普通高中对数及对数函数复习学案
- 格式:docx
- 大小:15.70 KB
- 文档页数:3
一.知识归纳一)对数1、定义: 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a即有:⇔=N a b )1,0(log ≠>=a a N b a题型一、指数与对数的互化练习1 把下列指数式写成对数形式:4611(1)5625;(2)2;(3) 5.73643m-⎛⎫=== ⎪⎝⎭练习2 把下列对数形式写成指数形式:12(1)log 164;(2)lg 0.012;(3)ln 10 2.303=-=-=2、性质:①零与负数没有对数 ②01log =a ③1log =a a;3、恒等式:NaNa=log;b aba=log)1,0(≠>a a4、运算法则:NM MN aaalogloglog)1(+=NM NMaaalogloglog)2(-=Mn M analog log )3(= 其中a>0,a≠0,M>0,N>05、换底公式:)10,10,0(loglog log≠>≠>>=m m a a N aN N mm a且且二、题型讲解题型一.对数式的化简和运算 例1 计算:练习 求下列各式的值:练习、计算下列各式 (1)12lg )2(lg5lg 2lg)2(lg222+-+⋅+(2)06.0lg 61lg)2(lg )1000lg 8(lg 5lg 23++++(4) 用log a x ,log a y ,log a z 表示下列各式:二)对数函数y=log a x (a>0 , a≠1)的图象与性质:注意:研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制5. 函数y =的定义域是_____________6.方程0)2lg(lg 2=+-x x 的解集是___________________.7 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ) A42 B22 C41 D21例2、已知x,y ,z 为正数,满足zyx643==①求使2x=py 的p 的值, ②求与①中所求的p 的差最小的整数③求证:x zy1121-=④比较3x 、4y 、6z 的大小变式:已知a 、b 、c 均是不等于1的正数,且0111=++==zyxcbazyx,求abc 的值题型三、对数函数图像与性质的运用例3已知f(x)=a x ,g(x)=log a x(a>0,a≠1),若f(3)×g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能为( )练习:比较下列各组中两个值的大小: (1)6log,7log 76; (2)8.0log,log23π例4.判断下列函数的奇偶性: (1)xxx f +-=11lg)(;(2))1ln()(2x xx f -+=例4、已知不等式0)3(log )12(log 2<<+x x x x 成立,则实数x 的取值范围为( )A )31,0( B)21,0( C)1,31( D)21,31(题型四、指数、对数函数的综合问题例5.设a>0,xeax f +=)(是R 上的偶函数.(1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数例6.设函数)(log )(2xx b a x f -=且12log )2(,1)1(2==f f(1) 求a,b 的值; (2) 当[]2,1∈x 时,求)(x f 最大值备用(2011陕西卷理)已知函数()()0011>≥+++=a ,,x xax ln x f 其中()I 若()f x 在x=1处取得极值,求a 的值;()II 求()x f 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围。
课标分析函数是描述客观世界变化规律的重要数学模型。
高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。
学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。
学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。
课标对本节内容要求主要包括:① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。
② 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③ 知道指数函数y ax = (01)a a >≠且与对数函数log (01)a y x a a =>≠且互为反函数.学情分析本节授课对象是高二即将进行结业考试的学生,是在学习了高中必修知识基础上,对前面所学内容的复习升华。
因此本节课的主要目标是让学生在熟练掌握有关对数和对数函数性质基础知识的基础上,突破对典型题目的解答和掌握。
对于高二的学生来说,已具备一定的观察分析、解决问题的能力,对类比、转换、分类讨论、数形结合等基本数学思想方法已有较好的体验,并在前几节课的对指数函数的复习基础上,类比解决对数函数问题。
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。
通过对指数函与指数函数的复习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
高三数学一轮复习 对数与对数函数2(教师)导学案 新人教版一、学习目标:(1)对数函数性质及其应用。
(2)与对数函数有关的复合函数的性质二、自主学习:1. 函数()lg()(10)x x f x a b a b =->>>,则()0f x >的解集为{|1}x x >的充要条件是( C )A .1a b >+B .1a b <+C .1a b =+D .1b a =+2. 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a=( D ) A .2 B .2 C .22 D .43. 已知0log log ,10<<<<n m a a a ,则( A )A.1<n <mB. 1<m <nC.m <n <1D. n <m <14.已知213()log [3(1)]f x x =--单调减区间为:(13,1]-,值域为:[-1,+∞)5.函数y =log 21(x 2-ax +3a )在[2,+∞)上是减函数,则a 的取值范围是( B )A .(-∞,4)B .(-4,4]C .(-∞,-4)∪[2,+∞]D .[-4,4]三、合作探究:例1.见《优化设计》P26例2变式训练:比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5小结与拓展:比较对数式的大小常用的有三种:(1)当底数相同时可直接利用对数函数的单调性比较;(2)当底数不同,真数相同时,可转化为同底或利用对数函数图像比较;(3)当底数不同,真数也不相同时,则可利用中间量比较例2.