1.1基本计数原理
- 格式:doc
- 大小:49.50 KB
- 文档页数:4
基本计数原理昌邑三中付世安修改:刘大川课标点击:(一)学习目标:掌握加法原理和乘法原理,能根据具体问题的特征,选择加法原理和乘法原理解决一些简单问题。
(二)教学重点:从实例入手理解加法原理和乘法原理。
难点:在练习中熟练应用加法原理和乘法原理。
教学过程:【课前准备】(一)知识链接:张、王、李、赵四人在寒假中要互寄一张贺年卡,他们一共寄了几张张贺年卡?(二)问题导引:从甲地到乙地,可以坐火车,也可以坐汽车,还可以乘轮船。
已知火车每日1班,汽车每日3班,轮船每日2班,那么从甲地到乙地有多少种不同的走法?(三)学习探究自学导引:阅读自学课本掌握下列内容自主阅读课本第3—4页,回答1、探究(1):请举出用分类形式完成工作的一个实例。
探究(2):请举出用分布形式完成工作的一个实例。
2、知识梳理:(1)分类加法原理:_____________________________________________________________ 公式N=_____________________(2)分步乘法原理:_____________________________________公式N=_________________________2、思考与讨论:(1)两个计数原理的作用是什么?(2)两个计数原理的区别和联系是什么?(四)典例示范例1:一个三层书架的上层放有5本不同的数学书,中 层放有3本不同的语文书,下层放有2本不同的英语书。
(1) 从书架上任取一本书,有多少种不同的取法?(2) 从书架上任取3本书,其中数学书语文书英语各一本,有多少种不同的取法? 解:(1)N=10(种)(2)N=523⨯⨯=30(种)例2:用0、.1、2、3、4 这五个数可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?解:(1)N=5⨯4⨯3⨯2=120(个)(2)N=4⨯4⨯3⨯2=96(个)(3)N=3⨯3⨯2+3⨯3⨯2=36(个)。
1.1基本计数原理一、教材分析计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想 . 本节课内容是学生在已有的利用列举法进行计数的基础上,进一步研究计数的规律,归纳出两种基本计数原理.从思想方法的角度看 , 一个是将问题进行分类思考 , 一个是将问题进行分步思考 , 从而达到分解问题﹑解决问题的目的.本节课由浅入深、螺旋上升,由特殊到一般,培养学生的抽象概括能力.所以,无论在知识的结构上,还是对学生的能力培养上,本节课都有十分重要的作用.二、教学目标知识与技能1. 准确理解分类加法计数原理与分步乘法计数原理,弄清它们的区别;2. 会利用两个原理分析和解决一些简单的应用问题.过程与方法1. 培养学生的归纳概括能力,提高他们分析问题和解决问题的能力;2. 培养学生比较,类比,归纳等数学思想方法和灵活运用的能力.情感态度价值观1. 认识数学知识与现实生活的内在联系,激发学生的兴趣;2. 引导学生形成“自主学习”与“合作学习”等良好的学习方式.三、教学重点1. 用什么方法引导学生归纳出两个计数原理对分类计数原理和分步计数原理的理解,学生往往有困难,或是停留在一种朴素的阶段.使学生切实理解分类加法计数原理与分步乘法计数原理的概念是上好本节课的关键,可多设置问题情境 , 用一些具体的﹑生活中的实例来帮助学生理解.2. 如何让学生正确区分〝分类〞和〝分步〞的含义让学生自主去探索,获取结论.通过比较分析分类加法计数原理与分步乘法计数原理的差异.分类加法计数原理中每类方法都能独立完成某件事;分步乘法计数原理中必须每步都做了,才能完成某件事.四、教学过程1. 问题情境情境:春天来了,要从海口到广州旅游,可以乘火车,也可以乘汽车.我们怎么选择自己的出行呢?把它抽象成一个简单的数学问题.问题1:从甲地到乙地,可以乘火车,也可以乘汽车.若一天中火车有3列,汽车有2辆.那么一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?2. 学生活动学生根据生活经验,解答问题1.1,并试图寻找规律.设问:从甲地到乙地的交通工具可分为_____类方式?第一类方式,乘火车,有_____种方法;第二类方式,乘汽车,有_____种方法;所以从甲地到乙地有_________种方法.问题2:若除了火车和汽车外,还可以乘飞机.一天中飞机有4架.那么一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?问题3:上述每类方式的每种方法能否单独实现从甲地到乙地的目的?问题4:从甲地到乙地有3条道路,从乙地到丙地有2条道路,那么从甲地经乙地到丙地共有多少种不同的方法?学生根据生活经验,解答问题2,并试图寻找规律.设问:从甲地到丙地须经_____再由_____到丙地,有_____个步骤?第一步,由甲地到乙地,有_____种方法;第二步,由乙地到丙地,有_____种方法;所以从甲地到丙地有_________种方法.