大学物理第九章静电场习题
- 格式:ppt
- 大小:768.00 KB
- 文档页数:22
第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。
因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。
AOP ∆是边长为a 的等边三角形。
已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。
----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方第9章 静电场习 题一 选择题9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ](A)4f (B) 8f (C) 38f (D) 16f答案:B解析:经过碰撞后,球A 、B 带电量为2q,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为8f。
9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。
因而正确答案(B )习题9-3图(B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 (C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。
O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E rπε=,移动电荷后,由于OP =OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。
因而正确答案(D )9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ](A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。
大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
第九章静电场和稳恒电场9-1下列说法正确的是(A) 闭合曲面上各点电场强度都为零时,曲面内一定没有电荷,(B) 闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,(C) 闭合曲面的电通量为零时,曲面上各点的电场强度必定为零,(D) 闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
9-2下列说法正确的是(A )电场场强为零的点,电势也一定为零,(B )电场强度不为零的点,电势也一定不为零,(C )电势为零的点,电场强度也一定为零,(D )电势在某一区域内为常量,则电场强度在该区域内必定为零。
9-3电荷面密度均为 +σ的两块“无限大”均匀带电的平行平板如图(a )放置,其周围空间各点电场强度E (设电场强度方向向右为证、向左为负),随位置坐标x 变化的关系曲线为()9-4两个点电荷所带电荷之和为Q ,问他们各带电量为多少时,相互间的作用力最大? 解:20)(41r q q Q F ⋅-⋅=πε 极限条件0=dq dF 得:2Q q = 且0212022<-=rdq F d πε,故各带2Q 时,相互作用最大9-5一半径为R 的半圆细环上均匀地分布电荷Q ,求环心处的电场强度。
解:取dl 电荷元,其所带电量为:θπθππd Q Rd R Q dl R Q dq =⋅== θπεπεd RQ R dq dE 20200441=⋅= x 轴上x E 的对称为零,∴⎰⋅-==αθsin dE E E y 202020224sin RQ d R Q επθεπθπ-=⋅-=⎰ 9-6一均匀带电线段,带电线密度为λ,长度为L ,求其延长线上与端点相距d 处的场强和电势。
解:)11(4)(40020L d d x d L dx E L +-=-+=⎰πελπελ dd L L d d x d L dxV L +=+-=-+=⎰ln 4)1ln 1(ln 4)(40000πελπελπελ 9-7设均匀电场的电场强度E 与半径R 的半球面对称轴平行,试计算通过此半球面的电场强度通量。
第九章 静电场一 选择题1. 在坐标原点放一正+Q ,它在P 点(x =+1,y =0)产生的电场为E 。
现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度为零?( )A. x 轴上x >1。
B. x 轴上x <0。
C. x 轴上0<x <1。
D. y 轴上y >0。
E. y 轴上y <0。
解:根据电场叠加原理,应选(B)。
2. 下列说法中哪一个是正确的?A.电场中某点场强的方向,就是将点电荷放在该点所受的电场力的方向。
B.在以点电荷为中心的球面上,该电荷产生的场强处处相同。
C.场强方向可由定出,其中q 为试验电荷的电量,q 可正可负,FqFE =为试验电荷所受的电场力。
D.以上说法都不正确。
( )解:根据电场强度的定义应选(C)。
3. 如图,电量为Q 的点电荷被曲面S 所包围,从无穷远处引另一电量为q 的点电荷至曲面外一点,则: ( )A.曲面S 的E 通量不变,曲面上各点场强不变B.曲面S 的E 通量变化,曲面上各点场强不变C.曲面S 的E 通量变化,曲面上各点场强变化D.曲面S 的E 通量不变,曲面上各点场强变化解:根据高斯定理,应选(D)。
4. 两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ),所带电量分别为Q a 和Q b ,设某点与球心相距r ,当R a <r< R b 时,该点的电场强度的大小为:( )202202020π41D.π41C.π41B.π41A.r Q .) R Q r Q (r Q Q .r Q Q .abb a b a b a εεεε+-+解:外球面上的电荷在其内部产生的场强为零,两球面间的场强仅由内球面电荷产生,故选(D )。
5. 图示为一具有球对称性分布的静电场的E -r 关系曲线,请指出该静电场是由下列哪种带电体产生的。
( )S .Q.q 选择题3图A .半径为R 的均匀带电球面 B. 半径为R 的均匀带电球体C. 半径为R 、电荷体密度ρ =Ar (A 为常数)的非均匀带电球体D.半径为R 、电荷体密度ρ =A/r (A 为常数)的非均匀带电球体解:根据计算可知,该电场为半径为R 、电荷体密度ρ =A/r (A 为常数)的非均匀带电球体所产生,故选(D )。
第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。