枣庄中考数学试题含答案
- 格式:docx
- 大小:654.81 KB
- 文档页数:26
枣庄中考数学试题及答案2019枣庄市2019年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 计算下列式子的值:\( \sqrt{4} + \sqrt{9} \) 的结果是()A. 5B. 6C. 7D. 8答案:B2. 已知 \( a \) 和 \( b \) 是实数,且 \( a^2 + b^2 = 0 \),则 \( a \) 和 \( b \) 的值分别是()A. \( a = 0, b = 0 \)B. \( a = 1, b = 1 \)C. \( a = -1, b = -1 \)D. \( a = 2, b = 2 \)答案:A3. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A4. 下列哪个选项是不等式 \( 2x - 3 < 5 \) 的解集?()A. \( x < 4 \)B. \( x > 4 \)C. \( x < 2 \)D. \( x > 2 \)答案:A5. 函数 \( y = 2x + 3 \) 的图象不经过哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 已知 \( \frac{1}{x} = 2 \),则 \( x \) 的值是()A. 0.5B. 1C. 2D. 0.25答案:A7. 一个扇形的圆心角是 \( 60^\circ \),半径是 4cm,那么这个扇形的面积是()A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²答案:B8. 已知三角形 \( ABC \) 中,\( \angle A = 60^\circ \),\( \angle B = 45^\circ \),则 \( \angle C \) 的度数是()A. 75°B. 60°C. 45°D. 30°答案:D9. 一个正数的算术平方根是它本身,这个正数是()A. 0B. 1C. 4D. 9答案:B10. 下列哪个选项是方程 \( x^2 - 5x + 6 = 0 \) 的解?()A. 2B. 3C. 6D. 9答案:A二、填空题(本大题共6小题,每小题3分,共18分)11. 计算 \( \sqrt{16} \) 的结果是 _______。
绝密☆启用前 试卷类型:A二○一三年枣庄市初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=-D.93=± 答案:A解析:因为30=1,3-1=13,9=3,所以,B 、C 、D 都错,选A 。
2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。
3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B第2题图解析469<<26<3,所以,36+1<4,选B 。
4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。
5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。
.计算:(....平均数......()..().解方程去分母,两边同乘后的式子为....的方程有两个实数根,则的化简结...倍,求规定时间,设规定时间为天,则可列出正确的方程为( )A.B.C.D.8.已知一元二次方程的两个根为、,则的值为()A.-3B.C.1D.9.在同一平面直角坐标系中,一次函数与反比例函数的图象可能是()A.B.C.D.10.抛物线与x轴的一个交点为,与y轴交于点C,点D是抛物线的顶点,对称轴为直线,其部分图象如图所示,则以下4个结论:①;②,是抛物线上的两个点,若,且,则;③在轴上有一动点P,当的值最小时,则点P的坐标为;④若关于x的方程无实数根,则b的取值范围是.其中正确的结论有()A.1个B.2个C.3个D.4个.已知函数,则.如图,在直角坐标系中,点是一个光源.木杆两端的坐标分别为,.则木杆在轴上的投影长为.关于的一元二次方程有实数根,则的取值范围是.如图,扇形中,,以点为圆心,长为半径作弧,交于点,若,则阴影部.如图,在等腰中,,点为反比例函数(其中)图象上的一点,点在轴正半轴上,过点作,交反比例函数的图象于点,连接交于,若面积为,则的值为三、解答题17.(1)计算:(2)解方程:18.解方程.19.已知,求代数式的值.20.疫情期间,学校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式”的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有______ 人,在线答疑所在扇形的圆心角度数是______ ;(2)补全条形统计图;(3)学校共有人,请估计喜欢在线听课的学生大约有多少人;(4)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.21.如图,点,在反比例函数的图象上,连接.上各点的纵坐标均为)上是否存在一点,使得?若不存.如图,四边形是平行四边形,连接,交于点,平分交于点,平分交于点,连接,.求证:;若四边形是菱形且,,求四边形的面积..如图,一艘轮船在处测得灯塔位于的北偏东方向上,轮船沿着正北方向航行海里到达处,测得灯塔位于的北偏东方向上,测得港口位于的北偏东方向上.已知港口在灯塔的正北方向上.填空:度,度;求灯塔到轮船航线的距离(结果保留根号);求港口与灯塔的距离(结果保留根号)..如图,已知是的直径,是的弦,点是外的一点,,垂足,与相交于点,连接,且,延长交的延长线于点(1)求证:是的切线;(2)若,,,求的长.25.如图,抛物线与轴交于两点(点在点的左侧),点的坐标为,与轴交于点,直线与轴交于点.动点在抛物线上运动,过点作轴,垂足为点,交直线于点.(1)求抛物线的表达式;(2)当点在线段上时,的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点在运动过程中,能否使以为顶点的三角形是以为腰的等腰直角三角形?若存在,请直接写出点的坐标.答案:1.B2.C3.A4.C5.A6.A7.B8.D9.A10.A11.且12.13.且14.15.16.109 17.(1);(2),.18.无解19.220.(1)解:(人),即本次调查人数有人,“在线答疑”的人数为(人),在扇形图中的圆心角度数为;故,;(2)解:补全条形统计图如图所示:;(3)解:(人),答:估计喜欢在线听课的学生大约有人;(4)解:四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用、、、表示,画树状图如图:共有个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有个,甲、乙两名同学喜欢同一种在线学习方式的概率为.21. 1)∵点,在反比例函数的图象上,∴.∴.∴.(2)存在.由(1)可得,,.设经过点A,B的直线的解析式为.则解得∴直线的解析式为.过点O作,交直线于一点,则这个点即为点P.由平行线之间的距离处处相等,可以得出.∴直线的直线解析式为.∴当时,,此时点.22.(1)证明:四边形是平行四边形,,,,平分,平分,,,,,,,,,四边形是平行四边形,,.(2)解:由(1)知,,四边形是菱形,,,,四边形的菱形,,,,,,,是等边三角形,,,,,,,四边形的面积.23.(1)30,45(2)灯塔到轮船航线的距离为海里(3)港口与灯塔的距离为海里24.(1)证明:∵,∴,∵,∴,∵,∴,∵,∴,则,∴,即,∴是的切线;(2)解:∵,,∴,∵,∴,∵,∴,∵是的切线,∴,则,∴,∴,根据勾股定理可得:,,∴,∴,∴根据勾股定理可得:.25.(1)解:∵抛物线过点和,∴,解得,∴抛物线的表达式为;(2)解:对于直线,令,则,∴,设,且,∴,,∴,∴,∵,对称轴为直线,∴时,的值随的增大而增大,∴当,有最大值,最大值为;(3)解:∵轴,∴当是以为腰的等腰直角三角形时,则有,∴M点纵坐标为,∴,解得或,当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,当时,则点M和点C重合,不能构成三角形,不符合题意,舍去,点的坐标为,点的坐标为,此时,,,,则不是以为腰的等腰直角三角形,∴不存在这样的点,使以为顶点的三角形是以为腰的等腰直角三角形.。
山东省枣庄市 2019年中考数学试卷一、选择题:本大题共 12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把遮光器的选项选择出来,每题选对得 3分,选错、不选或选出的答案超出一个均计零分。
1.以下各式,计算正确的选项是( )22 223 8 24 3 2A .(a+b )=a+bB .a?a=aC .a ÷a=aD .a+a=a考点:同底数幂的除法;归并同类项;同底数幂的乘法;完好平方公式.剖析:分别依据完好平方公式、同底数幂的乘法及除法法例对各选项进行逐个判断即可.2 2解答:解:A 、左侧=a+b+2ab ≠右边,故本选项错误;3B 、左侧=a=右边,故本选项正确;C 、左侧=a 8﹣26+a≠右边,故本选项错误;3 2 不是同类项,不可以归并,故本选项错误.D 、a 与a 应选B .评论:本题考察的是同底数幂的除法,熟知同底数幂的除法法例是解答本题的重点.2.(3分)(2019?枣庄)如图,把一块含有45°的直角三角形的两个极点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A .15°B .20°C .25°D .30°考点:平行线的性质. 专题:压轴题.剖析:依据两直线平行,内错角相等求出∠ 3,再求解即可. 解答:解:∵直尺的两边平行,∠ 1=20°, ∴∠3=∠1=20°,∴∠2=45°﹣20°=25°. 应选:C .评论:本题考察了两直线平行,内错角相等的性质,熟记性质是解题的重点.3.(3分)(2019?枣庄)如图是由 6个同样的小正方体构成的几何体,那么这个几何体的俯 视图是( )A.B.C.D.考点:简单组合体的三视图.剖析:由已知条件可知,俯视图有3行,每行小正方数形数量分别为1,3,1;第一行的1个在中间,第三行的1个在最左侧,据此得出答案即可.解答:解:由6个同样的小正方体构成的几何体,那么这个几何体的俯视图是.应选:D.评论:本题考察简单组合体的三视图,依据看到的小正方形的个数和地点是正确解决问题的重点.4.(3分)(2019?枣庄)实数a,b,c在数轴上对应的点如下图,则以下式子中正确的选项是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c考点:实数与数轴.专题:数形联合.剖析:先依据各点在数轴上的地点比较出其大小,再对各选项进行剖析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,a﹣b<0,|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.应选:D.评论:本题考察的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答本题的重点.5.(3分)(2019?枣庄)已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.剖析:第一依据k+b=﹣5、kb=5获得k、b的符号,再依据图象与系数的关系确立直线经过的象限,从而求解即可.解答:解:∵k+b=﹣5,kb=5,k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.应选:A.评论:本题考察了一次函数图象与系数的关系,解题的重点是依据k、b之间的关系确立其符号.6.(3分)(2019?枣庄)对于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1考点:分式方程的解.专题:计算题.剖析:将分式方程化为整式方程,求得x的值而后依据解为正数,求得a的范围,但还应试虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,依据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.应选:B.评论:本题考察了分式方程的解,本题需注意在任何时候都要考虑分母不为0.7.(3分)(2019?枣庄)如图,边长为22的a,b的矩形的周长为14,面积为10,则ab+ab值为()A.140B.70C.35D.24考点:因式分解的应用.剖析:由矩形的周长和面积得出a+b=7,ab=10,再把多项式分解因式,而后辈入计算即可.解答:2解:依据题意得:a+b==7,ab=10,3 2ab+ab=ab(a+b)=10×7=70;应选:B.评论:本题考察了矩形的性质、分解因式、矩形的周长和面积的计算;娴熟掌握矩形的性质,并能进行推理计算是解决问题的重点.8.(3分)(2019?枣庄)已知对于x的一元二次方程2x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10B.10C.﹣6D.2考点:根与系数的关系.剖析:依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.2解答:解:∵对于x的一元二次方程x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,解得:m=﹣2,n=﹣8,m+n=﹣10,应选A.评论:本题考察了根与系数的关系的应用,能依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n是解本题的重点.9.(3分)(2019?枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后获得正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1考点:旋转的性质.剖析:连结AC1,AO,依据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,从而求出DC1=OD,依据三角形的面积计算即可.解答:解:连结AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形A BCD绕点A逆时针旋转45°后获得正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD?AD=,∴四边形AB1OD的面积是=2×=﹣1,应选:D.评论:本题考察了正方形性质,勾股定理等知识点,主要考察学生运用性质进行计算的能力,正确的作出协助线是解题的重点.10.(3分)(2019?枣庄)如图,在4×4的正方形网格中,每个小正方形的极点称为格点,左上角暗影部分是一个以格点为极点的正方形(简称格点正方形).若再作一个格点正方形,并涂上暗影,使这两个格点正方形无重叠面积,且构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种考点:利用旋转设计图案;利用轴对称设计图案.剖析:利用轴对称图形的性质以及中心对称图形的性质剖析得出切合题意的图形即可.]解答:解:如下图:构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.应选:C.评论:本题主要考察了利用轴对称以及旋转设计图案,正确掌握有关定义是解题重点.11.(3分)(2019?枣庄)如图,一个边长为4cm的等边三角形与BC相切于点C,与AC订交于点E,则CE的长为(ABC)的高与⊙O的直径相等.⊙OA.4cm B.3cm C.2cm D.考点:切线的性质;等边三角形的性质.剖析:连结OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,既而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连结OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.应选B.评论:本题主要考察了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于基础性题目.2,12.(3分)(2019?枣庄)如图是二次函数y=ax+bx+c(a≠0)图象的一部分,对称轴为x=且经过点(2,0),有以下说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上陈述法正确的选项是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.剖析:①依据抛物线张口方向、对称轴地点、抛物线与y轴交点地点求得a、b、c的符号;②依据对称轴求出b=﹣a;③把x=2代入函数关系式,联合图象判断函数值与0的大小关系;④求出点(0,y1)对于直线x=的对称点的坐标,依据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象张口向下,a<0,∵二次函数的图象交y轴的正半轴于一点,c>0,∵对称轴是直线x=,∴﹣,b=﹣a>0,abc<0.故①正确;②∵由①中知b=﹣a,a+b=0,故②正确;2③把x=2代入y=ax+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)对于直线x=的对称点的坐标是(1,y1),y1=y2.故④正确;综上所述,正确的结论是①②④.应选:A评论:本题考察了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象张口向上,当a<0时,二次函数的图象张口向下.二、填空题:本大题共6小题,满分24分,只需求写最后结果,每题填对得4分。
2020年山东省枣庄市中考数学试卷一、选择题(共12小题).1.﹣的绝对值是()A.﹣B.﹣2C.D.22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.解:﹣的绝对值为.故选:C.2.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【分析】根据有理数的减法法则计算即可.解:﹣﹣(﹣)==﹣.故选:A.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率.解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.17【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【分析】根据平移,旋转的性质判断即可.解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=1.【分析】根据完全平方公式,可得答案.解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.【分析】根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=27°.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP =54°,结合圆周角定理得出答案.解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】在Rt△ADC中,求出AD即可.解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b ﹣1,即可得出格点多边形的面积.解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:V+F ﹣E=2.【分析】(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?【分析】(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数.解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.【分析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