已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0.所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数,∴对于任意x ∈[3,+∞),有f(x)≥log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立.只要log a 3≥1=log a a 即可,∴1<a ≤3.当0<a <1时,对于x ∈[3,+∞),有f(x)<0,∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∞)上为减函数,∴-f (x )在[3,+∞)上为增函数.∴对于任意x ∈[3,+∞)都有|f(x)|=-f(x)≥-log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立,只要-log a 3≥1成立即可,∴log a 3≤-1=log a a 1,即a 1≤3,∴31≤a <1.综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1).变式训练:见《优化设计》例3例3:《优化设计》P26例5四、课堂总结:1.对数函数的定义:一般地,把函数)1,0(log ≠>=a a xy a 叫做对数函数. 函数对数函数:log a y x = 底数范围1a > 01a <<图象性质 定义域:定义域: 值 域: 值 域: 过点 ,即 .当1x >时,当01x <<时,当1x >时, 当01x <<时, 是 的增函数 是 的减函数 3.同底的指数函数x y a =与对数函数log a y x =互为反函数;五、检测巩固:同学们自行完成P25“真题在线”与P29“随堂练习”试题、上交《课时训练3.5》。
对数与对数函数的教学设计一、教学内容分析:1、对数是学生在高一学过概念,时间比较长,计算的形式具有一定的复杂性.2、以对数作为基础的对数函数是高中函数学生最不易掌握的函数类型。
3、函数是高中十分重要的概念. 其中关于定义域、值域、单调性、奇偶性、对称性等函数的性质应有一个整体的认识,这在学习、解决函数问题的过程中显得十分重要,应在适当的时机对学生这种函数的整体观念加以培养,这节课的学习过程是一个可以把握的机会。
二、学生分析:1、学生高一到高三年级接触到了一些函数和研究函数的一些方法。
2、学生对于信息技术的使用有一定的熟练程度(主要指作函数图象)。
3、学生在学习了反函数之后,有了研究新函数的一种新方法。
三、教学目标:1、知识与技能(1)熟练掌握对数的运算性质,并进行化简计算.(2)熟练掌握对数函数的定义、图像与性质.(3)熟练运用对数函数的图像和性质解答问题.2、过程与方法(1)让学生通过复习对对数函数有一个总体认识,能够形成知识网络.(2)对于公式性质要熟练掌握,.(3)通过掌握函数的图像和性质,懂得解决函数问题要做到数形结合.3、情感.态度与价值观使学生通过复习对数函数的运算、图像和性质,增强代数运算能力,培养研究函数问题的思维方法,.四、教学重点:1、理解对数运算;2、理解研究函数图像和性质的方法;3、能准确画对数函数的图像,理解对数函数的性质。
4、利用对数函数的性质及图像初步解决一些有关求函数定义域、比较两个数的大小等。
五、教学难点:1、对数函数图像的准确作图及应用;2、准确得到对数函数的性质,并利用对数函数的性质解决一些简单的问题。
六、教学活动:教学过程师生活动设计意图 时间分配 一、回顾对数的定义及有关运算性质1.如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N的对数,记作x =log a N ,其中 a 叫做对数的底数, N 叫做真数.2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nmlog a M (m ,n ∈R ,且m ≠0). (2)对数的性质①a log a N= N ;②log a a N = N (a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质 a >1 0<a <1 图象性质 (1)定义域:(0,+∞) (2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0 (5)当x >1时,y <0 对数定义、性质的问答,简单题目的运算.对于对数这一学生不熟希的概念和运算加以复习,为研究对数函数扫除不必要的障碍.为对数函数的研究作一方面的准备从整体的角度思考、研究函数的性质5分 7分 9分当0<x <1时,y <0当0<x <1时,y >0 (6)在(0,+∞)上是增函数 (7)在(0,+∞)上是减函数 4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 y =x 对称.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × )(2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × ) (4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × )(5)函数y =ln 1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )题型一 对数式的运算 例1 (1)设2a =5b=m ,且1a +1b=2,则m 等于( ) A.10 B .10 C .20 D .100解析 (1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.计算:(1-log 63)2+log 62·log 618log 64= . 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64学生回答,回顾函数和反函数的有关问题师生讨论加深对对数及对数函数的理解学生自主完成感受这是一个非常重要的环节,是全面认识函数性质的不可缺少的辨析阶段.回顾复习对数运算14分32分=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.题型二 对数函数的图象及应用例2 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2) 解析方法一 构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 方法二 ∵0<x ≤12,∴1<4x ≤2, ∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12, x =12,则有412=2,log 1212=1, 显然4x<log a x 不成立,排除选项A.