数学期望和方差
- 格式:ppt
- 大小:900.00 KB
- 文档页数:94
一、基本知识概要:1、期望的定义:则称Eξ=x1P1+x2P2+x3P3+…+x n P n+…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。
E(c)= c特别地,若ξ~B(n,P),则Eξ=n P2、方差、标准差定义:Dξ=(x1-Eξ)2·P1+(x2-Eξ)2·P2+…+(x n-Eξ)2·P n+…称为随机变量ξ的方差。
Dξ的算术平方根ξD=δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。
若ξ~B(n,p),则Dξ=npq,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
考点一期望与方差例1:设随机变量ξ具有分布P(ξ=k)=15,k=1,2,3,4,5,求E(ξ+2)2,(21)Dξ-,(1)σξ-.例2:有甲、乙两个建材厂,都想投标参加某重点建设,为了对重点建设负责,政府到两建材厂抽样检查,他们从中各抽取等量的样品检查它们的抗拉强度指数其中ξ和η分别表示甲、乙两建材厂材料的抗拉强度,在使用时要求抗拉强度不低于120的条件下,比较甲、乙两建材厂材料哪一种稳定性较好.考点二离散型随机变量的分布、期望与方差例3:如图,一个小球从M处投入,通过管道自上而下落到A或B或C。
已知小球从每个叉口落入左右两个管道的可能性是相等的。
某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖。
(Ⅰ)已知获得1,2,3等奖的折扣率分别为50%,70%,90%。
记随机变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Eξ;(Ⅱ)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).2、某同学参加3门课程的考试。
第27讲数学期望与方差的计算数学期望与方差是概率论和数理统计中的重要概念,用于描述随机变量的平均值和离散程度。
在实际问题中,计算数学期望和方差有助于理解和分析随机变量的特征,从而进行合理的决策和预测。
首先,我们来介绍数学期望的计算方法。
数学期望是随机变量的平均值,可以用来预测实验结果的平均结果。
对于离散型随机变量X,其数学期望E(X)的计算公式为:E(X)=Σ(x*P(X=x))其中,x表示随机变量的可能取值,P(X=x)表示随机变量取值为x的概率。
通过将每个可能取值与其对应的概率相乘,然后将所有结果相加,即可得到数学期望。
举个例子,假设我们有一个投硬币的实验,结果正面的概率为p,反面的概率为1-p。
我们定义随机变量X表示投硬币的结果,1表示正面,0表示反面。
那么投硬币的数学期望E(X)的计算公式为:E(X)=1*p+0*(1-p)=p即投硬币的数学期望为正面的概率。
类似地,对于连续型随机变量X,其数学期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,f(x)表示X的概率密度函数。
通过将每个可能取值与其对应的概率密度相乘,然后对所有结果进行积分,即可得到数学期望。
接下来,我们来介绍方差的计算方法。
方差是随机变量的离散程度的度量,反映了观测值与其平均值的偏离程度。
对于离散型随机变量X,其方差Var(X)的计算公式为:Var(X) = Σ((x - E(X))^2 * P(X = x))其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望。
通过将每个可能取值与其对应的偏离程度的平方与其概率相乘,然后将所有结果相加,即可得到方差。
举个例子,假设我们有一个骰子的实验,骰子有六个面,每个面的概率相等。
我们定义随机变量X表示骰子的结果,那么骰子的方差Var(X)的计算公式为:Var(X) = ((1-3.5)^2 + (2-3.5)^2 + ... + (6-3.5)^2) / 6即骰子的方差为35/12对于连续型随机变量X,其方差Var(X)的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望,f(x)表示X的概率密度函数。
数学期望与方差的运算性质教程一:复习公式离散随机变量(),(,)(,)(,)(,)i j ij i j ij i jP X Y a b p Eh X Y h a b p ==→=∑连续随机变量()()()2,~,(,)(,),R f x y Eg g x y f x y dxdy ξηξη→=⎰⎰二:期望运算性质()E aX bY c aEX bEY c ++=++应用例题、袋中装有m 个不同色小球,有返回取球n 次,出现X 种不同颜色,求EX 解答:用i X ⎧=⎨⎩1第i颜色球在n次取球中出现0第i颜色球在n次取球中没出现,则m X X X ++= 1由于()()1101,111,n ni i P X P X m m ⎛⎫⎛⎫==-==-- ⎪ ⎪⎝⎭⎝⎭()111/ni EX m =--,()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--==++=∑=nmi i m m m EX X X E EX 11111三、协方差:若,EX EY θμ==,()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦称为随机变量X 、Y 的协方差.covariance()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦()()()()()()()()()()()EYEX XY E XY E XY E Y E X E XY E E Y E X E XY E Y X XY E ⨯-=-=+--=+--=+-+-+=+--=θμθμθμμθθμθμθμθμθμθμ 例题:害虫一生产卵个数X 服从参数为λ的Poisson分布,若每个卵能孵化成下一代的概率都是p ,假定害虫后代个数为Y ,求cov(,)X Y解答:(,)()()(1)!i i jj ji j i e P X i Y j P X i P Y j X i C p p i λλ-≥-=======-!