m nnn图2图130°45°αA 1A .B .C .D .数 学 试 题一、选择题(本大题共12小题,每小题3分,共36分)1.下列运算中,错误的是( )A .a 3+a 3=2a 3B .a 2·a 3=a 5C .(-a 3)2=a 9D .2a 3÷a 2=2a 2.下列运算,正确的是( )A .3+2= 5B .3×2= 6C .(3-1)2=3-1D .353522-=-3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内含 5.将一副三角板按如图方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 6.如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .―2― 3 B .―1― 3C .―2+ 3D .1+ 37.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆 相切于点C ,则AB =( ) A .4cm B .5cmC .6cmD .8cm8.在△ABC 中,∠C =90º,BC =4cm ,AC =3cm .把△ABC 绕点A 到△AB 1C 1(如图所示),则点B 所走过的路径长为( )A .52cmB . 5π 4cmC . 5π 2cmD .5πcm 9.如图1,把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .m -n2B .m -nC . m 2D . n210.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二A O BC楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A .833m B .4mC .43mD .8m11.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A . 1 2B . 1 3C . 1 6D . 1812.如图,正△AOB的顶点A在反比例函数y=3x(x >0)的图象上, 则点B 的坐标为( )A .(2,0)B .(3,0)C .(23,0)D .(32,0) 二、填空题(本大题共6小题,每小题4分,共24分)13.化简22422b a a b b a+--的结果是 .14.如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片2= . 15.若2||323x x x ---的值为零,则x 16.如图,边长为2的正方形O的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 . 17.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2010个梅花图案中,共有__________个“ ”图案.18.已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a +b +c >0;③- b2a>0.把正确结论的序号填在横线上 .三、解答题(本大题共7小题,共60分)19.(8分)在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .……20.(8分)解不等式组⎩⎪⎨⎪⎧4x -3<5x ,x -4 2+ x +2 6≤ 1 3,并把解集在数轴上表示出来.21.(8分)利民种子培育基地用A 、B 、C 三种型号的玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广.通过试验知道,C 型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图(图1、图2):ACB图1ACB图2ACB图3ACB图4D A B CEF(1)C 型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子的概率.22.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(1)求证:△ABE ≌△DF A ;(2)如果AD =10,AB =6,求sin ∠EDF 的值.各种型号种子图2图1三种型号种子数百分比AE O FB DC23.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径;(2)求切线CD 的长.24.(10分)如图,一次函数y =a x +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 13.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标.25.(10分)已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n,.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH参考答案一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)--14.90°15.3-16.1 17.503 18.①②③13.2a b三、解答题:(本大题共7小题,共60分)19.(本题满分8分)下列图形供参考,每画对一个得2分.20.(本题满分8分) 解:解不等式①,得 3x >-; ……………………………………………………2分 解不等式②,得 3x ≤. ………………………………………………………………5分不等式①、②的解集在数轴上表示如下:………………………………7分 ∴不等式组的解集为33x -<≤. ………………………………………………8分 21.(本题满分8分)(1)480.……………………………………………………………………………2分 (2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%. …3分 B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%. ……4分C 型号种子发芽率是80%.∴选A 型号种子进行推广.………………………………………………5分 (3)取到C 型号发芽种子的概率=480370420480++=12748.…………………8分22.(本题满分8分)(1)在矩形ABCD 中,90BC AD AD BC B =∠=,∥,°, D A F A E B ∴∠=∠. …………………………………………………………2分 DF AE AE BC ⊥=,,90AFD B ∴∠=∠°=,AE AD =. ABE DFA ∴△≌△. …………………………………………………4分 (2)由(1),知 ABE DFA △≌△.A CB E F DA CB (E ) FA CB ED(F ) A C B EF D A C B (D ) (F ) E A C B(E ) FD。
山东省枣庄市中考数学试题(版,含解析)山东省枣庄市中考数学试题(版,含解析)一、选择题1. 某数学竞赛中,有10道选择题和5道填空题。
小明选择并回答了其中的6道题目。
他的回答情况是:做对了1道选择题,对于另外5道题目没有回答正确的人总数大于对于1道选择题以及对于5道填空题都没有回答正确的人总数。
求小明对于填空题的回答情况。
【解析】设对于5道填空题,小明做对的题数为a,对于剩下的未作答的题目,做对的题数为b。
根据题意可得到以下两个不等式:a +b > 1b > 0解得 a > 1因此,小明所回答正确的填空题的数量至少为2。
2. 某等差数列的前6项为1,3,5,7,9,11,如果它的第100项是奇数,则这个等差数列的公差是多少?【解析】首先,可以计算出这个等差数列的公差为2。
由已知条件可得:$ a_{100} = a_1 + 99d = 1 + 99 \cdot 2 = 199$因此,这个等差数列的公差为2。
二、填空题1. 某种动物生长迅速。
刚出生时体重为1.5千克,到了5天时增长到2千克,然后每天增重量都是前一天增重量的1.2倍。
求出这种动物在第30天的体重。
【解析】设第n天的体重为$w_n$千克,第n-1天的体重为$w_{n-1}$千克。
由题意可得:$w_n = w_{n-1} + 1.2w_{n-1} = 2.2w_{n-1}$初始条件为:$w_1 = 2$代入递推式可得:$w_2 = 2.2w_1 = 2.2 \cdot 2 = 4.4$$w_3 = 2.2w_2 = 2.2 \cdot 4.4 = 9.68$依此类推可得,第30天的体重为:$w_{30} = 2.2^{29} \cdot 2 = 6618.44$千克。
三、解答题1. 已知函数f(x)的定义域为实数集R,f(x)满足$f(x) + f(2-x) = 2x^2 - 1$。
求f(x)的表达式。
【解析】将x替换为2-x,得:f(2-x) + f(x) = 2(2-x)^2 - 1。
2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)−12的绝对值是( ) A .−12B .﹣2C .12D .22.(3分)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°3.(3分)计算−23−(−16)的结果为( ) A .−12B .12C .−56D .564.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .|a |<1B .ab >0C .a +b >0D .1﹣a >15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .136.(3分)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若BC =6,AC =5,则△ACE 的周长为( )A .8B .11C .16D .177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2x−4−1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3√3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a =.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组{4(x+1)≤7x+13,x−4<x−83,并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.2020年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)−12的绝对值是()A.−12B.﹣2C.12D.2【解答】解:−12的绝对值为12.故选:C.2.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.(3分)计算−23−(−16)的结果为()A.−12B.12C.−56D.56【解答】解:−23−(−16)=−23+16=−12.故选:A.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>1【解答】解:A 、|a |>1,故本选项错误; B 、∵a <0,b >0,∴ab <0,故本选项错误; C 、a +b <0,故本选项错误;D 、∵a <0,∴1﹣a >1,故本选项正确; 故选:D .5.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .13【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种, ∴P (两次都是白球)=49, 故选:A .6.(3分)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若BC =6,AC =5,则△ACE 的周长为( )A .8B .11C .16D .17【解答】解:∵DE 垂直平分AB , ∴AE =BE ,∴△ACE 的周长=AC +CE +AE =AC +CE +BE =AC +BC=5+6=11.故选:B.7.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2x−4−1的解是()A.x=4B.x=5C.x=6D.x=7【解答】解:根据题意,得1x−4=2x−4−1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3√3B.4C.5D.6【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=1.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=27°.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=12∠AOP=27°.故答案为:27°.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8√5.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−42=2,由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+12×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和. 【解答】解:{4(x +1)≤7x +13①x −4<x−83②, 由①得,x ≥﹣3, 由②得,x <2,所以,不等式组的解集是﹣3≤x <2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1, 所以,所有整数解的和为﹣5.20.(8分)欧拉(Euler ,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex )、棱数E (Edge )、面数F (Flatsurface )之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称 三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8 6 棱数E 6 9 12 12 面数F4568(2)分析表中的数据,你能发现V 、E 、F 之间有什么关系吗?请写出关系式: V +F ﹣E =2 .【解答】解:(1)填表如下:名称 三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×1050=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.(8分)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.【解答】解:(1)联立y=12x+5①和y=﹣2x并解得:{x=−2y=4,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=k−2,解得:k=﹣8,故反比例函数表达式为:y=−8x ②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=12x+5=1,故点B(﹣8,1),设y=12x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=12×OC•AM−12OC•BN=12×4×10−12×10×1=15.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF ∴∠CBF +∠2=90° 即∠ABF =90° ∵AB 是⊙O 的直径, ∴直线BF 是⊙O 的切线; (2)解:过C 作CH ⊥BF 于H , ∵AB =AC ,⊙O 的直径为4, ∴AC =4,∵CF =6,∠ABF =90°,∴BF =√AF 2−AB 2=√102−42=2√21, ∵∠CHF =∠ABF ,∠F =∠F , ∴△CHF ∽△ABF , ∴CH AB =CF AF , ∴CH 4=64+6,∴CH =125, ∴HF =√CF 2−CH 2=√62−(125)2=6√215, ∴BH =BF ﹣HF =2√21−6√215=4√215, ∴tan ∠CBF =CH BH =1254√215=√217.24.(10分)在△ABC 中,∠ACB =90°,CD 是中线,AC =BC ,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AC 交于点M ,DE 与BC 交于点N .(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,试证明CD 2=CE •CF 恒成立;(3)若CD =2,CF =√2,求DN 的长.【解答】(1)证明:∵∠ACB =90°,AC =BC ,CD 是中线,∴∠ACD =∠BCD =45°,∠ACF =∠BCE =90°,∴∠DCF =∠DCE =135°,在△DCF 和△DCE 中,{CF =CE ∠DCF =∠DCE DC =DC,∴△DCF ≌△DCE (SAS )∴DE =DF ;(2)证明:∵∠DCF =135°,∴∠F +∠CDF =45°,∵∠FDE =45°,∴∠CDE +∠CDF =45°,∴∠F =∠CDE ,∵∠DCF =∠DCE ,∠F =∠CDE ,∴△FCD ∽△DCE ,∴CF CD =CD CE ,∴CD 2=CE •CF ;(3)解:过点D 作DG ⊥BC 于G ,∵∠DCB =45°,∴GC =GD =√22CD =√2,由(2)可知,CD2=CE•CF,∴CE=CD2CF=2√2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴CNNG =CEDG,即√2−NGNG=√2√2,解得,NG=√2 3,由勾股定理得,DN=√DG2+NG2=2√5 3.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)将点A 、B 的坐标代入抛物线表达式得{9a −3b +4=016a +4b +4=0,解得{a =−13b =13, 故抛物线的表达式为:y =−13x 2+13x +4;(2)由抛物线的表达式知,点C (0,4),由点B 、C 的坐标得,直线BC 的表达式为:y =﹣x +4;设点M (m ,0),则点P (m ,−13m 2+13m +4),点Q (m ,﹣m +4),∴PQ =−13m 2+13m +4+m ﹣4=−13m 2+43m ,∵OB =OC ,故∠ABC =∠OCB =45°,∴∠PQN =∠BQM =45°,∴PN =PQ sin45°=√22(−13m 2+43m )=−√26(m ﹣2)2+2√23,∵−√26<0,故当m =2时,PN 有最大值为2√23;(3)存在,理由:点A 、C 的坐标分别为(﹣3,0)、(0,4),则AC =5,①当AC =CQ 时,过点Q 作QE ⊥y 轴于点E ,则CQ 2=CE 2+EQ 2,即m 2+[4﹣(﹣m +4)]2=25,解得:m =±5√22(舍去负值), 故点Q (5√22,8−5√22); ②当AC =AQ 时,则AQ =AC =5,在Rt △AMQ 中,由勾股定理得:[m ﹣(﹣3)]2+(﹣m +4)2=25,解得:m =1或0(舍去0),故点Q (1,3);③当CQ =AQ 时,则2m 2=[m =(﹣3)]2+(﹣m +4)2,解得:m =252(舍去); 综上,点Q 的坐标为(1,3)或(5√22,8−5√22).。
