
然而,传送带也存在着一些不足之处,比如能耗较高、维护保养困难等。
因此,在实际应用中需要根据具体情况进行选择和优化。
7. 传送带的安全性在使用传送带过程中,安全是至关重要的。
操作人员应该熟悉传送带的工作原理及使用规则,并遵循安全操作流程。
同时,也需要定期对传送带的设备进行检查和维护,确保其正常运行和使用安全。
通过以上的知识点总结,我们对于高一物理中传送带的相关内容有了一定的了解。
掌握了这些基本概念和原理,我们可以更好地理解和应用传送带,为今后的学习和实践提供有力支持。
传 送 带 问 题 归 类分 析传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
传送带问题中的功能分析1.功能关系:W F =△E K +△E P +Q 。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
1、水平传送带上的力与运动情况分析例1 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.解答 设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2 工件加速运动的时间t 1=av 0代入数据可得: t 1=1s 此过程工件发生的位移l =12at 12 代入数据可得:l =1m 由于l <L ,所以工件没有滑离传送带设工件随传送带匀速运动的时间为t 2 ,则t 2=vlL - 代入数据可得:t 2=4.5s 所以工件从A 处运动到B 处的总时间t =t 1+t 2=5.5 s例2: 如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,则旅行包从传送带的A 端到B 端所需要的时间是多少?(g =10m/s 2 ,且可将旅行包视为质点.)解答 设旅行包在传送带上做匀减速运动的时间为t 1 ,即经过t 1时间,旅行包的速度达到v =4m/s ,由牛顿第二定律,有:μmg=ma 代入数据可得:a =6 m/s 2 t 1=avv -0 代入数据可得:t =1s 此时旅行包通过的位移为s 1 ,由匀减速运动的规律,有 s 1=gv v μ2220-=7 m 代入数据可得:s 1=7 m <L可知在匀减速运动阶段,旅行包没有滑离传送带,此后旅行包与传送带一起做匀速运动,设做匀速运动的时间为t 2 ,则t 2=vs L 1- 代入数据可得:t =0.25 s 故:旅行包在传送带上运动的时间为t =t 1+t 2=1.25 s图 甲图 乙2、倾斜传送带上的力与运动情况分析例如图所示,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少?(2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?(sin37°=0.6,cos37°=0.8,取g =10 m/s 2).解析 (1) 当传送带顺时针转动时,设物块的加速度为a ,物块受到传送带给予的滑动摩擦力μmgcos37°方向沿斜面向上且小于物块重力的分力mg sin37°,根据牛顿第二定律,有:mg sin37°- μmgcos37°=ma 代入数据可得: a =2 m/s 2物块在传送带上做加速度为a =2 m/s 2的匀加速运动,设运动时间为t , t =aL2 代入数据可得:t =4s (2)物块放上传送带的开始的一段时间受力情况如图甲所示,前一阶段物块作初速为0的匀加速运动,设加速度为a 1 ,由牛顿第二定律,有mgsin37°+μmgcos 37°=ma 1 , 解得:a 1 =10m/s 2,设物块加速时间为t 1 ,则t 1 =1a v, 解得:t 1=1s 因位移s 1=21121t a =5m <16m ,说明物块仍然在传送带上. 设后一阶段物块的加速度为a 2, 当物块速度大于传送带速度时,其受力情况如图乙所示.由牛顿第二定律,有:mg sin37°- μmgcos37°=ma 2 ,解得a 2=2m/s 2, 设后阶段物块下滑到底端所用的时间为t 2.由L -s =v t 2+a 2t 22/2,解得t 2=1s 另一解-11s 不合题意舍去. 所以物块从A 到B 的时间为:t =t 1+t 2=2s3、水平和倾斜组合传送带上的力与运动情况分析例 如图甲所示的传送带,其水平部分ab 的长度为2 m ,倾斜部分bc 的长度为4 m ,bc 与水平面的夹角θ=37°,现将一小物块A (可视为质点)轻轻放在传送带的a 端,物块A 与传送带之间的动摩擦因数μ=0.25.传送带沿图甲所示方向以v =2 m/s 的速度匀速运动,若物块A 始终未脱离传送带,试求小物块A 从a 端被传送到c 端所用的时间?