问题5: 若从丙地到丁地的道路有4条.那么先从甲地到乙地,再从乙地到丙地,最后从丙地到丁地共有多少种不同的走法?问题6: 上述每步的每种方法能否单独实现从甲地到丁地的目的?3. 结论(1)分类计数原理(加法原理):完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,……在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =++⋅⋅⋅+ 种不同的方法.(2)分步计数原理(乘法原理):完成一件事,需分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法.4. 数学运用例1 某班共有男生28名、女生20名,从该班选出学生代表参加校学代会.(1)若学校分配给该班1名代表,有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,有多少种不同的选法?例2 (1)在图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?分析 (1)在图(1)中按要求接通电路,只要在A 中的两个开关或B中的三个开关中合上一只即可,故有2+3=5种不同的方法.(2)在图(2)中,按要求接通电路,必须分两步进行;第一步,合上A中的一只开关;第二步,合上B中的一只开关.故有2×3 = 6种不同的方法.例3苏州的部分电话号码是051265××××××,后面六个数字均来自0~9这10个数,问可以产生多少个不同的电话号码?引申若要求最后6个数字不重复,则又有多少种不同的电话号码?例4 如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?分析按地图A、B、C、D四个区域依次分四步完成,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6 种.引申若用2色、4色、5色等,结果又怎样呢?课堂小测试(6题中选2题完成).(1)为了对某农作物新品选择最佳生产条件,在分别有3种不同土质,2种不同施肥量,4种不同种植密度,3种不同时间的因素下进行种植试验,则不同的实验方案共有_______种?(2)一个商店销售某种型号的电视机,其中国产品牌有4种,合资品牌有7种,要买1台这种型号的电视机,有多少种不同的选法?(3)设有5副不同的油画,2副不同的国画,7副不同的水彩画.从这些油画、国画、水彩画中各选一副布置房间,有几种不同的选法?(4)由数字1、2、3、4、5可以组成多少个不同的三位数?(5)我们班级里有4名同学参加学校里的京剧社、国画社、航模小组,每人限报其中的1个社团,不同的报名方法有多少种?(6)如图,从甲地到乙地有2条路,从乙地到丁地有3条路,从甲地到丙地有4条路,从丙地到丁地有2条路.从甲地到丁地共有多少种不同的走法?5. 回顾小结分类计数原理与分步计数原理体现了解决问题时将其分解的两种常用方法,即分步解决或分类解决,它不仅是推导排列数与组合数计算公式的依据,而且其基本思想贯穿于解决本章应用问题的始终.要注意“类”间互相独立,“步”间互相联系.五、教学反思1. 本节课的设计意图( 1 )通过问题形式,引导学生在解决问题的过程中获取新知;( 2 )由浅入深,螺旋上升,由特殊到一般,充分体现新课程的理念;( 3 )引导学生自主学习的过程中,渗透了思想方法教育.2. 课堂亮点本节课的高潮在于课堂练习的形式,从中央台“幸运52”中得到启发,让两个同学进行PK的游戏, 给出6道题,两位选手各自为对方选不同的一道题来回答,答对得1分,比比哪个同学的得分高。
计数方法和应用计数是一种非常基础和普遍的数学概念,也称为计数学。
在日常生活和工作中,计数方法和技术被广泛应用。
本文将从计数方法和应用两个方面进行阐述。
一、计数方法1.1 基本计数原理基本计数原理是计数领域最基础的公理之一,也称为加法计数原理,是指如果一个事件发生的次数是 m,而另一个事件发生的次数是 n,则这两个事件连续发生的总次数是 m+n。
举个例子,假设一个学校有三个年级,每个年级有30 个学生,那么这个学校的学生总人数就是 3 × 30 = 90 人。
1.2 排列和组合排列和组合是计数中两个基本的概念。
排列是指 n 个元素中任取 r 个元素进行排列,不考虑元素的顺序。
排列数用 P(n,r) 来表示。
组合是指n 个元素中任取r 个元素进行组合,考虑元素的顺序。
组合数用 C(n,r) 来表示。
举个例子,假设有 ABC 三个字母,我们从中任取两个字母进行排列和组合,其结果如下:- 排列:AB, AC, BA, BC, CA, CB,共 6 种。
- 组合:AB, AC, BC,共 3 种。
1.3 树状图树状图是计数中一种常用的图形表示方法,也被称为树状图法。
它通过树的枝干和节及其上的符号来表示问题的分支和可能的结果。
树状图通常用于组合问题和排列问题。