2023年枣庄市初中学业水平考试数学一、选择题1.【答案】A【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.2.【答案】C 【解析】解:由题意,得:“卯”的主视图为:故选C .3.【答案】A【解析】解:159万61590000 1.5910==⨯;故选A .4.【答案】D【解析】解:设快马x 天可以追上慢马,依题意,得:240x -150x =150×12.故选:D .5.【答案】C【解析】解:A 选项,4442x x x +=,选项计算错误,不符合题意;B 选项,()32628x x -=-,选项计算错误,不符合题意;C 选项,633x x x ÷=,选项计算正确,符合题意;D 选项,235x x x ×=,选项计算错误,不符合题意;故选C .6.【答案】D【解析】解:中位数为第15个和第16个的平均数为:9992+=,众数为9.故选:D .7.【答案】A【解析】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A .8.【答案】B 【解析】解:如图:∵正六边形的一个外角的度数为:360606︒=︒,∴正六边形的一个内角的度数为:18060120︒-︒=︒,即:460,25120∠=︒∠+∠=︒,∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=︒,∴3144∠=∠=︒,∴534104∠=∠+∠=︒,∴2120516∠=︒-∠=︒;故选B .9.【答案】D【解析】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=︒ ,30C ∠=︒,60BAC ∴∠=︒,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=︒,60ADB ∠=︒,30DBE ∴∠=︒,BE DE = ,30EDB EBD ∴∠=∠=︒,90ADE ADB EDB ∴∠=∠+∠=︒,DE AC ∴⊥.90ABC ∠=︒ ,30C ∠=︒,2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=︒,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=︒ ,C C ∠=∠,CDE CBA ∴ ∽,∴2()CDE CBA S DE S AB∆∆=,= AD AB ,∴3tan tan 303DE DE DAE AB AD ==∠=︒=,∴21()3CDE CBA S DE S AB ∆∆==,故D 的结论错误;故选:D .10.【答案】C 【解析】解:∵抛物线开口向上,对称轴为直线12b x a=-=,与y 轴交于负半轴,∴0,20,0a b a c >=-<<,∴0abc >;故①错误;由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x -<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;故②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,且30112->-,∴12y y >;故③错误;∵0,2a b a>=-∴()112522252a c a a b c a a b c +=+-+=+-+,由图象知:=1x -,0y a b c =-+>,∴()112520a c a a b c +=+-+>;故④正确;∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .二、填空题11.【答案】3【解析】解:)10112-⎛⎫+ ⎪⎝⎭12=+3=故答案为:3.12.【答案】2019【解析】解:∵3x =是关x 的方程26ax bx -=的解,∴2336a b ⋅-=,即:32a b -=,∴202362a b-+()202323a b =--202322=-⨯20234=-2019=;故答案为:2019.13.【答案】()3,1-【解析】解:∵B ,C 的坐标分别为(3,2),(4,3)-,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3--,连接OA ,将OA 绕点O 顺时针旋转90︒后,如图,叶柄上点A 对应点的坐标为()3,1-;故答案为:()3,1-14.【答案】(3+##)3+【解析】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,∴243AO AB ==,在Rt ANO 中,4AO =,45AOM ∠=︒,∴2cos 4542ON OA =⋅︒=⨯=∴3CD MN OM ON ==-=-在Rt ACB △中,6AB =,45AOM ∠=︒,∴2cos 4562BC AB =⋅︒=⨯=;∴33BD BC CD =+=-+;故答案为:3.15.【答案】172【解析】解:7,CE CEF = 的周长为32,32725CF EF ∴+=-=.F 为DE 的中点,DF EF ∴=.90BCD ∠=︒ ,12CF DE ∴=,112.52EF CF DE ∴===,225DE EF ∴==,24CD ∴=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=-=-=.故答案为:172.16.【答案】2023253【解析】当1x =时,1P 的纵坐标为8,当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,当4x =时,4P 的纵坐标为2,当5x =时,5P 的纵坐标为85,…则11(84)84S =⨯-=-;2881(4)433S =⨯-=-;3881(2)233S =⨯-=-;481(22558S =⨯-=-;…881n S n n =-+;1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-+-=-+++ ,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.三、解答题17.【答案】21a a a--,12【解析】解:原式222223111a a a a a a a ⎛⎫=-÷ ⎪-⎝⎭---()2222111a a aa a a =⋅----21a aa =--;∵220,10a a ≠-≠,∴0,1a a ≠≠±,23=<<=,∴1a -<<的整数解有:0,1,2,∵0,1a a ≠≠±,∴2a =,原式2122221--==.18.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【解析】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:19.【答案】(1)1;2;(2)1x =,【解析】(1)4⨯ <32,434361∴=+-=※,()132--⨯ >(1)(3)1(3)2∴--=---=※;故答案为:1;2;(2)若322(1)x x +≥-时,即4x ≥-时,则(32)(1)5x x +--=,解得:1x =,若322(1)x x +-<时,即4x -<时,则(32)(1)65x x ++--=,解得:52x =,不合题意,舍去,1x ∴=,20.【答案】(1)20,2,1(2)图见解析(3)35【解析】(1)解:()1215%20+÷=(人),∴一共调查了20人;∴C 组人数为:2025%5⨯=(人),∴C 组女生有:532-=(人);由扇形统计图可知:D 组的百分比为115%25%50%10%---=,∴D 组人数为:2010%2⨯=(人),∴D 组男生有:211-=(人);故答案为:20,2,1(2)补全图形如下:(3)用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下:AB C D E A(),A B (),A C (),A D (),A E B(),B A (),B C (),B D (),B E C (),C A (),C B (),C D (),C ED(),D A (),D B (),D C (),D E E (),E A (),E B (),E C (),E D 共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==.21.【答案】(1)112y x =-,图见解析(2)<2x -或04x <<(3)30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭【解析】(1)解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点,∴24m n =-=,∴4,2m n ==-,∴(4,1),(2,2)A B --,∴4122k b k b +=⎧⎨-+=-⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∴112y x =-,图象如图所示:(2)解:由图象可知:不等式4kx b x+<的解集为<2x -或04x <<;(3)解:当点P 在y 轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =-,当0x =时,1y =-,当0y =时,2x =,∴()()2,0,0,1C D -,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =-=⨯+⨯-+⨯= ,解得:32a =;∴30,2P ⎛⎫ ⎪⎝⎭;当点P 在y 轴负半轴上时:1PD a =--,∴1151412222APC APD PCD S S S a a =-=⨯--⨯-⨯--⨯= 解得:72a =-或32a =(不合题意,舍去);∴70,2P ⎛-⎫ ⎪⎝⎭.综上:30,2P ⎛⎫⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭.22.【答案】(1)见解析;(2)3BC =;(3)23π【解析】(1)证明:连接OC ,∵点C 是 AD 的中点,,∴ AC DC=,∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;(2)连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∴90ACB CEB ∠=∠=︒,∵ABC EBC ∠=∠,∴ACB CEB ∽,∴AB BC BC BE =,∴43BC BC =,∴BC =;(3)连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE ==,∴3cos2BE CBE BC ∠===,∴30CBE ∠=︒,∴60COD ∠=︒,∴60AOC ∠=︒,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=︒,∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ⨯==,23.【答案】(1)223y x x =-++(2(3)存在,()1,3Q 或()1,1Q 或()1,5Q 【解析】(1)解:∵抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,∴103b c c --+=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴223y x x =-++;(2)∵()222314y x x x =-++=--+,∴()1,4M ,设直线)0:(A y k M x m k =+≠,则:04k m k m -+=⎧⎨+=⎩,解得:22k m =⎧⎨=⎩,∴22:A y M x =+,当0x =时,2y =,∴()0,2D ;作点D 关于x 轴的对称点D ¢,连接D M ',则:()0,2D '-,MH DH MH D H D M ''+=+≥,∴当,,M H D '三点共线时,MH DH +有最小值为D M '的长,∵()0,2D '-,()1,4M ,∴D M '==,即:MH DH +;(3)解:存在;∵()222314y x x x =-++=--+,∴对称轴为直线1x =,设(),P p t ,()1,Q n ,当以D ,M ,P ,Q 为顶点的四边形是平行四边形时:①DM 为对角线时:10142p t n +=+⎧⎨+=+⎩,∴06p t n =⎧⎨+=⎩,当0p =时,3t =,∴3n =,∴()1,3Q ;②当DP 为对角线时:01124p t n +=+⎧⎨+=+⎩,∴224p t n =⎧⎨+=+⎩,当2p =时,222233t =-+⨯+=,∴1n =,∴()1,1Q ;③当MP 为对角线时:10142p t n +=+⎧⎨+=+⎩,∴02p n t =⎧⎨-=⎩,当0p =时,3t =,∴3n =,∴()1,5Q ;综上:当以D ,M ,P ,Q 为顶点的四边形是平行四边形时,()1,3Q 或()1,1Q 或()1,5Q .24.【答案】(1)四边形AEDG 是菱形,理由见解析(2)30【解析】(1)解:四边形AEDG 是菱形,理由如下:∵在ABC 中,AB AC =,AD 是BC 边上的中线,∴1,2AD BC BD CD BC ⊥==,∵将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,∴11,,,,,22EF BC GH BC BE DE CG CD BF FD BD CH DH CD ⊥⊥======,∴EF AD ∥,∴1BF BE FD AE ==,∴12BE AE AB ==,同法可得:12CG AG AC ==,∴,AE DE AG DG ==,∵AB AC =,∴AE DE DG AG ===,∴四边形AEDG 是菱形;(2)解:∵折叠,∴,GDC C MHB B ∠=∠∠=∠,∵AB AC =,∴B C ∠=∠,∴,GDC B MHB C ∠=∠∠=∠,∴,MH AC DG AB ∥∥,∴四边形AMKG 为平行四边形,∵1730AB AC BC ===,,由(1)知:1151522BD CD BC DH CH =====,,11722DG AG AB ===,∴4GH =,过点H 作HE CG ⊥于点E ,∵1122CHG S CH HG HE =⋅=⋅ ,∴154302CG HE ⋅=⨯=,∵四边形MKGA 的面积AG HE =⋅,AG CG =,∴四边形MKGA 的面积30CG HE =⋅=.。
2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I 卷和第II 卷两部分,第I 卷为选择题,30分;第II 卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I 卷和第II 卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I 卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1.下列各数中比1大的数是()A.2 B.0 C.-1 D.-32.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.3.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为()A.61.5910⨯ B.515910⨯. C.415910⨯ D.215910⨯.4.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是()A.24015015012x x +=⨯B.24015024012x x -=⨯C.24015024012x x +=⨯ D.24015015012x x -=⨯5.下列运算结果正确的是()A.4482x x x += B.()32626x x -=- C.633x x x ÷= D.236x x x ⋅=6.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是()A.8,9B.10,9C.7,12D.9,97.如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=︒,则2∠的度数为()A.14︒B.16︒C.24︒D.26︒9.如图,在ABC 中,9030ABC C ∠=︒∠=︒,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是()A.BE DE =B.AE CE =C.2CE BE =D.3EDC ABC S S =△△10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是()A.5 B.4 C.3 D.2第II 卷(非选择题共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11.计算)10112-⎛⎫+= ⎪⎝⎭_________.12.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.13.银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)-,将银杏叶绕原点顺时针旋转90︒后,叶柄上点A 对应点的坐标为___________.14.如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=︒,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)15.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.16.如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17.先化简,再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭,其中a 的值从不等式组1a -<<的解集中选取一个合适的整数.18.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.19.对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b ⎧-≥=⎨+-<⎩※,例如:31312=-=※,545463=+-=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)--=※___________;(2)若(32)(1)5x x +-=※,求x 的值.20.《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.21.如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.22.如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).23.如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.24.问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I卷和第II卷两部分,第I卷为选择题,30分;第II卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I卷和第II卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1.下列各数中比1大的数是()A.2B.0C.-1D.-3【答案】A【解析】【详解】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.3.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为()A.61.5910⨯ B.515910⨯. C.415910⨯ D.215910⨯.【答案】A【解析】【分析】根据科学记数法的表示方法进行表示即可.【详解】解:159万61590000 1.5910==⨯;故选A .【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100≤⨯<n a a ,n 为整数,是解题的关键.4.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是()A.24015015012x x +=⨯B.24015024012x x -=⨯C.24015024012x x +=⨯ D.24015015012x x -=⨯【答案】D【解析】【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马,依题意,得:240x -150x =150×12.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.下列运算结果正确的是()A.4482x x x += B.()32626x x -=- C.633x x x ÷= D.236x x x ⋅=【解析】【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x -=-,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是()A .8,9 B.10,9 C.7,12 D.9,9【答案】D【解析】【分析】利用中位数,众数的定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:9992+=,众数为9.故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.7.