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( )A .x 1x 2<0B .x 1x 2=1C .x 1x 2>1D .0<x 1x 2<1 解析 构造函数y =10x 与y =|lg(-x )|,并作出它们的图象,如图所示. 因为x 1,x 2是10x =|lg(-x )|的两个根,则两个函数图象交点的横坐标分别为x 1,x 2,不妨设x 2<-1,-1<x 1<0,则10x 1=-lg(-x 1),10x 2=lg(-x 2),因此10x 2-10x 1=lg(x 1x 2),因为10x 2-10x 1<0,所以lg(x 1x 2)<0,让学生上黑板试着画图即复习了对数函数图像又回顾了作图的相关方法应用对数型函数的图象可求解的问题 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区40分45分即0<x 1x 2<1,故选D.题型三 对数函数的性质及应用命题点1 比较对数值的大小 例3 (1)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >aC .a >c >bD .a >b >c 答案 D解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c ,故选D.(2)已知324log 0.3log 3.4log 3.6155()5a b c =,=,=,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知: log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数,∴52log 3.4>310log 35>54log 3.6. 即52log 3.4>3log 0.31()5>54log 3.6,故a >c >b . 跟踪训练3(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,间)、值域(最值)、零点时,常利用数形结合思想. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.会利用性质和找中间量比较大小1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大六、小结1.对数值取正、负值的规律当a>1且b>1或0<a<1且0<b<1时,logab>0;当a>1且0<b<1或0<a<1且b>1时,logab<0.2.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.3.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.七、板书设计八、教学反思:上完这节课,我觉得构建知识网络进行系统复习这点是比较好的,但在例题设计方面,题量有点多,学生反应不大好。
对数函数复习(教案)1. 引言对数函数是高中数学中的重要知识点,也是解决复杂计算问题的常用工具。
本教案旨在帮助学生对对数函数有一个全面的复与理解。
2. 复内容2.1 对数的定义对数是数学中一个重要的概念,用来描述指数运算的逆运算。
本部分将回顾对数的定义及其基本属性,如对数的底数、指数和对数运算法则。
2.2 常用对数函数常用对数函数,即以10为底的对数函数,常用符号是log。
本部分将复常用对数函数的特点,包括定义、图像和性质。
2.3 自然对数函数自然对数函数,即以常数e为底的对数函数,常用符号是ln。
本部分将复自然对数函数的定义、图像和性质,并介绍自然对数函数与常用对数函数之间的换底公式。
2.4 对数函数的应用对数函数在实际问题中有广泛的应用。
本部分将通过一些实例,复对数函数在指数增长、复利计算、震级计算等方面的应用。
3. 教学方法与活动设计3.1 教学方法本节课采用讲授与互动相结合的教学方法,旨在激发学生的研究兴趣和思维能力。
引导学生主动参与讨论与思考,提高对对数函数的理解和运用能力。
3.2 活动设计- 活动1: 小组讨论- 将学生分组,每组选择一个实际问题,设计如何利用对数函数解决该问题,并向全班展示解决方案。
- 活动2: 探究实验- 引导学生通过实际测量与观察,探究对数函数的特点和性质。
- 活动3: 应用练- 提供一些对数函数应用的练题,让学生巩固和应用所学知识。
4. 教学评价与总结4.1 教学评价本节课的教学评价主要采用多种方式,包括小组展示评价、实验报告评价和练题评价等。
通过综合考量学生的研究表现,对学生的对数函数理解和运用能力进行评价。
4.2 总结通过本节课的复与活动设计,学生能够全面回顾对数函数的定义、性质和应用,提高对对数函数的理解和运用能力,为进一步研究数学打下坚实的基础。
以上是本次对数函数复习的教案内容,希望能够对学生们的学习有所帮助。
2.8 对数与对数函数●知识梳理 1.对数(1)对数的定义:如果a b=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b=N ⇔log a N =b (a >0,a ≠1,N >0). 两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aN M=log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. ●点击双基1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是 解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25.答案:[2,25] 4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z=7y ⇒x 7z=y ,即y =x 7z.答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c B.a <c <b C.b <a <c D.c <a <b 解析:∵1<m <n ,∴0<log n m <1.∴log n (log n m )<0. 答案:D ●典例剖析【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241.答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).评述:研究函数的性质时,利用图象更直观.深化拓展已知y =log 21[a 2x+2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的取值范围?