举个例子,假设一个口袋里有三个苹果和两个梨,从中任取两个水果,可能的取法有:苹果-苹果、苹果-梨、梨-苹果、梨-梨、共 4 种可能。
这个问题的树状图可以如下表示:二、计数应用2.1 组合优化组合优化是计算机科学中的一个重要分支,其应用于各种领域,如图形学、数据库、网络等,旨在寻找最优的组合方案。
举个例子,在网络优化中,如何在一个有向图中找到最短或最快的路径是一个经典问题,可以用 Dijkstra 算法或 Bellman-Ford算法以及其他更高级的算法来解决。
而求解这些问题的基础,则是组合优化的概念和算法。
2.2 计算概率计数方法还可以用于计算概率,这是概率论的基础之一。
分类加法计数原理与分步乘法计数原理1.创设情境,提出问题人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?2.实例探究,归纳原理(1)师生共同探究,得出分类加法计数原理问题1:如果用一个大写的英文字母或一个阿拉伯数字给卫星编号,那么总共能够编出多少种不同的号码?问题2:从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有26班,汽车有10班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:以上两个计数问题有什么共同特点呢?分类加法计数原理:例1 在填写高考志愿时,一名高中毕业生了解到,A ,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学 数 学化 学 会计学医 学 信息技术学物理学 法 学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?变式:在填写高考志愿时,一名高中毕业生了解到,A ,B ,C 三所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学C 大学生物学 数 学 新闻学化 学 会计学 金融学医 学 信息技术学 人力资源学物理学 法 学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?推广:一般地,如果完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类中有2m 种不同的方法…,在第n 类中有n m 种不同的方法,那么完成这件事共有 种不同方法.(2)类比转化探究,得出分步乘法计数原理问题3:如果用前六个大写英文字母中的一个和1~9九个阿拉伯数字中的一个,组成编码形如A 1,B 2的方式给卫星编号,那么总共能编出多少个不同的号码?问题4:从甲地到丙地,要从甲地先乘火车到乙地,再于次日从乙地乘汽车到丙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到丙地共有多少种不同的走法?分步乘法计数原理:例2某班有男生30名,女生24名,现要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同的选法?变式:某班有男生30名,女生24名,任课老师10名,现要从中选出男、女生各一名代表班级参加公益活动,还要从中选派1名老师作领队,组成代表队,共有多少种不同选法?推广:一般地,如果完成一件事要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有 不同方法.3.演练反馈,巩固提升练1: 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架的第1,2,3层各取一本书,有多少种不同取法?(2)从书架中任取1本书,有多少种不同的取法?变式:从书架中取2本不同种类的书,有多少种不同的取法?练2 【引例回放】“神十”的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).这样的编号规则,2013年的人造天体所有可能的编码有多少种?4.归纳小结,认知升华这节课我们收获了什么?5.课后检测,拓展铺垫(1)阅读作业:阅读教材第6页至第10页;(2)书面作业:教材第6页练习1,2,教材第12页1,2,3,4(3)(思考题)2018高考改革方案——改革考试科目设置:“考生总成绩由统一高考的语文、数学、外语3个科目成绩和高中学业水平考试中的3个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物等6个科目中自主选择.”如果按照这样的报考要求,某位考生可以有多少种不同的选择?。
XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
《计数原理》预习学案
编制:王礼堂2013.1.28
一、课前新知初探
(1)学习目标
1.通过实例,总结出分类计数原理、分步计数原理;
2. 了解分类、分步的特征,合理分类、分步;
3. 体会计数的基本原则:不重复,不遗漏.