如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A【解析】【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=︒,则2∠的度数为()A.14︒B.16︒C.24︒D.26︒【答案】B【解析】【分析】如图,求出正六边形的一个内角和一个外角的度数,得到460,25120∠=︒∠+∠=︒,平行线的性质,得到3144∠=∠=︒,三角形的外角的性质,得到534104∠=∠+∠=︒,进而求出2∠的度数.【详解】解:如图:∵正六边形的一个外角的度数为:360606︒=︒,∴正六边形的一个内角的度数为:18060120︒-︒=︒,即:460,25120∠=︒∠+∠=︒,∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=︒,∴3144∠=∠=︒,∴534104∠=∠+∠=︒,∴2120516∠=︒-∠=︒;故选B .【点睛】本题考查正多边形的内角和、外角和的综合应用,平行线的性质.熟练掌握多边形的外角和是360︒,是解题的关键.9.如图,在ABC 中,9030ABC C ∠=︒∠=︒,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是()A.BE DE= B.AE CE = C.2CE BE = D.33EDC ABC S S =△△【答案】D【解析】【分析】利用等腰三角形的性质和线段垂直平分线的性质可以判断①的正确;利用等边三角形的性质结合①的结论和等腰三角形的三线合一的性质可以判断②正确;利用直有三角形中30度角所对的直角边等于斜边的一半判断③的正确;利用相似三角形的面积比等于相似比的平方即可判断④的错误.【详解】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=︒ ,30C ∠=︒,60BAC ∴∠=︒,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=︒,60ADB ∠=︒,30DBE ∴∠=︒,BE DE = ,30EDB EBD ∴∠=∠=︒,90ADE ADB EDB ∴∠=∠+∠=︒,DE AC ∴⊥.90ABC ∠=︒ ,30C ∠=︒,2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=︒,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=︒ ,C C ∠=∠,CDE CBA ∴ ∽,∴2(CDE CBA S DE S AB∆∆=,= AD AB ,∴tan tan 303DE DE DAE AB AD ==∠=︒=,∴21(3CDE CBA S DE S AB ∆∆==,故D 的结论错误;故选:D .【点睛】本题主要考查了含30︒角的直角三角形的性质,角平分线,线段垂直平分线的判定与性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,熟练掌握含30︒角的直角三角形的性质和相似三角形的判定与性质是解题的关键.10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是()A.5B.4C.3D.2【答案】C【解析】【分析】根据抛物线的开口方向,对称轴,与y 轴的交点位置,判断①;对称性判断②;增减性,判断③;对称轴和特殊点判断④;最值判断⑤.【详解】解:∵抛物线开口向上,对称轴为直线12b x a=-=,与y 轴交于负半轴,∴0,20,0a b a c >=-<<,∴0abc >;故①错误;由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x -<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;故②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,且30112->-,∴12y y >;故③错误;∵0,2a b a>=-∴()112522252a c a a b c a a b c +=+-+=+-+,由图象知:=1x -,0y a b c =-+>,∴()112520a c a a b c +=+-+>;故④正确;∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .【点睛】本题考查二次函数的图象和性质,正确的识图,熟练掌握二次函数的性质,是解题的关键.第II 卷(非选择题共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11.计算)10112-⎛⎫+= ⎪⎝⎭_________.【答案】3【解析】【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【详解】解:)10112-⎛⎫-+ ⎪⎝⎭12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.12.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.【答案】2019【解析】【分析】将3x =代入方程,得到32a b -=,利用整体思想代入求值即可.【详解】解:∵3x =是关x 的方程26ax bx -=的解,∴2336a b ⋅-=,即:32a b -=,∴202362a b-+()202323a b =--202322=-⨯20234=-2019=;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.13.银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)-,将银杏叶绕原点顺时针旋转90︒后,叶柄上点A 对应点的坐标为___________.【答案】()3,1-【解析】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B ,C 的坐标分别为(3,2),(4,3)-,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3--,连接OA ,将OA 绕点O 顺时针旋转90︒后,如图,叶柄上点A 对应点的坐标为()3,1-;故答案为:()3,1-【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.14.如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=︒,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)【答案】(32##)23+【解析】【分析】过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,易得四边形MDCN 为矩形,分别解Rt ANO ,Rt ACB △,求出,,ON BC CD 的长,利用BD BC CD =+进行求解即可.【详解】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,∴243AO AB ==,在Rt ANO 中,4AO =,45AOM ∠=︒,∴2cos 454222ON OA =⋅︒=⨯=∴322CD MN OM ON ==-=-在Rt ACB △中,6AB =,45AOM ∠=︒,∴2cos 456322BC AB =⋅︒=⨯=;∴3232232BD BC CD =+=-=;故答案为:32.【点睛】本题考查解直角三角形的实际应用,矩形的性质与判定.解题的关键是添加辅助线,构造直角三角形.15.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.【答案】172【解析】【分析】利用斜边上的中线等于斜边的一半和CEF △的周长,求出,CF EF 的长,进而求出DE 的长,勾股定理求出CD 的长,进而求出BE 的长,利用三角形的中位线定理,即可得解.【详解】解:7,CE CEF = 的周长为32,32725CF EF ∴+=-=.F 为DE 的中点,DF EF ∴=.90BCD ∠=︒ ,12CF DE ∴=,112.52EF CF DE ∴===,225DE EF ∴==,2224CD DE CE ∴=-=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=-=-=.故答案为:172.【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键.16.如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.【答案】2023253【解析】【分析】求出1234,,,P P P P …的纵坐标,从而可计算出1234,,,S S S S …的高,进而求出1234,,,S S S S …,从而得出123n S S S S +++⋯+的值.【详解】当1x =时,1P 的纵坐标为8,当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,当4x =时,4P 的纵坐标为2,当5x =时,5P 的纵坐标为85,…则11(84)84S =⨯-=-;2881(4)433S =⨯-=-;3881(2)233S =⨯-=-;481(22558S =⨯-=-;…881n S n n =-+;1238888888844228335111n nS S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881n S n n =-+.三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17.先化简,再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭,其中a 的值从不等式组1a -<<的解集中选取一个合适的整数.【答案】21a a a--,12【解析】【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a ⎛⎫=-÷ ⎪-⎝⎭---()2222111a a a a a a =⋅----21a aa =--;∵220,10a a ≠-≠,∴0,1a a ≠≠±,23=<<=,∴1a -<<的整数解有:0,1,2,∵0,1a a ≠≠±,∴2a =,原式2122221--==.【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.18.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【解析】【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.19.对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b ⎧-≥=⎨+-<⎩※,例如:31312=-=※,545463=+-=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)--=※___________;(2)若(32)(1)5x x +-=※,求x 的值.【答案】(1)1;2;(2)1x =,【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x 的值即可.【小问1详解】4⨯ <32,434361∴=+-=※,()132--⨯ >(1)(3)1(3)2∴--=---=※;故答案为:1;2;【小问2详解】若322(1)x x +≥-时,即4x ≥-时,则(32)(1)5x x +--=,解得:1x =,若322(1)x x +-<时,即4x -<时,则(32)(1)65x x ++--=,解得:52x =,不合题意,舍去,1x ∴=,【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键.20.《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20,2,1(2)图见解析(3)35【解析】【分析】(1)利用A 组人数除以所占的百分比求出总数,总数乘以C 组的百分比,求出C 组人数,进而求出C 组女生人数,总数乘以D 组的百分比,求出D 组的人数,进而求出D 组男生人数;(2)根据(1)中所求数据,补全图形即可;(3)利用列表法求出概率即可.【小问1详解】解:()1215%20+÷=(人),∴一共调查了20人;∴C 组人数为:2025%5⨯=(人),∴C 组女生有:532-=(人);由扇形统计图可知:D 组的百分比为115%25%50%10%---=,∴D 组人数为:2010%2⨯=(人),∴D 组男生有:211-=(人);故答案为:20,2,1【小问2详解】补全图形如下:【小问3详解】用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下:ABCDEA (),A B (),A C (),A D (),A E B (),B A (),B C (),B D (),B E C (),C A (),C B (),C D (),C E D (),D A (),D B (),D C (),D E E(),E A (),E B (),E C (),E D 共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==.【点睛】本题考查扇形图与条形图的综合应用,以及利用列表法求概率.从统计图中有效的获取信息,利用频数除以百分比求出总数,熟练掌握列表法求概率,是解题的关键.21.如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.【答案】(1)112y x =-,图见解析(2)<2x -或04x <<(3)30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭【解析】【分析】(1)先根据反比例函数的解析式,求出,A B 的坐标,待定系数法,求出一次函数的解析式即可,连接AB ,画出一次函数的图象即可;(2)图象法求出不等式的解集即可;(3)分点P 在y 轴的正半轴和负半轴,两种情况进行讨论求解.【小问1详解】解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点,∴24m n =-=,∴4,2m n ==-,∴(4,1),(2,2)A B --,∴4122k b k b +=⎧⎨-+=-⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∴112y x =-,图象如图所示:【小问2详解】解:由图象可知:不等式4kx b x+<的解集为<2x -或04x <<;【小问3详解】解:当点P 在y轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =-,当0x =时,1y =-,当0y =时,2x =,∴()()2,0,0,1C D -,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =-=⨯+⨯-⨯+⨯= ,解得:32a =;∴30,2P ⎛⎫ ⎪⎝⎭;当点P 在y 轴负半轴上时:1PD a =--,∴1151412222APC APD PCD S S S a a =-=⨯--⨯-⨯--⨯= 解得:72a =-或32a =(不合题意,舍去);∴70,2P ⎛-⎫ ⎪⎝⎭.综上:30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭.【点睛】本题考查一次函数与反比例函数的综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.22.如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)见解析;(2)23BC =;(3)23π【解析】【分析】(1)连接OC ,证明OC BE ∥,即可得到结论;(2)连接AC ,证明ACB CEB ∽,从而可得AB BCBC BE=,再代入求值即可;(2)连接OD CD ,,证明CD AB ∥,从而可得COD CBD S S = ,,求出扇形COD 的面积即可得到阴影部分的面积.【小问1详解】证明:连接OC ,∵点C 是 AD 的中点,,∴ AC DC=,∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;【小问2详解】连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∴90ACB CEB ∠=∠=︒,∵ABC EBC ∠=∠,∴ACB CEB ∽,∴AB BCBC BE =,∴43BC BC =,∴BC =;【小问3详解】连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE ==,∴3cos2BE CBE BC ∠===,∴30CBE ∠=︒,∴60COD ∠=︒,∴60AOC ∠=︒,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=︒,∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ⨯==,【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.。
2024年枣庄市中考数学真题试卷一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求. 1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2- 2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯ 4. 下列几何体中,主视图是如图的是( )A. B. C. D. 5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=-C. ()2332a b a b =D. ()2212a a a a +=+ 6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52B. 3C. 72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm①1班学生的最低身高小于150cm①2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________. 13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫-- ⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =. 18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案. 19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题(1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线(2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P .①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年枣庄市中考数学真题试卷答案一、选择题.1.【答案】A2. 【答案】D3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B【解析】解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DC AE GE AG== ①5AC =,1CE =①514AE AC CE =-=-=①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG = ①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 【答案】D【解析】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b根据1班班长的对话,得180x ≤,350x a += ①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =.故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