提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x>0. ∵b 2x>0,∴(b a )2x +2(b a )x-1>0. ∴(b a )x >2-1或(b a )x<-2-1(舍去).再分b a >1,b a =1,ba<1三种情况进行讨论.答案:a >b >0时,x >log ba (2-1);a =b >0时,x ∈R ;0<a <b 时,x <log ba (2-1).【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.特别提示讨论复合函数的单调性要注意定义域.●闯关训练 夯实基础1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22 C.41 D.21 解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a 1=-2得a =-21.答案:B评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1.∵a ≠0,∴a =-21.3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b=8,∴a +b =3.答案:C4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:25.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0.综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.培养能力7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 探究创新9.(2004年苏州市模拟题)已知函数f (x )=3x+k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点,∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3.∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x m+2m )min ≥3. 又x +x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +xm+2m )min =4m ,即4m ≥3.∴m ≥169.●思悟小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.●教师下载中心 教学点睛1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.拓展题例【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。
对数及对数函数复习导学案【高考要求】对数函数(B )【教学目标】1. 理解对数的概念及其运算性质;了解对数换底公式,知道一般对数可以转化成自然对数或常用对数.2.了解对数函数模型的实际案例;了解对数函数的概念;理解对数函数的性质,会画对数函数的图象.3.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a > 0,a ≠1)(不要求一般地讨论反函数的定义,不要求求已知函数的反函数).【教学重难点】对数函数的性质及其应用【知识梳理】1.对数(1)对数的定义:(2)指数式与对数式的等价关系为: .两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )= ②log aNM = ③log a M n = (M >0,N >0,a >0,a ≠1)④对数换底公式:log b N = (a >0,a ≠1,b >0,b ≠1,N >0).(4)特别的 a a log = 1log a =2.对数函数(1)对数函数的定义(2)对数函数的图象※底数互为倒数的两个对数函数的图象关于 轴对称.(3)对数函数的性质:①定义域:②值域:③过点 ,即当x = 时,y = .④当a >1时,在 上是增函数;当0<a <1时,在 上是减函数.【自学质疑】1. 已知35,a b m ==且112,a b+=则m =2. 已知()log (1)(0,1),a f x x a a =->≠那么()f x 的定义域为 ,当(0,1)a ∈时,()f x 为 (填增、减函数);当(0,1)a ∈,且x ∈ 时,()0f x <3. 已知[]732log log (log )0,x =则1x -=4. 设函数2log (1),2()1()1,22x x x f x x -≥⎧⎪=⎨-<⎪⎩,若0()1f x >,则0x ∈ 【交流展示与互动探究】例1、(1)求值11lg 9lg 24021;2361lg 27lg 35+-+-+(2)已知23log 3,log 7,m n ==求42log 56变式:计算:15log 25= ;1lg9lg 22100-= 例2、当(1,2)x ∈时,不等式2(1)log a x x -≤恒成立,则a ∈【迁移应用】1、若0.70.7 1.1log 0.8,log 0.8, 1.1,a b c ===则,,a b c 的大小关系是2、若函数22()log f x x =的值域是[]0,1,则()f x 的定义域是3、设0,1,a a >≠函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为4、若函数2()lg(21)f x ax x =++的定义域是R ,则实数a 的取值范围 ;若函数2()lg(21)f x ax x =++的值域是R ,则实数a 的取值范围 ;5、(20XX 年陕西数学文3)若a 、b 、c 均为不等于0的实数,则下列等式恒成立的是( )A .b a log b c log =a c log B. b a log a c log =b c logC .)(log bc a =b a log c a log D. )(log c b a +=b a log +c a log。
学案4 对数和对数函数【知识要点】1、对数的概念一般地,如果 的次幂等于,即,那么就称是以为底的对数,记作。
其中,叫做对数的底数,叫做真数。