(取g =10m/s 2 ,sin37°=0.6 ,cos37°=0.8 )解答 设物块在水平传送带上加速的过程中的加速度为a 1,根据牛顿第二定律有:μmg =ma 1 解得 : a 1=2.5m/s 2设物块A 做运加速运动的时间为t 1 ,t 1=1a v解得: t 1=0.8 s 设物块A 相对传送带加速运动的位移为s 1,则s 1=21-vt 解得: s 1=0.8 m 当A 的速度达到2 m/s 时,A 将随传送带一起匀速运动,A 在传送带水平段匀速运动的时间为t 2 ,t 2=vs s ab 1-=0.6s 解得: t 2=0.6sA 在bc 段受到的摩擦力为滑动摩擦力,其大小为μmg cos37°,设A 沿bc 段下滑的加速度为a 2,根据牛顿第二定律有, mg sin37°-μmg cos37°=ma 2 解得:a 2=4 m/s 2 根据运动学的关系,有: s bc =v t 3+2321at 其中s bc =4 m ,v =2 m/s ,解得 :t 3=1s ,另一解t 3=-2s (不合题意,舍去)所以物块A 从传送带的a 端传送到c 端所用的时间t =t 1+t 2+t 3=2.4s图甲图乙1、水平传送带上的能量转化情况分析例 如图所示,水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放到传送带上,若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,系统转化的内能是( )A 、mv 2B 、2mv 2C 、241mv D 、221mv 解答 假设小木块达到与传送带达到共同速度所用的时间为t ,在此过程中木块的位移为s 1,传送带的位移为s 2,则有:vt t v s 21201=+=, vt s =2 即得:s 2=2s 1 ① 对木块由动能定理得:12021fs mv =- ②对传送带和木块由能量关系可知:E 内=fs 2-fs 1 ③ 由①②③可得:E 内=221mv 故本题选D 选项。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,只要稍加留心,在工厂、车站、机场、装卸码头随处可见繁忙运转的传送带.近年来“无论是平时训练还是高考,均频繁地以传送带为题材命题”,体现了理论联系实际,体现了把物理知识应用于日常生活和生产实际当中.本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.首先,概括下与传送带有关的知识:(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F =△E K +△E P +Q 。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
传送带问题归类分析[问题特点]:传送带问题是高中动力学问题中的难点,它是以真实的物理现象为命题情景,涉及牛顿运动定律、运动学规律、动能定理及能量守恒定律,既能训练学生的科学思维,又能联系科学、生产和生活实际,是高考试题中一种比较常见的题型。
一、问题的分类按传送带放置分水平、倾斜两种;按转动方向分顺时针、逆时针转两种。
二、典例分析例题1:如图所示,水平传送带以v =5 m/s 的恒定速度运动,传送带长L =7.5 m ,今在其左端A 将一m =1 kg 的工件轻轻放在上面,工件被带动,传送到右端B ,已知工件与传送带间的动摩擦因数μ=0.5,试求:(g =10 m/s 2)(1)工件经多长时间由A 端传送到B 端?(2)此过程中系统产生多少热量?(3)跟不放物体相比,传送带电机多消耗的电能为多少?受力分析与运动分析:拓展1:若工件以v 0=7 m/s 的速度滑上传送带,工件由A 端到B 端的时间及系统因摩擦而生的热为多少?受力分析与运动分析:拓展2:如图所示,若传送带沿逆时针方向转动,且v =5 m/s ,试分析当工件以初速度v 0=3 m/s 和v 0=7 m/s 时,工件的运动情况,并求出该过程产生的摩擦热。
受力分析与运动分析:归纳总结:传送带以速度v=10 m/s,沿顺时针方向运动,物体m=1 kg,无初速度地放置于A端,它与传送带间的动摩擦因数μ=0.5,试求:(1)物体由A端运动到B端的时间;(2)系统因摩擦产生的热量。
1、受力分析与运动分析:2、功能关系分析:拓展1:若传送带沿逆时针方向以v=10 m/s的速度匀速转动,结果又如何?受力分析与运动分析:归纳总结:(2)功能关系分析①对系统:W带=Q=②对物体:=ΔE k例题3.如图所示的皮带运输机,现假设皮带上只有一袋水泥。
现将一袋水泥无初速的放在皮带的底端,水泥袋在运行过程中与皮带达到共速,以后上升到最高点。
已知一袋水泥的质量为m,皮带的运动速度为v,皮带斜面的倾斜角为θ,水泥袋的与皮带间的动摩擦因数为μ,传送带的最高点距地面的高度为H,水泥袋从底端运动到顶端的总时间为t,带动运输机的电动机的功率恒为P。
2020届高三物理二轮复习传送带问题归类分析考点分析:传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,当然也就是高考命题专家所关注的问题.知识概要与方法 (1)受力和运动分析:受力分析中的摩擦力突变(大小、方向)——发生在V 物与V 带相同的时刻;运动分析中的速度变化——相对运动方向和对地速度变化。
分析关键是:一是 V 物、V带的大小与方向;二是mgsin θ与f 的大小与方向。