枣庄中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的值是:A. 正数B. 负数C. 零D. 无法确定答案:B3. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 下列哪个表达式的结果不是整数?A. 2^3B. 5 ÷ 2C. 3 × 4D. 8 - 4答案:B5. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A二、填空题(每题1分,共5分)6. 圆的周长公式为C = 2πr,如果半径r=5,则周长C=________。
答案:10π7. 一个数的立方根是3,那么这个数是________。
答案:278. 如果一个角的度数是45°,那么它的余角是________。
答案:45°9. 一个数的相反数是-5,那么这个数是________。
答案:510. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5 或 -5三、解答题(共85分)11. 计算下列各题,并写出计算过程:a. (3x - 2y) - (5x + 4y)b. 2(4x - 3y) ÷ 4答案:a. (3x - 2y) - (5x + 4y) = 3x - 2y - 5x - 4y = -2x - 6yb. 2(4x - 3y) ÷ 4 = 8x - 6y ÷ 4 = 2x - 1.5y12. 解下列方程:a. 2x + 3 = 7b. 3x - 5 = 10答案:a. 2x + 3 = 7 → 2x = 4 → x = 2b. 3x - 5 = 10 → 3x = 15 → x = 513. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求它的体积。
2023年山东省枣庄市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列四个数中,最大的数是( )A.B.C.D.2. 如图是一个由个相同正方体组合而成的几何体,它的主视图为( ) A. B. C.D.3. 太阳的半径约为,把这个数用科学记数法表示为( )A.B.C.D.4. 中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天整才到达目的地.求此人第六天走的路程为多少里,如果设此人第六天走的路程为里,依题意,可列方程为( )A.=B.=−100+0.01−17696000km 6960006.96×10369.6×1056.96×1056.96×106378x x+2x+4x+8x+16x+32x378x+2x+4x+6x+8x+10x378C.=D.=5. 下列计算中,正确的是( )A.B.C.D. 6. 在一次中学生田径运动会上,参加男子跳高的名运动员的成绩如下表所示:成绩人数则这些运动员成绩的中位数、众数分别为( )A.,B.,C.,D.,7. 如图,是的直径,点,,在上,,则的度数为 A.B.C.D.8. 如图,直线,一个含 角的直角三角板如图所示放置,点在直线上,直角顶点在直线上,已知 ,则的度数为( )A.B.x+x+x+x+x+x 121418116132378x+x+x+x+x+x 12141618110378+=a 2a 2a 4(=a 2)3a 52a −a =2(ab =)2a 2b 215/m1.501.601.651.701.751.802323411.70 1.751.70 1.701.65 1.751.65 1.70AB ⊙O C D E ⊙O ∠AED=20∘∠BCD ()100∘110∘120∘130∘//l 1l 245∘A l 2C l 1∠1=30∘∠245∘60∘D.9. 如图,在中,,,分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和,作直线,交于点,连接,若,则的长为( )A.B.C.D.10. 抛物线图象的开口方向、对称轴和顶点坐标分别为( )A.开口向下,对称轴为直线 ,顶点坐标为B.开口向下,对称轴为直线,顶点坐标为C.开口向下,对称轴为直线,顶点坐标为D.开口向下,对称轴为直线,顶点坐标为二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 计算的结果是________.12. 若是关于的方程的根,则的值为________.13. 如图,已知点是反比例函数的图象上的一个动点,连接,若将线段绕点顺时针旋转得到线段,则点所在图象的函数表达式为________.14. 如图,河的两岸,互相平行,点,,是河岸上的三点,点是河岸上的一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为________米.(,结果精确到米)(必要可用参考数据:)15. 如图,四边形是正方形,是边上一点,连接,,垂足为,交于点75∘Rt △ABC ∠ACB =90∘AC =2BC A B AB 12M N MN AC E BE CE =3BE 5436y =−2+5(x−3)2x =−3(3,5)x =3(3,5)x =−3(−3,5)x =3(−3,5)+303−2n(n ≠0)x −mx+2n =0x 2m−n A y =−2x OA OA O 90∘OB B a b A B C b P a A ∠PAB =30∘B ∠PBC =75∘AB =80≈1.733–√0.1tan =2+75∘3–√ABCD E BC AE BN ⊥AE M CD,若,,则线段的长为________.16. 已知点,在函数的图像上,则________(填“”或“”或“”).三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17. 先化简,再求值,然后从的范围内选取一个合适的正整数作为的值代入求值.18. 如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.在第个图中,共有白色瓷砖________块;在第个图中,共有白色瓷砖________块;在第个图中,白色瓷砖总数为块,则与的关系式为________;在第个图中,共有白色瓷砖________块.19. 计算:;. 20. 为弘扬安徽传统文化,某校开展“汉剧进课堂”的活动,该校随机抽取部分学生,按四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:这次共抽取________名学生进行统计调查,扇形统计图中,类所对应的扇形圆心角的度数为________;将条形统计图补充完整;若调查的类学生中有名男生,其余为女生,现从中抽人进行采访,请画树状图或列表法求选中名学生恰好是男女的概率. 21. 如图,直角坐标系中,直线分别与轴、轴交于,两点,与双曲线交于点,点,关于轴对称,连接,将沿方向平移,使点移动到点,得到.(1)的值是________,点的坐标是________;(2)在 的延长线上取一点 ,过点作轴,交于点,连接,求直线的解析式;直接写出线段扫过的面积.N tan ∠BAE =12MN =3AB A(−1,a)B(1,b)y =−2xa b >=<÷(x−)−4x+4x 2−2x x 24x −<x <5–√5–√x (1)1(2)3(3)n y y n (4)100(1)(−)÷8×12(−2)3(2)+|−6|−(−)−27−−−−√33–√3–√A B C D (1)D (2)(3)A 22211xOy :y =l 1tx−t(t ≠0)x y A B :y =(k ≠0)l 2k x D(2,2)B C x AC Rt △AOC AD A D Rt △DEF k A ED M(4,2)M MN//y l 2N ND ND22. 如图①,是外的一点,直线分别交于点、,则线段是点到上的点的最短距离.(1)如图②,在中,,,以为直径的半圆交于点,是的一个动点,连结,则长度的最小值是________;(2)如图③,在边长为的菱形中,,是边的中点,是边上一动点,将沿所在的直线翻折得到, 连结,求长度的最小值;(3)如图④,在正方形中,点、分别从、两点同时出发,以相同的速度在直线、上运动,连结、,相交于点,由于点、的运动,使得点也随之运动.若,试求出线段的最小值. 23.如图,已知二次函数的图象经过点,,与轴交于点.求抛物线的解析式;(2)二次函数的图象上是否存在点,使得?如果存在,请求出点Р的坐标;若不存在,请说明理由;(3)如图②,点为线段上的一个动点,过点作轴,交二次函数的图象于点,求四边形面积的最大值.. 24. 如图,在正方形中,点,分别在边,上,与相交于点,且=.(1)如图,求证:;(2)如图,与相交于点,交于点,交于点,连接,试探究直线与的位置关系,并说明理由;(3)在(1)(2)的基础上,若平分,且的面积为,求正方形的面积.P ⊙O PO ⊙O A B PA P ⊙O Rt △ABC ∠ACB =90∘AC =BC =2BC AB D P CD AP AP 2ABCD ∠A =60∘M AD N AB △AMN MN △MN A ′C A ′C A ′ABCD E F D C DC CB AE DF P E F P AD =4CP y =−+bx+c x 2A(−1,0)B(3,0)y C (1)P =3S △BOP S △AOC D BC D DE//y E OBEC ABCD E F AB BC AF DE M ∠BAF ∠ADE 1AF ⊥DE 2AC BD O AC DE G BD AF H GH GH AB AF ∠BAC △BDE 4+2ABCD参考答案与试题解析2023年山东省枣庄市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【考点】有理数大小比较【解析】此题暂无解析【解答】解:∵任何正数都大于负数,零大于任何负数,零小于任何正数,∴.故选.2.【答案】A【考点】简单组合体的三视图【解析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是中的图形.故选.3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将用科学记数法表示为.−100<−1<0<+0.01B A A a ×10n 1≤|a |<10n n a n >1n <1n 696000 6.96×105由实际问题抽象出一元一次方程数学常识【解析】设此人第六天走的路程为里,则前五天走的路程分别为,,,,里,由此人六天一共走了里,即可得出关于的一元一次方程,此题得解.【解答】设此人第六天走的路程为里,则前五天走的路程分别为,,,,里,依题意,得:=.5.【答案】D【考点】合并同类项幂的乘方与积的乘方【解析】试题分析:结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:,,原式错误,故本选项错误;,,原式错误,故本选项错误;,,原式错误,故本选项错误;,,原式正确,故本选项正确.故选.6.【答案】A【考点】众数中位数【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共名学生,中位数落在第名学生处,第名学生的跳高成绩为,故中位数为;跳高成绩为的人数最多,故跳高成绩的众数为.故选.x 2x 4x 8x 16x 32x 378x x 2x 4x 8x 16x 32x x+2x+4x+8x+16x+32x 378A +=2a 2a 2a 2B =()a 23a 6C 2a −a =a D =(ab)2a 2b 2D 1588 1.70m 1.701.75m 1.75A圆周角定理【解析】连接,根据圆周角定理,可分别求出=,=,即可求的度数.【解答】解:连接,∵为的直径,∴.∵,∴,∴.故选.8.【答案】D【考点】平行线的性质【解析】首先由题意知,然后根据两直线平行,同位角相等可得,计算即可.【解答】解:由题意知,,.故选.9.【答案】A【考点】勾股定理作图—基本作图线段垂直平分线的性质【解析】AC ∠ACB 90∘∠ACD 20∘∠BCD AC AB ⊙O ∠ACB=90∘∠AED=20∘∠ACD=20∘∠BCD=∠ACB+∠ACD =110∘B ∠CAB =45∘∠2=∠1+∠CAB ∠CAB =45∘∵//l 1l 2∴∠2=∠1+∠CAB =+=30∘45∘75∘D解:由作图可知,垂直平分线段,,设,,,,在中,,,解得或(舍去),.故选.10.【答案】B【考点】二次函数的性质二次函数的图象【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】实数的运算零指数幂负整数指数幂【解析】先计算零指数幂和负整数指数幂,再计算加法即可得.【解答】=,12.【答案】MN AB ∴AE =EB AE =EB =x ∵EC =3AC =2BC ∴BC =(x+3)12Rt △BCE ∵B =B +E E 2C 2C 2∴=+x 232[(x+3)]122x =5−3∴BE =5A 109+303−21+=191092一元二次方程的解【解析】把代入方程得由即可得出的值.【解答】解:是关于的方程的根,把代入方程得,整理得,由,得,故.故答案为:.13.【答案】【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式坐标与图形变化-旋转【解析】设,过作轴于,过作轴于,得到,,根据全等三角形的性质得到,,于是得到结论.【解答】∵点是反比例函数的图象上的一个动点,设,过作轴于,过作轴于,∴,,∴,∵,∴,∴,在与中,∴,∴,,∴,∵,∴,∴点所在图象的函数表达式为,14.【答案】【考点】解直角三角形的应用n n(n−m+2)=0.n ≠0m−n n(n ≠0)x −mx+2n =0x 2x =n −mn+2n =0n 2n(n−m+2)=0n ≠0n−m+2=0m−n =22y =2xA(m,n)A AC ⊥x C B BD ⊥x D AC =n OC =−m AC =OD =n CO =BD =−m A y =−2x A(m,n)A AC ⊥x C B BD ⊥x D AC =n OC =−m ∠ACO =∠BDO =90∘∠AOB =90∘∠CAO +∠AOC =∠AOC +∠BOD =90∘∠CAO =∠BOD △ACO △ODB∠ACO =∠ODB∠CAO =∠BOD AO =BO △ACO ≅△ODB AC =OD =n CO =BD =−mB(n,−m)mn =−2n(−m)=2B y =2x54.6过点作于点,过点作于点,然后锐角三角函数的定义分别求出、后即可求出两岸之间的距离.【解答】解:过点作于点,过点作于点,∵,,∴.∵,∴,,∴,∴(米).∵,∴,∴(米).故答案为:.15.【答案】【考点】锐角三角函数的定义正方形的性质勾股定理【解析】设=,则=,就有的面积为,正方形的面积=,根据正方形与四边形的面积相等建立方程求出其解即可.【解答】解:∵四边形是正方形,∴,,∴.∵,∴,∴,∴.∵,∴,∴是的中点.同理可证,是的中点.设,则,,∴,∴.又,∴.在中,,,∴,即,整理,得,解得,,A AE ⊥a E B BD ⊥PA D AD PD A AE ⊥a E B BD ⊥PA D ∠PBC =75∘∠PAB =30∘∠DPB =45∘AB =80BD =40AD =403–√PD =DB =40AP =AD+PD =40+403–√a//b ∠EPA =∠PAB =30∘AE =AP =20+20≈54.6123–√54.625–√AE x BE 2−x EFDB 2(2−x)AENM x 2AENM EFDB ABCD ∠ABC =∠C =90∘AB =BC =CD∠MBE+∠ABM =90∘BN ⊥AE ∠AMB =90∘∠BAE+∠ABM =90∘∠BAE =∠MBE tan ∠BAE ==BE AB 12BC =AB =2BE E BC N CD BE =a CN =a AB =2a AE =BN ==a A +B B 2E 2−−−−−−−−−−√5–√BM =BN −MN =a −35–√tan ∠BAE =tan ∠BAM ==BM AM 12AM =2a −65–√Rt △ABM ∠AMB =90∘AB =2a A =A +B B 2M 2M 24=+a 2(2a −6)5–√2(a −3)5–√27−10a +15=0a 25–√=a 15–√=a 235–√7=3–√M =a −3=×−3<03–√当时,,∴,不符合题意,舍去,∴,∴.故答案为:.16.【答案】【考点】反比例函数图象上点的坐标特征【解析】分别代入两个点的横坐标,求出纵坐标的值,比较大小即可.【解答】解:∵点,在函数的图像上,将,代入,可得,,则.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )17.【答案】解:原式,∵,且为正整数,∴可以取或,∴要使分式有意义,只能取,当时,原式.【考点】分式的化简求值估算无理数的大小【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【解答】解:原式a =35–√7BM =a −3=×−3<05–√35–√75–√a =35–√7a =5–√AB =2a =25–√25–√>A(−1,a)B(1,b)y =−2xA(−1,a)B(1,b)y =−2x a =−=22−1b =−=−221a>b >=÷(x−2)2x(x−2)−4x 2x =⋅(x−2)2x(x−2)x (x+2)(x−2)=1x+2−<x <5–√5–√x x 12x 1x =1=13=÷(x−2)2x(x−2)−4x 2x =⋅(x−2)2x(x−2)x (x+2)(x−2)1,∵,且为正整数,∴可以取或,∴要使分式有意义,只能取,当时,原式.18.【答案】【考点】规律型:图形的变化类【解析】计算白色瓷砖的块数可以看作是计算长方形(白色瓷砖)的面积,面积数就是白色瓷砖的块数.【解答】解:在第个图中,共有白色瓷砖(块).在第个图中,共有白色瓷砖(块).在第个图中,白色瓷砖总数.在第个图中,共有白色瓷砖(块).19.【答案】解:原式;原式.【考点】有理数的乘除混合运算立方根的应用实数的运算绝对值【解析】先算乘方,再把除法转化为乘法,最后用有理数乘法法则计算,即可解答.先算立方根和绝对值,再合并同类二次根式,最后算加减,即可解答.【解答】解:原式;原式.20.【答案】=1x+2−<x <5–√5–√x x 12x 1x =1=13212y =+n n 210100(1)11×(1+1)=2(2)33×(3+1)=12(3)n y =n(n+1)=+n n 2(4)100100×(100+1)=10100(1)=−××(−8)1218=12(2)=−3+6−+3–√3–√=3(1)=−××(−8)1218=12(2)=−3+6−+3–√3–√=3,类学生:(名),条形统计图补充如下:类学生中有名男生,则女生为名,画树状图如图:共有种等可能的结果,选中名学生恰好是男女的结果有种,∴选中名学生恰好是男女的概率为.【考点】扇形统计图条形统计图列表法与树状图法【解析】暂无暂无暂无【解答】解:这次共抽取学生:(名),类所对应的扇形圆心角的度数为,故答案为:;.类学生:(名),条形统计图补充如下:类学生中有名男生,则女生为名,画树状图如图:共有种等可能的结果,选中名学生恰好是男女的结果有种,∴选中名学生恰好是男女的概率为.21.【答案】(1), 解:(2)∵,轴,交 于点,∴点的横坐标等于,且点在上,,5072∘(2)A 50−23−12−10=5(3)A 232021112211=122035(1)12÷24%=50D ×=360∘105072∘5072∘(2)A 50−23−12−10=5(3)A 232021112211=1220354(1,0)M(4,2)MN//y l 2N N 4N y =4x∴N (4,1)a ,b又∵,设直线的解析式为(其中为常数,且 ,则,解得,∴直线 的解析式为 .【考点】反比例函数综合题【解析】略略略【解答】解:(1)(2)∵,轴,交 于点,∴点的横坐标等于,且点在上,,又∵,设直线的解析式为(其中为常数,且 ,则,解得,∴直线 的解析式为 .(3)22.【答案】(1)(2)点是的中点,∴,∵沿所在的直线翻折得到,∴是定值,当点在上时,长度最小,如解图①,过点作交的延长线于点,∵在边长为的菱形中,,,,则,∴,∴,∴,,∴,∴,∴的最小值为.