2、常用对数通常将以10为底的对数称为常用对数,为了方便起见,对数简记为 3、自然对数在科学技术中,常使用以为底的对数,这种对数称为自然对数,是一个无理数,正数的自然对数一般简记为 4、对数的两个运算性质其中 5、对数的换底公式一般地,,其中 6.对数函数的概念一般地,叫做对数函数,它的定义域是 7.对数函数与指数函数的关系的定义域和值域分别是函数的值域和定义域,它们)1,0(≠>a a a b N N a b =b a N b N a =log a N N 10log N lg e e N N e log N ln N M MN a a a log log )(log +=N M NMa a alog log log -=0,0,1,0>>≠>N M a a aNN c c a log log log =1,1,0,0,0≠≠>>>c a N c a 且x y a log =)10(≠>a a 且),0(+∞x y a log =x a y =互为反函数8、 对数函数的图像与性质9、函数与图像的关系时,函数的图像向左平移个单位,得函数的图像时, ,函数的图像向右平移个单位, 得函数的图像10、 函数与图像的关系有函数为偶函数易知,时=此时函数图像记为;时, =,即得关于轴对称的图像例1、求值(4) (5)例2、 已知均为正数,且,求证: x y a log =)0,1,0)((log ≠≠>+=b a a b x y a 0>b x y a log =b )(log b x y a +=0<b x y a log =b -)(log b x y a +=x y a log =x y a log =)1,0(≠>a a x y a log =0>x x y a log =x a log 1c 0<x x y a log =)(log x a -1c y 2c ()06.0lg 61lg)2(lg )1000lg 8(lg 5lg 123++++5lg 2lg 3)5(lg )2)(lg 2(33++()3log 2333558log 932log 2log 23-+-91log 81log 251log 532⋅⋅)3log 9log 3(log 32log 2524215325+∙∙∙++⋅z y x ,,z y x 643==yx z 2111=-例3、 已知,求例4、 已知,求的值.例5、求下列函数的定义域(1) (2)例6、利用对数函数的性质,比较下列各组数中两个数的大小 (1) , (2), (3),例7、已知,求的值例8、求下列函数的单调区间(1) (2)例9、解下列不等式(1)310log log ,1=+>>a b b a b a a b b a log log -y x y x y x lg lg 2lg )lg()lg(++=++-yx )4(log 2.0x y -=1log -=x y a )10(≠>a a 且4.3log 28.3log 28.1log 5.01.2log 5.05log 77log 6y x y x lg lg )2lg(2+=-yx25.0log x y =2log 4log 222-+-=x x y )10(08log log 22<<>--a x x a a(2) 例10、将函数的图像向左平移一个单位得到,将向上平移一个单位,得到,再作关于直线的对称图形,得到,求的解析式例11.在函数的图像上有A,B,C 三点,它们的横坐标分别是(1) 若的面积为,求 (2) 判断的单调性例12、若,则函数的图像过定点_______,函数的图像过定点____________例13、 函数的单调增区间为_____________ 例14、若函数的对称轴为,则实数=___________131log )32(log 2221+>-+x x x x y 2=1c 1c 2c 2c x y =3c 3c )1,10(log ≥<<=x a x y a 4,2,++t t t ABC ∆S )(t f S =)(t f S =10≠>a a 且11-=-x a y 1)1(log --=x y a 56log )(23.0+-=x x x f a x x f +=3log )(1-=xa课后作业:1、 求函数的定义域2、 求函数,的最小值和最大值3、 已知函数在上的最大值比最小值大1,则=______4、 已知,其中,则下列各式正确的是 ( )A B C D5、 若函数的图像的对称轴是,求非零实数的值.)32(log )5(-=-x y x 5log log 41241+-=x x y ]4,2[∈x x y a log =)10(≠>a a 且]4,2[∈x a x x f a log )(=10<<a )41()2()31(f f f >>)2()31()41(f f f >>)41()31()2(f f f >>)31()2()41(f f f >>1log 2-=ax y 2=x a。
对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。
(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN.(3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。
(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。
3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。
原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
互为反函数的图象在同一坐标系关于直线y=x 对称。
【关于反函数注意大纲的要求】二、题型探究 探究一:对数的运算 例1:(15年安徽文科)=-+-1)21(2lg 225lg 。
【答案】-1 【解析】试题分析:原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+- 考点:对数运算.例2:【2014辽宁高考】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>例3:【2015高考浙江】若4log 3a =,则22a a-+= .【答案】334.【考点定位】对数的计算 探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞例5:下列关系 中,成立的是 (A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题例7:【15年天津文科】已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a << 【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。
普通高中对数及对数函数复习学案姓名
重点:掌握对数的运算性质及对数函数的图像与性质。
难点:综合运用对数函数的图像与性质解决问题。
考点1 对数式的运算考点2对数函数的图像及性质
考点3 指数、对数函数的综合应用
知识梳理
1、如果ab=N(a>0,a≠1),那么b叫做以a为底N的,记作logaN=b
指对互换ab=NlogaN=b(a>0,a≠1,N>0).