(2)传送带问题中的功能分析 ①功能关系:W F =△E K +△E P +Q ②对WF 、Q 的正确理解(a )传送带做的功:W F =F ·S 带 功率P=F ×V 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f ·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能EK ,因为摩擦而产生的热量Q 有如下关系:2mv 21带==Q E 典例分析:一、水平运行的传送带处理水平放置的传送带问题,首先是要对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力;其二是对物体进行运动状态分析,即对静态→动态→终态进行分析和判断,对其全过程作出合理分析、推论,进而采用有关物理规律求解.例题1、如图所示,水平放置的传送带以速度v=2 m / s 向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,若A端与B端相距4 m,则物体由A到B的时间和物体到B端时的速度是:()A.2.5 s,2 m / sB.1 s,2 m / sC.2.5 s,4 m / sD.1 s,4 / s解析:小物体放在A端时初速度为零,且相对于传送带向后运动,所以小物体受到向前的滑动摩擦力,小物体在该力作用下向前加速,a=μg,当小物体的速度与传送带的速度相等时,两者相对静止,不存在摩擦力,小物体开始做匀速直线运动。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F、Q的正确理解(a )传送带做的功:WF =F·S带 功率P=F× v 带 (F 由传送带受力平衡求得)(b)产生的内能:Q =f·S 相对(c)如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q =2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
传送带问题归类分析摘要:本文从实际例题的角度分析了传送带问题,传送带问题从运动的角度来讲属于多过程,从受力的角度看是摩擦力突变类的复杂问题。
通过分类导析有利于训练学生思维能力和知识的应用能力,在教学中分类导析有利于突破这一难点问题。
一、传送带模型分析情景传送带类别图示滑块可能的运动情况滑块受(摩擦)力分析情景1 水平一直加速受力f=μmg先加速后匀速先受力f=μmg,后f=0情景2 水平v0>v,一直减速受力f=μmgv0>v,先减速再匀速先受力f=μmg,后f=0v0<v,一直加速受力f=μmgv0<v,先加速再匀速先受力f=μmg,后f=0情景3 水平传送带长度l<,滑块一直减速到达左端受力f=μmg(方向一直向右)传送带长度l≥,v0<v,滑块先减速再向右加速,到达右端速度为v0受力f=μmg(方向一直向右)传送带长度l≥,v0>v,滑块先减速再向右加速,最后匀速,到达右端速度为v减速和反向加速时受力f=μmg(方向一直向右),匀速运动f=0情景4 倾斜一直加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ情景5 倾斜一直加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ先以加速度a1加速,后以加速度a2加速先受摩擦力f=μmg cosθ,后受反向的摩擦力f=μmg cosθ情景6 倾斜一直男女宝宝吧加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ一直匀速(v0>v)受摩擦力f=mg sinθ一直匀速(v0=v )受摩擦力f=0先以加速度a1加速,后以加速度a2加速先受摩擦力f=μmg cosθ,后受反向的摩擦力f=μmg cosθ情景7 倾斜一直加速受摩擦力f=μmg cosθ一直匀速受摩擦力f=mg sinθ先减速后反向加速受摩擦力f=μmg cosθ,二、应用举例【例1】如图1所示,一水平传送装置由轮半径均为R= m的主动轮O1和从动轮O2及传送带等构成。
高一物理传送带知识点传送带是我们生活中经常见到的一种物流运输工具,它能够方便地将物品从一个地方运送到另一个地方。
在物理学中,我们将传送带归类为运动学和力学的范畴。
本文将探讨高一物理中关于传送带的知识点。
就让我们一起来探索传送带的奥秘吧!1. 传送带的基本原理传送带由电动机、传动轮、输送带、支架和输送物料等组成。
其基本原理是利用电机带动传动轮,使输送带产生循环运动,从而将物料输送到指定位置。
传送带常用于工业生产线、港口装卸等场合,以提高物流效率。
2. 传送带的速度和加速度在物理学中,我们需要研究传送带的速度和加速度。
传送带的线速度(速度)可以通过测量物料通过传送带所用的时间和所走的距离来计算。
传送带的速度直接影响物料运输的效率和生产能力。
而传送带的加速度则代表着传送带的加速能力,通常通过增加电动机的驱动力或降低传导轮与输送带的摩擦系数来提高加速度。
3. 传送带的功率和效率在物理学中,功率是用来衡量传送带所能输出的功率,其单位是瓦特(W)。
功率的计算公式为功率=力 ×速度。
传送带的功率可以用来衡量其所能输出的功率大小。
而效率则是指传送带所输出的功率与输入的功率之比。
提高传送带的效率可以通过减少能量的浪费,优化传送带的结构等方式来实现。
4. 传送带的摩擦力在物理学中,摩擦力是指两个物体相互接触时产生的中阻碍其相对运动的力。
对于传送带而言,传导轮与输送带之间存在着摩擦力。
为了减小摩擦力,可以采用润滑剂或改进材料表面的方法。
摩擦力的大小对传送带的效率和耗能有着重要的影响。
5. 传送带的应用除了在工业生产线和港口装卸场等方面的应用外,传送带还可以广泛应用于其他领域。
例如,在超市收银台,传送带可帮助收银员将商品从顾客处传送到收银机;在机场行李转盘上,传送带可以将旅客的行李输送到指定位置。
有了传送带,我们的生活将更加便利。
通过对传送带的了解,我们可以更好地理解和应用物理学中的运动学和力学知识。
掌握这些知识点将有助于我们更好地理解和解决与传送带有关的问题。