(3)∵四边形是正方形,∴,,在和中,D(2,2)ND y =ax+b a ,b a ≠0){1=4a +b 2=2a +ba =−12b =3ND y =−x+31244,(1,0)M(4,2)MN//y l 2N N 4N y =4x∴N (4,1)D(2,2)ND y =ax+b a ,b a ≠0){1=4a +b 2=2a +ba =−12b =3ND y =−x+3124−15–√M AD M =AM =DM =AD =1A ′12△AMN MN △MN A ′M =AH =1A ′A ′MC C A ′M HE ⊥CD CD E 2ABCD ∠A =60∘CD =2MD =1∠EDH =60∘∠EMD =30∘ED =DM =1212EM =DM ⋅cos =30∘3–√2EC =ED+CD =+2=1252MC ==E +E M 2C 2−−−−−−−−−−√7–√C =MC −M =−1A ′A ′7–√C A ′−17–√ABCD AD =DC =4∠ADC =∠C =90∘△ADE △DCF AD =DC,∴,∴,,∴,∴,∴,则在点的运动过程中,∴如解图②,连结,,与相交于点,点的运动轨迹是一段以为直径的弧,即,设的中点为,连结交于点 ,此时的长即为的最小长度,在中,,∴.线段的最小值为.【考点】圆的综合题【解析】此题暂无解析【解答】(2)点是的中点,∴,∵沿所在的直线翻折得到,∴是定值,当点在上时,长度最小,如解图①,过点作交的延长线于点,∵在边长为的菱形中,,,,则,∴,∴,∴,,∴,∴,∴的最小值为.(3)∵四边形是正方形,∴,,在和中,,∴,∴,,∴,∴,∴,则在点的运动过程中,∴如解图②,连结,,与相交于点,点的运动轨迹是一段以为直径的弧,即,设的中点为,连结交于点 ,此时的长即为的最小长度,AD =DC∠ADE =∠DCFDE =CF△ADE ≅△DCF(SAS)AE =DF ∠DAE =∠CDF ∠CDF +∠ADF =90∘∠DAE+∠ADF =90∘AE ⊥DF P ∠APD =90∘AC BD AC BD O P AD OD AD Q QC OD P ′CP ′CP Rt △QDC QC ===2C +Q D 2D 2−−−−−−−−−−√+4222−−−−−−√5–√C =QC −Q =2−2P ′P ′5–√CP 2−25–√M AD M =AM =DM =AD =1A ′12△AMN MN △MN A ′M =AH =1A ′A ′MC C A ′M HE ⊥CD CD E 2ABCD ∠A =60∘CD =2MD =1∠EDH =60∘∠EMD =30∘ED =DM =1212EM =DM ⋅cos =30∘3–√2EC =ED+CD =+2=1252MC ==E +E M 2C 2−−−−−−−−−−√7–√C =MC −M =−1A ′A ′7–√C A ′−17–√ABCD AD =DC =4∠ADC =∠C =90∘△ADE △DCF AD =DC∠ADE =∠DCFDE =CF△ADE ≅△DCF(SAS)AE =DF ∠DAE =∠CDF ∠CDF +∠ADF =90∘∠DAE+∠ADF =90∘AE ⊥DF P ∠APD =90∘AC BD AC BD O P AD OD AD Q QC OD P ′CP ′CP QC ===2√+22−−−−−−√在中,,∴.线段的最小值为.23.【答案】.,.,.(3)【考点】二次函数综合题【解析】(1)运用待定系数法即可求解;(2)先求出点的坐标,根据抛物线与轴的两个交点,可求对称轴,找到点关于对称轴的对应点;先运用待定系数法求出直线的解析式,再根据互相平行的两直线的关系求出与平行的直线的解析式,联立抛物线解析式即可求解.【解答】解:根据题意得解得故抛物线的解析式为.∵存在,,,∴OA=1,OB=3,OC=3∴∵∴得出|当时,∴,.当时,∴,.(3)设点D 的横坐标为a ,连接OC,CE,EB,E 垂直轴于F 点从解析式可得y +3∴当∵轴,∴∴E(a,)∴DE=∴S =+==++=+24.【答案】证明:如图中,Rt △QDC QC ===2C +Q D 2D 2−−−−−−−−−−√+4222−−−−−−√5–√C =QC −Q =2−2P ′P ′5–√CP 2−25–√(1)y =−+2x+3x 2(2)(03)P 1(2,3)P 2(+1−3)P 37–√(−+1,−3)P 47–√638C x C BC BC AP 2(1){−1−b +c =0,−9+3b +c =0,{b =2,c =3.y =−+2x+3x 2(2)A(−1,0)B(3,0)C(0,3)=⋅1⋅3=S △AOC 1232=⋅OB ⋅||=|S △BOP 12y p 32y p =3S △BOP S △AOC |=⋅332y p 32|=3y p =3y p −+2x+3=3得出=0,=2x 2x 1x 2(03)P 1(2,3)P 2=−3y p −+2x+3=−3得出=+1,=−+1x 2x 17–√x 27–√(+1−3)P 37–√(−+1,−3)P 47–√x C =−x B =a ,=−a +3x 0y 0DE//y ==ax D x E −+2a +3a 2−+2a +3+a −3=−+3a a 2a 2BEC O +=⋅3⋅3S △BOC S △BCE 12⋅DE ⋅312+⋅(−+3a)9232a 2−32a 2a 9292−(a −3232)26381∵四边形是正方形,∴==,∵=,∴==,∴=,∴.如图中.结论:.理由:连接.∵=,==,=,∴,∴=,∵,∴=,∵,∴=,∵=,=,∴=,∴.解法二:证明推出为等腰直角三角形,从而得到平行.如图中,在上取一点,使得=,连接.设==.∵平分,=,∴==,∵==,=,∴=,∵=,∴==,∴==,∵==,=,∴==,∵=,∴=,解得=,∴=或(舍弃),∴=,∴正方形的面积=.【考点】ABCD ∠DAE ∠ABF 90∘∠ADE ∠BAF ∠ADE+∠AED ∠BAF +∠AED 90∘∠AME 90∘AF ⊥DE 2GH//AB GH AD AB ∠DAE ∠ABF 90∘∠ADE ∠BAF △ADE ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD GH//AB △AOH ≅△DOG(ASA)△HOG 2−1AD J AJ AE EJ AE AJ a AF ∠BAC ∠BAC 45∘∠BAF ∠ADE 22.5∘AE AJ a ∠EAJ 90∘∠AJE 45∘∠AJE ∠JED+∠JDE ∠JED ∠JDE 22.5∘EJ DJ a AB AD a+a AE AJ BE DJ a S △BDE 4+2×a ×(a+a)4+2a 24a 2−2AD 2+2ABCD 12+8四边形综合题【解析】(1)证明=即可解决问题.(2)证明,推出=,由,推出=,由,推出=,由=,=,推出=可得结论.(3)如图中,在上取一点,使得=,连接.设==.利用三角形的面积公式构建方程求出即可解决问题.【解答】证明:如图中,∵四边形是正方形,∴==,∵=,∴==,∴=,∴.如图中.结论:.理由:连接.∵=,==,=,∴,∴=,∵,∴=,∵,∴=,∵=,=,∴=,∴.解法二:证明推出为等腰直角三角形,从而得到平行.如图中,在上取一点,使得=,连接.设==.∵平分,=,∴==,∵==,=,∴=,∠BAF +∠AED 90∘△ADF ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD 2−1AD J AJ AE EJ AE AJ a a 1ABCD ∠DAE ∠ABF 90∘∠ADE ∠BAF ∠ADE+∠AED ∠BAF +∠AED 90∘∠AME 90∘AF ⊥DE 2GH//AB GH AD AB ∠DAE ∠ABF 90∘∠ADE ∠BAF △ADE ≅△BAF(ASA)AE BF AE//CD BF //AD AE BF CD AD GH//AB △AOH ≅△DOG(ASA)△HOG 2−1AD J AJ AE EJ AE AJ a AF ∠BAC ∠BAC 45∘∠BAF ∠ADE 22.5∘AE AJ a ∠EAJ 90∘∠AJE 45∘∵=,∴==,∴==,∵==,=,∴==,∵=,∴=,解得=,∴=或(舍弃),∴=,∴正方形的面积=.∠AJE ∠JED+∠JDE ∠JED ∠JDE 22.5∘EJ DJ a AB AD a+a AE AJ BE DJ a S △BDE 4+2×a ×(a+a)4+2a 24a 2−2AD 2+2ABCD 12+8。
枣庄市中考数学真题试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列计算,正确的是( )A =B .13|2|22-=-C =D .11()22-=【答案】D . 【解析】考点:立方根;有理数的减法;算术平方根;负整数指数幂.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( )A .96B .69C .66D .99 【答案】B . 【解析】试题分析:现将数字“69”旋转180°,得到的数字是:69.故选B . 考点:生活中的旋转现象.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 【答案】A .【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.4.实数a,b在数轴上对应点的位置如图所示,化简||a的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【答案】A.【解析】考点:二次根式的性质与化简;实数与数轴.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】A.【解析】试题分析:∵ =>=,∴从甲和丙中选择一人参加比赛,∵ =<<,∴选择甲参赛,故选A.考点:方差;算术平均数.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【答案】C.【解析】考点:相似三角形的判定.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A 落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B C D.1【答案】B.【解析】试题分析:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM B.考点:翻折变换(折叠问题).8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60 【答案】B.【解析】考点:角平分线的性质.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数kyx=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36 【答案】C.【解析】试题分析:∵A (﹣3,4),∴OA ,∵四边形OABC 是菱形,∴AO =CB =OC =AB =5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x =得,4=8k-,解得:k =﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A .r <<B r <<C 5r <<D .5r <<【答案】B . 【解析】考点:点与圆的位置关系;勾股定理;推理填空题. 11.如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)【答案】C.【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴232k bb=-+⎧⎨-=⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为423y x=--.令423y x=--中y=0,则0=423x--,解得:x=32-,∴点P的坐标为(32-,0).故选C.考点:一次函数图象上点的坐标特征;轴对称﹣最短路线问题;最值问题.12.已知函数221y ax ax =--(a 是常数,a ≠0),下列结论正确的是( ) A .当a =1时,函数图象经过点(﹣1,1) B .当a =﹣2时,函数图象与x 轴没有交点 C .若a <0,函数图象的顶点始终在x 轴的下方 D .若a >0,则当x ≥1时,y 随x 的增大而增大 【答案】D . 【解析】故选D .考点:抛物线与x 轴的交点;二次函数图象与系数的关系. 二、填空题(本大题共6小题,每小题4分,共24分)13.化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x. 【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x.考点:分式的乘除法.14.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 .【答案】a>﹣1且a≠0.【解析】试题分析:由题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为:a>﹣1且a≠0.考点:根的判别式.15.已知23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,则22a b-= .【答案】1.【解析】考点:二元一次方程组的解;整体思想.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.【解析】试题分析:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,FE的长=306180π⋅=π.故答案为:π.考点:切线的性质;平行四边形的性质;弧长的计算.17.如图,反比例函数2yx=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.【答案】4.【解析】考点:反比例函数系数k的几何意义.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】3.【解析】试题分析:延长EF和BC,交于点G.∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF.∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,∴122 CG CF CFDE DF CF===.设CG=x,DE=2x,则AD=9+2x=BC.∵BG=BC+CG,∴=9+2x+x,解得x=3,∴BC=9+2(3)=3.故答案为:3.考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与13222x x≤-都成立?【答案】﹣2、﹣1、0、1.【解析】考点:一元一次不等式的整数解.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】(1)50,30%;(2)作图见解析;(3)35.【解析】(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)=1220=35.考点:列表法与树状图法;扇形统计图;条形统计图;应用题;数据的收集与整理.21.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4). (1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; (2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin ∠A 2C 2B 2=10. 【解析】(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ,∴sin ∠ACB =ADAC ,即sin ∠A 2C 2B 2.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).【答案】(1)BC与⊙O相切;(2)23π.【解析】(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=12OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=604360π⨯=23π,则阴影部分的面积为S△ODB﹣S扇形DOF=12×2×23π=23π.故阴影部分的面积为23π.考点:直线与圆的位置关系;扇形面积的计算;探究型.23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.【解析】试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)=nn=1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159,∵34>35>213>137>159,∴所有“吉祥数”中,F(t)的最大值为34.考点:因式分解的应用;新定义;因式分解;阅读型.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(31,45°.【解析】试题解析:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PA E=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;考点:四边形综合题;探究型;变式探究. 25.如图,抛物线212y x bx c =-++ 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【答案】(1)21262y x x =-++,D (2,8);(2)(﹣1,72)或(﹣3,﹣92);(3)(2,2-+或(2,2--. 【解析】试题分析:(1)由B 、C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(2)过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FBG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标.当点F 在x 轴下方时,有21261262x x x -++=--,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,﹣92); 综上可知F 点的坐标为(﹣1,72)或(﹣3,﹣92);(3)如图2,设对称轴MN 、PQ 交于点O ′,∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q (2,2n ),则M 坐标为(2﹣n ,n ),∵点M 在抛物线21262y x x =-++的图象上,∴n =﹣12(2﹣n )2+2(2﹣n )+6,解得n=1-+n =1-Q 有两个,其坐标分别为(2,2-+2,2--.考点:二次函数综合题;分类讨论;动点型;压轴题.。
枣庄中考数学试卷真题真题回顾:一、选择题:从A、B、C、D四个选项中选择正确的答案。
1. 已知正方形的边长为a,则正方形的周长是()。
A. 2aB. 3aC. 4aD. a²2. 设正方形ABCD的边长为3cm,则其对角线AC的长度为()。
A. 6cmB. 3cmC. 3√2cmD. 9cm3. 若一个整数能被3整除且不能被2整除,则这个整数一定能被()整除。
A. 1B. 2C. 3D. 44. 已知△ABC中,∠A=60°,BC=5cm,则AB的长度为()。
A. 5cmB. 10cmC. 5√3cmD. 10√3cm5. 若正方形ABCD的边长为a,则正方形AB'CD'的边长是()。
A. aB. 2aC. 3aD. 4a二、填空题:根据题意完成填空。
1. 已知α是一个锐角,则α的补角是_________。
2. 若正方形ABCD的边长为6cm,则正方形BCEF的周长为_________cm。
3. 设函数f(x)=3x+7,则f(4)的值是_________。
4. 若△ABC中,∠C=90°,BC=12cm,AB=5cm,则△ABC的面积是_________平方厘米。
5. 10本书按一定比例分给A、B两人,A得到6本,B得到4本,则这个比例是_________∶_________。
三、解答题:请写出详细的解题过程和最终结果。
1. 计算:(3/4)^2。
2. 设正方形ABCD的面积为16m²,点P是边AB的中点,连接DP并延长交边BC于点E,求AB与DE的交点的坐标。
3. 设正方形ABCD中,点P在边AD上,且AP:PD=2:5,若AB=12cm,求BC的长度。
4. ∠A、∠B、∠C是三角形ABC的三个内角,已知∠A:∠B=4:5,∠B:∠C=1:2,求∠A:∠B:∠C的比值。
5. 直线y=-2x+7与x轴和y轴分别交于点P和Q,求△PQC的面积。