2、对数的运算性质
loga(MN)=logaM+logaN. loga=logaM-logaN.
logaMn=nlogaM.(M>0,N>0,a>0,a≠1)
3、对数换底公式:logbN=(a>0,a≠1,b>0,b≠1,N>0).
4、对数函数的图像及性质
①函数y=logax(a>0,a≠1)叫做对数函数,其中x是自变量,图像如下
②对数函数的性质:定义域:;值域:;过定点,即当x=1时,y=0. 当a>1时,在(0,+∞)上是增函数;当0<a<1时,在(0,+∞)上是减函数。
5、对数函数与指数函数的关系
对数函数与指数函数互为反函数,它们的图像关于直线y=x对称.。
基础训练:
1、下列指数式与对数式互化不正确的一组是()
A、B、C、log39=2与D、log77=1与71=7
2、写出下列各式的值:
(1)log26-log23=________;(2)lg 5+lg 20=________;
(3)log53+log5=______;(4)log35-log315=________.
3.(2010·浙江)已知函数f(x)=log2(x+1),若f(α)=1,则α等于——
4、log93的值为()A、1 B、C、D、2
5、的定义域为A,的定义域为B,则…()
(A)A=B (B)A∩B=φ(C)AB (D)AB
典型例题:
例1、计算:
(1)(2)(lg5)2+lg2·lg50
例2、已知用表示
例3、同真数的对数值大小关系如图,对应关系为
(1),(2),
(3),(4)
则a、b、c、d与0、1的大小关系为
例4、比较下列各组数的大小:
(1)log23.4,log28.5;(2)log67,log76;(3)m=0.95.1,n=5.10.9,p=log0.95.1;
例5、已知f(x)=log3[3-(x-1)2],求f(x)的值域及单调区间.
练习.
1、(1)将下列指数式写成对数式①210=1024 ②()0=1
(2)将下列对数式写成指数式①log0.46.25=-2 ②log58 = C
2、函数是R上的增函数,则函数的图象大致是()
3、已知,则的取值范围是。
4、求。
5、求满足下列条件的x的值
(1)log8x= (2)logx27= (3)log4[log3(log2x)]=0,
6、计算
(1)lg 25+lg 2·lg 50+(lg 2)2;(2)lg25 + lg8 + lg5·lg20 + lg22 (3)(log32+log92)·(log43+log83);(4)2log525+3log264;7、已知loga2=x,loga3=y,求a2x+y的值
作业:
1.设lg321 = a,则lg0.321的值为()A、B、0.001/a C、a-3 D、3-a 2.已知0<loga2<logb2,则a、b的关系是() A.0<a<b<1 B.0<b<a<1 C.b>a>1 D.a>b>1
3.(2010·天津)设a=log54,b=(log53)2,c=log45,则
()
A.a<c<b B.b<c<a C.a<b<c D.b<a<c
4.(2010·全国Ⅰ)已知函数f(x)=,若a≠b,且f(a)=f(b),则a+b的取值范围是() A.(1,+∞) B. C.(2,+∞) D.
5.已知,则的大小关系是()
A.B.C.D.
6.若,则()
A.<<;B.<<;C.<<;D.<<
7、求下列函数的定义域
(1)(2)
(3)(4) y=
8、比较下列各组数的大小:
(1)log20.4____log20.5;(2)log65______log56;
(3) ;(4)若0<a<b<1,试确定logab_____logba,
9、如果,那么的最小值是()
10、计算下列各题:
(1);(2).
11、(1),则
(2)已知,用a,b表示下列各式的值①②
(3)已知100a=50,10b=2,则2a+b的值
12.已知f(x)=loga (a>0,a≠1).
(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;。