(2)自主预习
(1)分类加法计数原理:
计算公式:
(2)分步乘法计数原理:
计算公式::
(3)思考探究
分类加法计数原理与分步乘法计数原理的有哪些异同点?
共同点:
不同点:
二、课堂互动探究
(1)课堂提问
(1)从潍坊到北京,可以乘火车,也可以乘汽车,还可以乘飞机,假定火车每日3.班,汽车每日4班,飞机每日2班,那么一天中从潍坊到北京
可以有多少种走法?
(2)加工一种零件有3道工序,第一道工序有3种方法,第二道工序有2种
方法,第三道工序有3种方法,那么加工这种零件共有多少种方法?(2)课内探究
探究任务一:分类计数原理
问题1:用一个大写的英文字母或一个阿拉伯数字给教室的座位编号,总共能编出多少种不同的号码?
分析:给座位编号的方法可分____类方法?
第一类方法用,有___ 种方法;
第二类方法用,有___ 种方法;
∴能编出不同的号码有__________ 种方法
试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是 .
反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗?
班级 姓名 学号 小组
探究任务二:分步计数原理
问题2:用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ⋅⋅⋅…的方式给教室的座位编号,总共能编出多少种不同的号码?
分析:每一个编号都是由 个部分组成,第一部分是 ,有____种编法,
第二部分是 ,有 种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有 个. 试试:从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同的路线有 条.
反思:使用乘法原理的条件是什么?分步乘法原理可以推广到两步以上的问题吗?
(3)典例剖析
例1现有高一学生代表3名,高二学生代表5名,高三学生代表2名:
(1) 从中任选1人担任校学生会主席,共有多少种不同的选法?
(2) 从每个年级的代表中各选1人,由选出的三个人组成校学生会主席团,
共有多少种不同的选法?
(3) 从高一年级和高二年级的学生代表中各选一人,与高三年级2名学生代
表,共4人组成校学生会主席团,共有多少种不同的选法?
小结: (1)要弄清两个原理的条件和结论。
(2)要弄清是“分类”还是“分步”还是既有“分类又有分步”
变式:有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是 .
例2由数字0,1,2,3,这四个数字,可组成多少个:
(1) 无重复数字的三位数?
(2) 可以有重复数字的三位数?
(3) 无重复数字的3位偶数?
例3、一枚骰子有6个面,各面分别标有1,2,3,4,5,6个点,现抛掷一枚骰子3次,3次的点数构成一个序列,如”1,1,2”问一共可以得到多少个 这样的序列?
三.课堂检测:
1.一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的外语书:
(1) 从书架上任取1本书,有多少种不同的取法?
(2) 从书架上任取3本书,其中数学书、语文书、英语书各1本,有多少
种不同的取法?
2.一个城市的某电话局管辖范围内的电话号码由8位数字组成,其中前四位数字是统一的,后四位数字都是0到9这十个数字中的一个数字,那么不同的电话号码最多有多少个?
3.从一个小组的6名学生中产生1名组长,1名学生代表,在下列条件下各有多少种不同的选法?
(1)不允许兼职 (2)允许兼职
五.课后练习
1.已知集合}{}{1,2,3,2,3,4,5M N ==:
(1)任取一个奇数n ,,n M N ∈⋃共有多少种不同的取法?
(2)设点(,),,Q x y x M y N ∈∈,问可以表示多少个不同的点?
(3)在(2)中,有多少个(,)Q x y 不在直线y x =上?
2.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项:
(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?
(2)有4名学生参加了这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?
3.用0,1,…..,9十个数字,可以组成多少个:
(1)三位数?
(2)无重复数字的三位数?
(3)小于500的无重复数字的三位数?
(4)小于500,且末位数字是8或9的无重复数字的三位数?
(5)小于100的无重复数字的自然数?
4、(1)将3封信投到个邮箱,不同的投法有种;
(2)同室四人各写一张贺卡,先集中起来,然后每人从中取一张别人的贺卡,要求每人必须取到贺卡,则有种不同的取法。