山东省枣庄市2021年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2021•枣庄)2的算术平方根是( )A.±B.C.±4 D.4考点: 算术平方根.分析:根据开方运算,可得算术平方根.解答:解:2的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.2.(3分)(2021•枣庄)2021年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万A.140×108B.14.0×109C.1.4×1010D.1.4×1011考点: 科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2021•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )A.17°B.34°C.56°D.124°考点: 平行线的性质;直角三角形的性质分析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.解答:解:∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°﹣∠DCE=90°﹣34°=56°.故选C.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2=1.25,s2乙甲=0.96,则说明乙组数据比甲组数据稳定考点: 概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项分析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5.(3分)(2021•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置A.外离B.外切C.相交D.内切考点: 圆与圆的位置关系分析:由⊙O1、⊙O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系.解答:解:∵⊙O1、⊙O2的直径分别为6cm和8cm,∴⊙O1、⊙O2的半径分别为3cm和4cm,∴1<d<7,∵圆心距O1O2=2,∴⊙O1与⊙O2的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.(3分)(2021•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种A.350元B.400元C.450元D.500元考点: 一元一次方程的应用分析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.(3分)(2021•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB 和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )A.22 B.18 C.14 D.11考点: 菱形的性质分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.(3分)(2021•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是( )A.x>4 B.x>﹣4 C.x>2 D.x>﹣2考点: 一次函数图象与几何变换分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.9.(3分)(2021•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2考点: 平方差公式的几何背景分析:根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.10.(3分)(2021•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是( )B.x1小于﹣2,x2大于3A.x1小于﹣1,x2大于3C.x1,x2在﹣1和D.x1,x2都小于33之间考点: 解一元二次方程-直接开平方法;估算无理数的大小分析:利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.解答:解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x1=1+>3,x2=1﹣<﹣1,故选:A.点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.11.(3分)(2021•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1A.y轴B.直线x=C.直线x=2 D.直线x=考点: 二次函数的性质分析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.12.(3分)(2021•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )A.B.1C.D.7考点: 三角形中位线定理;等腰三角形的判定与性质分析:由等腰三角形的判定方法可知三角形AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.解答:解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC,∵AB=4,AC=3,∴BG=1,∵AE是中线,∴BD=CD,∴EF为△CBG的中位线,∴EF=BG=,故选A.点评:本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共6小题,每小题4,满分24分)13.(4分)(2021•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.考点: 利用轴对称设计图案分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.点评:考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.14.(4分)(2021•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点: 二元一次方程组的解;因式分解-运用公式法分析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(4分)(2021•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.考点: 列表法与树状图法专题: 计算题.分析:列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.解答:解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有5种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2021•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.考点: 扇形面积的计算;相切两圆的性质分析:根据题意可知图中阴影部分的面积=边长为2的正方形面积﹣一个圆的面积.解答:解:∵半径为1cm的四个圆两两相切,∴四边形是边长为2cm的正方形,圆的面积为πcm2,阴影部分的面积=2×2﹣π=4﹣π(cm2),故答案为:4﹣π.点评:此题主要考查了圆与圆的位置关系和扇形的面积公式.本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积).17.(4分)(2021•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.考点: 翻折变换(折叠问题)分析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故答案为.点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.18.(4分)(2021•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3) cm.考点: 平面展开-最短路径问题;截一个几何体分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.三、解答题(共7小题,满分60分)19.(8分)(2021•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.考点: 实数的运算;分式的混合运算;零指数幂;负整数指数幂专题: 计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=﹣8+3﹣5+1=﹣9;(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(8分)(2021•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.考点: 条形统计图;扇形统计图;模拟实验分析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.点评:本题主要考查了条形统计图,用样本估计总体,弄清题意是解本题的关键.21.(8分)(2021•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点: 解直角三角形的应用分析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.22.(8分)(2021•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点: 全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题: 计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(8分)(2021•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点: 切线的性质专题: 计算题.分析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.24.(10分)(2021•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.考点: 反比例函数与一次函数的交点问题分析:(10根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和差,可得答案.解答:解:(1)如图:,tan∠AOE=,OE=6,A(6,2),y=的图象过A(6,2),∴,k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,n==﹣3,B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,D(﹣12,﹣1),s OCDB=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.25.(10分)(2021•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.考点: 二次函数综合题分析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.。
山东省枣庄市2022年中考:数学考试真题与答案解析一、选择题本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的.1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.D.﹣【解答】解:因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:A.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.2.下列运算正确的是( )A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b2【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;B、a3÷a2=a,故B正确,符合题意;C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;故选:B.3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,故选:D.4.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.5.2022年5月,神舟十三号搭载的1.2万粒作物种子顺利出舱.其中1.2万用科学记数法表示为( )A.12×103B.1.2×104C.0.12×105D.1.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:1.2万=12000=1.2×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.在践行“安全在我心中,你我一起行动”主题手抄报评比活动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是( )A.B.C.D.【分析】画树状图,共有16种等可能的结果,两人恰好选中同一主题的结果有4种,再由概率公式求解即可.【解答】解:画树状图如图:共有16种等可能的结果,两人恰好选中同一主题的结果有4种,则两人恰好选中同一主题的概率为=.故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°【分析】连接OA,OB,利用圆周角定理求解即可.【解答】解:题意,连接OA,OB.由题意,∠AOB=86°﹣30°=56°,∴∠ACB=∠AOB=28°,故选:A.【点评】本题考查圆周角定理,解题的关键是理解题意,掌握圆周角定理解决问题.8.如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )A.(4,0)B.(2,﹣2)C.(4,﹣1)D.(2,﹣3)【分析】作出旋转后的图形即可得出结论.【解答】解:作出旋转后的图形如下:∴B'点的坐标为(4,﹣1),故选:C.【点评】本题主要考查图形的平移和旋转,熟练掌握图形的平移和旋转是解题的关键.9.已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )A.y1=x2+2x和y2=﹣x+1B.y1=和y2=x+1C.y1=﹣和y2=﹣x﹣1D.y1=x2+2x和y2=﹣x﹣1【分析】根据题意,令y1+y2=0,若方程有解,则称函数y1和y2是“和谐函数”,若无解,则称函数y1和y2不是“和谐函数”【解答】解:A、令y1+y2=1,则x2+2x﹣x+1=1,整理得:x2+x=0,解得:x1=0,x2=﹣1,∴函数y1和y2是“和谐函数”,故A不符合题意;B、令y1+y2=1,则+x+1=1,整理得:x2+1=0,此方程无解,∴函数y1和y2不是“和谐函数”,故B符合题意;C、令y1+y2=1,则﹣﹣x﹣1=1,整理得:x2+2x+1=0,解得:x1=﹣1,x2=﹣1,∴函数y1和y2是“和谐函数”,故C不符合题意;D、令y1+y2=1,则x2+2x﹣x﹣1=1,整理得:x2+x﹣2=0,解得:x1=1,x2=﹣2,∴函数y1和y2是“和谐函数”,故D不符合题意;故选:B.【点评】本题考查了解一元二次方程﹣公式法,根据题意令y1+y2=1,然后进行计算是解题的关键.10.如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为( )A.4B.﹣4C.﹣3D.3【分析】过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(﹣3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=﹣3×1=﹣3,故选:C.二、填空题本大题共6小题,满分18分,只填写最后结果,每小题填对得3分.11.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF 上,已知∠HFB=20°,∠FED=45°,则∠GFH的度数为 25° .【分析】根据平行线的性质知∠GFB=∠FED=45°,结合图形求得∠GFH的度数.【解答】解:∵AB∥CD,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.故答案为:25°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.12.北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .【分析】由正六边形的性质得AB=BC=AC,BE垂直平分AC,再由等边三角形的在得∠ABC =60°,则∠ABE=∠ABC=30°,即可得出结论.【解答】解:连接BC、AC,∵点A,F,B,D,C,E是正六边形的六个顶点,∴AB=BC=AC,BE垂直平分AC,∴△ABC是等边三角形,∴∠ABC=60°,∵BE⊥AC,∴∠ABE=∠ABC=30°,∴tan∠ABE=tan30°=,故答案为:.【点评】本题考查了正六边形的性质、等边三角形的判定与性质以及特殊角的锐角三角函数,熟练掌握正六边形的性质和等边三角形的性质是解题的关键.13.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.【分析】设每头牛x两,每只羊y两,根据5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,列二元一次方程组,两方程相加可得7x+7y=18,进一步求解即可.【解答】解:设每头牛x两,每只羊y两,根据题意,可得,∴7x+7y=18,∴x+y=,∴1头牛和1只羊共值金两,故答案为:.【点评】本题考查了二元一次方程组的应用,根据题意建立二元一次方程组是解题的关键.14.在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC =30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为 .(结果保留π)【分析】由含30度直角三角形的性质求出AB,根据弧长公式即可求出结论.【解答】解:∵∠C=90°,∠ABC=30°,AC=2,∴AB=2AC=4,∠BAC=60°,由旋转的性质得,∠BAB′=∠BAC=60°,∴B点通过一次旋转至B′所经过的路径长为=,故答案为:.【点评】本题主要考查了旋转的性质,弧长公式,含30度直角三角形的性质,熟记弧长公式是解决问题的关键.15.如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN= 2 .【分析】如图,连接BM.利用勾股定理求出BC,BD,OM,再证明OM=ON,可得结论.【解答】解:如图,连接BM.由作图可知MN垂直平分线段BD,∴BM=DM=5,∵四边形ABCD是矩形,∴∠C=90°,CD∥AB,∴BC===4,∴BD===4,∴OB=OD=2,∵∠MOD=90°,∴OM===,∵CD∥AB,∴∠MDO=∠NBO,在△MDO和△NBO中,,∴△MDO≌△BNO(ASA),∴OM=ON=,∴MN=2.故答案为:2.【点评】本题考查了作图﹣基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.16.小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 ①②③ .(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b=2a,∴3a+c=0,⑤错误.故答案为:①②③.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.三、解答题本大共8小题,满分72分,解答时,写出必要的文字说明、证明过程或演算步骤.17.在下面给出的三个不等式中,请你任选两个组成一个不等式组,解这个不等式组,并把解集表示在数轴上.①2x﹣1<7;②5x﹣2>3(x+1);③x+3≥1﹣x.【分析】选出两个不等式,组成不等式组,并解不等式组即可.