(1)(1)!!()!!()!i i j i j j i j e i e p p p p i j i j j i j λλλλ----=-=---000(,)(1)!()!i ij i ji j i i j e EXY ijP X i Y j ij p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EX iP X i Y j i p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EY jP X i Y j j p p j i j λλ-∞∞-=≤======--∑∑∑∑clear clcsyms i j p lamda positiveEXY=symsum(symsum(i*j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EX=symsum(symsum(i*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EY=symsum(symsum(j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)cov=simple(EXY-EX*EY); cov EXY =p*lamda*(lamda+1) EX = lamda EY = lamda*p cov = lamda*p可以看到,协方差不为0 例题:P180 3.4.8()[0,1][0,2],~(,)1/3()(,)f x y x y I x y ξη⨯=+,求(238)Var X Y -+syms x y positivemoment1=int(int((2*x-3*y+8)*1/3*(x+y),x,0,1),y,0,2); moment2=int(int((2*x-3*y+8)^2*1/3*(x+y),x,0,1),y,0,2); Var=moment2-moment1^2 Var = 245/81协方差计算公式()()()(),cov(,)EX a EY bX Y E X EX E Y EY E X a E Y b ===--=--()()()()E XY aY bX ab E XY aE Y bE X ab =--+=--+ ()E XY ab ba ab =--+ ()()()E XY E X E Y =-注: Y=X时得到什么公式?例题:若随机变量,X Y 独立,求它们的协方差解答:,EX EY θμ==,因为,X Y 独立,所以X Y θμ--、也相互独立()()()()cov(,)0X Y E X Y E X E Y θμθμ=--=-⨯-=⎡⎤⎣⎦注:相互独立随机变量协方差为0的逆命题不成立,如,假定随机变量~(1,1)X U -,则显然2cov(,)0X X =,但是2X X 、不独立 四、协方差和方差性质1:协方差是方差推广,方差是特殊协方差cov(,)()X X Var X =,cov(,)0X c =,cov(,)cov(,)X Y Y X =1111cov(,)cov(,)m n m ni i j j i j i j i j i j c X d Y c d X Y =====∑∑∑∑特殊地11111()cov(,)cov(,)mmmmmi i i i j i i i i j Var X X X X X =======∑∑∑∑∑111cov(,)cov(,)cov(,)m m m i j i j i i i j i j i X X X X X X ===≠⎡⎤==+⎢⎥⎣⎦∑∑∑∑1cov(,)()mi j i i j i X X Var X =≠⎡⎤=+⎢⎥⎣⎦∑∑11cov(,)()mmi j i i i j i X X Var X ==≠⎡⎤=+⎢⎥⎣⎦∑∑∑12cov(,)()mi j i i j iX X Var X =>=+∑∑特别地121212()()()2cov(,)Var X X Var X Var X X X +=++121212112212()cov(,)cov(,)cov(,)Var X X X X X X X X X X X X -=--=-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 1122122()cov(,)cov(,)cov(,)Var X X X X X X X =---- 1121222()cov(,)cov(,)cov(,)Var X X X X X X X =--+ 1212()()2cov(,)Var X Var X X X =+-这个结论说明,一般,和的方差并不等于方差之和 定理:若随机变量1,,n X X 相互独立,则111()2cov(,)()()nnni i j i i i i i j iVar X X X Var X Var X ===>=+=∑∑∑∑。