01基本计数原理(1课时)
- 格式:ppt
- 大小:1007.00 KB
- 文档页数:14
《计数的基本原理》第一课时说课稿《计数的基本原理》第一课时说课稿1各位领导,老师们,下午好,我今天说课的题目是《计数的基本原理》我将从以下几个方面说课。
一、教材分析1、教材的地位和作用计数的基本原理包括分类计数及分步计数原理,这两个原理是学习排列组合的基础,是推导排列数、组合数的重要理论,同时也给出了分析解决排列与组合问题的思维方法。
因此,在整章书中的作用非常重要。
2、教材的重点、难点和关键教学重点:分类计数原理及分步计数原理的区别及应用教学难点:对复杂事件的分类及分步。
二、学情分析和学法指导学情分析:学生基础差,学习主动性差,缺乏学习兴趣。
基于以上情况,我设计了如下的学法指导。
学法指导:从培养学生的兴趣入手,使学生在学习过程中学会观察问题、探究问题,自主归纳总结进而得出结论。
三、教学目标分析根据以上两点,我制定了如下的教学目标:1、知识目标:掌握计数的基本原理,并能用它们分析和解决一些简单的应用问题。
2、能力目标:通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力。
3、情感目标通过各种贴近学生生活的素材,激发学生学习兴趣,培养学生爱国热情.四、教学方法在课堂上,让学生积极主动参与是关键。
正所谓:“学问之道,问而得,不如求得之深固也” 学习任何东西最好的途径是让自己去发现。
本节课采用启发式的教学方法,启发学生积极思考,积极探索,创设一个以学生为主体,教师为主导,师生互动、合作交流、共同探索的教与学的情境。
最后我来具体谈一谈这一堂课的教学过程:根据上述情况,我设计了如下六个环节的教学过程。
五、教学过程1、创设情境——引入课题首先,我会给出以下一组图片激发学生的学习兴趣及爱国热情。
看到图片,有的学生马上脱口而出:“中国女排”。
我说:“对,这正是中国女排在去年的雅典奥运会上夺冠的画面,好,现在假使你是一名统计员,我给出如下比赛规则:分成两个小组,每个小组6支队伍进行循环赛,决出4强,再由这四支对进行淘汰赛,那么请问,夺冠的中国女排总共进行了多少场比赛?这时,学生觉得这个问题很困难。
基本计数原理第一课时教学目的:1.了解学习本章的意义,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题。
对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的。
基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步。
教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用。
两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处。
教学过程:一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二项式定理、概率学、统计学等知识的基础内容。
XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。