【解答】解:,解不等式①得:x<4,解不等式②得:x>,∴不等式组的解集,把解集表示在数轴上如下:【点评】本题考查一元一次不等式组的解法,能熟练地解不等式组是解题关键.18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣4.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x的值代入原式即可求出答案.【解答】解:原式=•=•=,当x=﹣4时,原式==﹣1.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算,本题属于基础题型.19.(8分)每年的6月6日为“全国爱眼日”.某初中学校为了解本校学生视力健康状况,组织数学兴趣小组按下列步骤来开展统计活动.一、确定调查对象(1)有以下三种调查方案:方案一:从七年级抽取140名学生,进行视力状况调查;方案二:从七年级、八年级中各随机抽取140名生,进行视力状况调查;方案三:从全校1600名学生中随机抽取600名学生,进行视力状况调查.其中最具有代表性和广泛性的抽样调查方案是 方案三 ;二、收集整理数据按照国家视力健康标准,学生视力状况分为A,B,C,D四个类别.数学兴趣小组随机抽取本校部分学生进行调查,绘制成如图一幅不完整的统计图.抽取的学生视力状况统计表类别A B C D视力视力≥5.0 4.9 4.6≤视力≤4.8视力≤4.5健康状况视力正常轻度视力不良中度视力不良重度视力不良人数160m n56三、分析数据,解答问题(2)调查视力数据的中位数所在类别为 B 类;(3)该校共有学生1600人,请估算该校学生中,中度视力不良和重度视力不良的总人数;(4)为更好保护视力,结合上述统计数据分析,请你提出一条合理化的建议.(2)根据中位数的定义解答即可;(3)利用样本估计总体即可;(4)根据数据提出一条建议即可.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1600名学生中随机抽取600名学生,进行视力状况调查,作为样本进行调查分析,是最符合题意的.故答案为:方案三;(2)由题意可得,调查视力数据的中位数所在类别为B 类;故答案为:B ;(3)调查的总人数为:160÷40%=400(人),由题意可知,m =400×16%=64(人),n =400﹣64﹣56=120(人),1600×=704(人),所以该校学生中,中度视力不良和重度视力不良的总人约为704人;(4)该校学生近视程度为中度及以上占44%,说明该校学生近视程度较为严重,建议学校加强电子产品进校园及使用的管控(答案不唯一).20.为传承运河文明,弘扬民族精神,枣庄市政府重建了台儿庄古城.某校“综合与实践”小组开展了测量台儿庄古城城门楼(如图①)高度的实践活动,请你帮他们完成下面的实践报告.测量台儿庄古城城门楼高度的实践报告活动课题测量台儿庄古城城门楼高度活动目的运用三角函数知识解决实际问题活动工具测角仪、皮尺等测量工具方案示意图测量步骤如图②(1)利用测角仪站在B 处测得城门楼最高点P 的仰角为39°;(2)前进了10米到达A 处(选择测点A ,B 与O 在同一水平线上,A ,B 两点之间的距离可直接测得,测角仪高度忽略不计),在A 处测得P 点的仰角为56°.参考数据sin39°≈0.6,cos39°≈0.8,tan39°≈0.8,sin56°≈0.8,cos56°≈0.6,tan56°≈1.5.计算城门楼PO的高度(结果保留整数)【分析】设OA=x米,则OB=(x+10)米,由锐角三角函数定义得OP≈1.5x(米),OP≈0.8(x+10)(米),则1.5x=0.8(x+10),解得x=,即可解决问题.【解答】解:设OA=x米,则OB=(x+10)米,在Rt△AOP中,tan∠OAP==tan56°≈1.5,∴OP≈1.5OA=1.5x(米),在Rt△BOP中,tan∠OBP==tan39°≈0.8,∴OP≈0.8OB=0.8(x+10)(米),∴1.5x=0.8(x+10),解得:x=,∴OP≈1.5x=1.5×≈17(米),答:台儿庄古城城门楼的高度约为17米.【点评】本题考查了解直角三角形的应用—仰角俯角问题,熟练掌握锐角三角函数定义是解题的关键.21.(8分)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.【分析】(1)连接OC,由AC平分∠BAD,OA=OC,可得∠DAC=∠OCA,AD∥OC,根据AD⊥DC,即可证明CD是⊙O的切线;(2)由OE是△ABC的中位线,得AC=12,再证明△DAC∽△CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6cm,∴AC=12cm,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB ,∴,即=,∴AD =.【点评】本题考查圆的切线及圆中的计算,涉及圆周角定理、相似三角形的判定及性质等知识,解题的关键是熟练应用圆的相关性质,转化圆中的角和线段.22.(10分)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天)3569……硫化物的浓4.5 2.7 2.25 1.5……度y(mg/L)(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)设AC的函数关系式为:y=kx+b,将A和C代入,从而求得k,b,进而求得的结果;(2)可推出x•y=13.5为定值,所以当x≥3时,y是x的反比例函数,进而求得结果;(3)将x=15代入反比例函数关系式,从而求得y的值,进而根据反比例函数图象性质,从而得出结论.【解答】解:(1)设线段AC的函数表达式为:y=kx+b,∴,∴,∴线段AC的函数表达式为:y=﹣2.5x+12(0≤x<3);(2)∵3×4.5=5×2..7=...=13.5,∴y是x的反比例函数,∴y=(x≥3);(3)当x=15时,y==0.9,∵13.5>0,∴y随x的增大而减小,∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了求一次函数关系式,反比例函数及其图象的性质等知识,解决问题的关键是熟练掌握反比例函数及其图象性质.23.(12分)已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【分析】(1)根据勾股定理求出AB,根据相似三角形的性质列出比例式,计算即可.(2)作PD⊥BC于D,PE⊥AC于E,AP=tcm,BQ=tcm(0≤t<4),由△ABC为等腰直角三角形,可得∠A=∠B=45°,则可判断△APE和△PBD为等腰直角三角形,得出PE =AE=AP=tcm,BD=PD,则CE=AC﹣AE=(4﹣t)cm,由矩形和菱形性质及勾股定理,即可求得答案.【解答】解:(1)如图①,∵∠ACB=90°,AC=BC=4cm,∴AB===4(cm),由题意得,AP=tcm,BQ=tcm,则BP=(4﹣t)cm,∵PQ⊥BC,∴∠PQB=90°,∴∠PQB=∠ACB,∴PQ∥AC,∴=,∴=,解得:t=2,∴当t=2时,PQ⊥BC.(2)作PD⊥BC于D,PE⊥AC于E,如图②,AP=tcm,BQ=tcm(0≤t<4),∵∠C=90°,AC=BC=4cm,∴△ABC为等腰直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(4﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(4﹣t)cm,∴BD=(4﹣t)cm,∴QD=BD﹣BQ=(4﹣2t)cm,在Rt△PCE中,PC2=PE2+CE2=t2+(4﹣t)2,在Rt△PDQ中,PQ2=PD2+DQ2=(4﹣t)2+(4﹣2t)2,∵四边形QPCP′为菱形,∴PQ=PC,∴t2+(4﹣t)2=(4﹣t)2+(4﹣2t)2,∴t1=,t2=4(舍去).∴当t的值为时,四边形QPCP′为菱形.【点评】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.24.(12分)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可得抛物线的解析式;(2)过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),根据OE的解析式表示点G 的坐标,表示PG的长,根据面积和可得△OPE的面积,利用二次函数的最值可得其最大值;(3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE的交点坐标、与AE的交点坐标,用含h的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h的取值范围;(4)存在四种情况:作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.【解答】解:(1)∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE=S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点DM,交AE于点N,则E(2,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).【点评】本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想解决问题的关键.。
枣庄中考数学试题含答案Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】二○一六年枣庄市初中学业水平考试数 学 试 题第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a +=C .422)(a a =-D .1)1(22+=+a a 2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在OB 上有一点E ,从E 点射出一束光线经OA上一点D反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数 是A .75°36′B .75°12′C .74°36′D .74°12′3.某中学篮球队12名队员的年龄如下表:关于这12名队员的年龄,下列说法错误的是 A .众数是14 B.极差是3 C .中位数是D .平均数是4.如图,在△ABC 中,AB = AC ,∠A = 30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则第4题图∠D等于A.15° B.° C.20°D.°5.已知关于x的方程230x x a++=有一个根为-2,则另一个根为A.5 B.-1 C.2D.-56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一 点,则线段BP 的长不可能是A .3B .4C .D .108. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于 A .524B .512DC B AC .5D .410.已知点P (a +1,2a -+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD=32,则阴影部分的面积为A .2πB .π C. π3D.2π312.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,O23y-x =A .C .给出以下四个结论:①0=abc ;②0>++c b a ;③b a >; ④042<-b ac .其中,正确的结论有 个 个 个 个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13. 122---= .14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米(结果精确到0.1 ==).15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D = .16. 如图,点 A 的坐标为(-4,0),直线3y x n =+与坐标轴交于点B ,C ,连结AC ,如果∠ACD =90°,则n 的值为 .B CDAyxy =3x+nO17. 如图,已知△ABC 中,∠C =90°,AC =BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整数),则2016a = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解.20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字).⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:⑴请根据题中已有的信息补全频数分布表:①,②,③;⑵如果家庭月均用水量“大于或等于5t且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户⑶记月均用水量在23≤<x≤<范围内的两户为1a、2a,在78x范围内3户为1b、2b、3b,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.3b22.(本题满分8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数kyx的图象与BC边交于点E.⑴当F为AB的中点时,求该函数的解析式;⑵当k为何值时,△EFA的面积最大,最大面积是多少23.(本题满分8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.⑴求证:PB是⊙O的切线;⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为22,求BC的长.24.(本题满分10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>63.⑴求∠EPF 的大小; ⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.25. (本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;EA BA B⑵在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;⑶设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.绝密☆启用前二○一六年枣庄市初中学业水平考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.12214. 15..3- 17118.-1三、解答题:(本大题共7小题,共60分) 19.(本题满分8分)解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷--……………………………………………………2分=2(1)(1)(1)1a a a a a a +-⋅-+=21a a -…………………………………………………………………………4分由2230x x +-=,得 11x =,232x =- ………………………………………6分又10a -≠ ∴32a =-.∴原式=23()9231012-=---. ………………………………………………………………8分20.(本题满分8分)解:⑴由画图,可得当4n =时,41P =;当5n =时,55P =. ………………………………………4分⑵将上述数值代入公式,得4(41)(164)1245(51)(255)524a b a b ⨯-⎧⋅-+=⎪⎪⎨⨯-⎪⋅-+=⎪⎩①② ………………………………………………6分解之,得5,6.a b =⎧⎨=⎩………………………………………………………………………8分21.(本题满分8分)解:⑴①15 ②6 ③12% ………………………………………………………3分⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ……………………5分⑶表格(略),抽取的2户家庭来自不同范围的概率P=123205=. …………………………………………………………………8分 22.(本题满分8分)解:⑴在矩形OABC 中,OA =3,OC =2,∴B (3,2),∵F 为AB 的中点,∴F (3,1). …………2分 ∵点F 在反比例函数ky x=的图象上, ∴k =3.∴该函数的解析式为3y x=. ………4分 ⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k ),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+ (6)分所以当k =3时,S 有最大值,S 最大值=34. ……………………………………8分23.(本题满分8分)⑴证明:如图所示,连接OB .∵AC 是⊙O 的直径,∴∠ABC =90°,∠C +∠BAC =90°. ……………1分 ∵OA =OB ,∴∠BAC =∠OBA . ………………………2分 ∵∠PBA =∠C ,∴∠PBA +∠OBA =90°,即PB ⊥OB .∴PB是⊙O的切线.……………………………4分⑵解:⊙O的半径为OB=AC=∵OP∥BC,∴∠BOP=∠OBC=∠C.又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,…………………………………………………………………………6分∴BC ACOB OP==∴BC=2.……………………………………………………………………………………8分24.(本题满分10分)解:(1)如图,过点P作PG⊥EF于G.∵PE=PF=6,EF=∴FG=EG=M EA BG∠FPG =∠EPG =12EPF ∠.在Rt △FPG 中,sin ∠FPG =FG PF ==. ∴∠FPG =60°, ∴∠EPF =2∠FPG =120°. (3)分(2)作PM ⊥AB 于M ,PN ⊥AD 于N . ∵AC 为菱形ABCD 的对角线, ∴∠DAC =∠BAC ,AM =AN ,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF∴NF =ME . ………………………………………………………………………………5分又AP =10,1302PAM DAB ∠=∠=︒,∴AM = AN =AP cos30°=102⨯= ∴AE +AF =(AM +ME )+(AN -NF )=AM +AN=………………………………7分(3) 如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123PO P O ==,9AO =,∴AP 的最大值为12,AP 的最小值为6.……………………………………10分25.(本题满分10分)解:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y . …………………………………………2分A B∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0).把B (-3,0)、C (0,3)分别直线y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解之,得1,3.m n =⎧⎨=⎩ ∴直线BC 的解析式为3+=x y . …………3分 (2)∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x = -1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2.∴M(-1,2) (6)分(3)设P(-1,t),结合B(-3,0),C(0, 3),得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.①若B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10. 解之,得t=-2.②若C为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2.解之,得t=4.③若P为直角顶点,则PB2+PC2=BC2,即4+t2+t2-6t+10=18.解之,得t1=2173+,t2=2173-.综上所述,满足条件的点P 共有四个,分别为1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-).…10分。