变频器电压检测电路(新)

  • 格式:doc
  • 大小:122.50 KB
  • 文档页数:7

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的电压检测电路(新)

——正弦变频器电压检测实际电路分析

一、电路构成和原理简析

电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使IGBT 逆变电路的工作电源电压在一特定安全范围以内,若工作电源危及IGBT (包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT 导通管压降检测的同样作用,取代驱动电路中IGBT 的管压降检测电路。

1、电压检测电路的构成、电压采样方式及故障表现

图1 电路检测电路的构成(信号流程)框图

1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V 电压采样

78L05C

8

P N

图2 DC530V 电压检测电路之一

直接对P 、N 端DC530V 整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型18.5kW 变频器的电压检测电路,如图2所示。

电路中U14线性光耦合器的输入侧供电,由开关变压器的独立绕组提供的交流电压,经整流滤波、由78L05稳压处理得到5V 电源所提供,电源地端与主电路N 端同电位。输出侧供电,则由主板+5V 所提供。

直流回路P 、N 端的DC530V 电压,直接经电阻分压,取得约120mV 的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN 直流电压检测信号,经CNN1端子,送入MCU 主板上的电压检测后级电路。

2)由开关变压器次级绕组取得采样电路信号

+5V

-42V

图3 DC530V 电压检测电路之二

+5V

N1输入电压波形示意图V T

截止

VT

饱合导通

0V

530V

5V

0V

-42V

N3输出电压波形示意图

压采样等效电路T1

图4 直流回路电压采样等效电路及波型示意图

主电路的DC550V 直流电压检测信号,并不是从主电路的P 、N 端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。

在开关管VT 截止期间,开关变压器TRAN 中储存的磁能量,由次级电路进行整流滤波得到+5V 工作电源,释放给负载电路;在VT 饱和导通期间,TC2从电源吸取能量进行储存。

N3二级绕组上产生的电磁感应电压,正向脉冲出现的时刻对应开关管的截止时间,宽度较大,幅值较低,经二极管D12正向整流后提供负载电路的供电,有电流释放回路;反向脉冲出现的时刻对应开关管的饱和导通时间,宽度极窄,但并不提供电流输出,回路的时间常数较大(不是作为供电电源应用,只是由R 、C 电路取得电压检测信号),故能在电容C17上维持较高的幅值。开关管VT 饱合导通时,相当于将

N1绕组直接接入530V电源,因而在同一时刻N3绕组此时所感应的负向脉冲电压,是直接反映N1绕组供电电压高低的,并与其成线性比例关系——N3绕组感应电压的高低,仅仅取决于N1、N3绕组的匝数比。整流二极管D12和D11接于同一个次级绕组上,D12将“大面积低幅度”的正向脉冲整流作为+5V供电,而D11却将“小面积而幅度高”的负向脉冲做负向整流后,经R20、R18、R19、C19、C17等元件简单滤波处理后,将此能反映一次主绕级供电高低的-42V电压信号,作为直流回电压的检测信号,送入MCU主板电路,供显示直流电压值和参与CPU程序控制之用。

直流电压检测电路与其它输出电源电压电路的显著不同,1)在于该电路整流电压的输出端无大容量滤波(电解)电容;2)输出电压回路中串接有数千欧姆或数十千欧姆的大阻值电阻。显然该路输出电压不能用作供电电源。3)同一绕组所整流得出的供电电源电压值,要数倍低于检测电压值。这是判断该电路为直流电压检测信号输出电路的3种依据。

3)通过对充电接触器辅助触点的状态检测,间接作出对直流回路是否正常的逻辑判断

上篇博文,在海利普HLP-P型15kW变频器电压检测电路原理及检修一文中,已作出详细的分析,当充电接触器未正常作出吸合动作,表现为辅助常开闭点没有在电容充电结束后,接触良好,检测信号输入MCU引脚后,MCU经逻辑分析,判断充电接触器的未正常动作,因而直流回路的供电电压“肯定”也是不正常的,因而有时检测充电接触器的辅助常开触点未闭合时,也会报出“直流回路欠电压”故障。

3)三相输入电源电压的检测电路

部分机型有了DC530V的电压检测,就省略了对3相输入电压的断相检测(DC530V的高低一定程度上也反映了三相电压电源电压的输入状况),有些机型的电压检测电路,则“面面俱到”,检测电路比较完善。

R S T

J2

35图5 三相输入电源电压检测电路

三相输入电源电压检测电路,将R、S、T端输入的电源电压先经电阻网络降压/限流,再经桥式整流电路变为六波头300Hz脉动直流,送入光耦合器输入侧,3相电源正常时,光耦输出侧为六波头300Hz的脉冲直流信号,或认为J2端子的35脚一直为低电平;电源任缺一相时,光耦输出侧为四波头200Hz的电压信号,或认为J2的35端子有出现高电平的时刻,经后级电路处理送入MCU,MCU判断缺相故障,报警并停机保护。光耦合器U15的输入侧串入稳压管Z19,使U15输出信号的动作“干脆利落”,对三相电源电压的不平衡也有检测作用。检测电路将输入模拟信号转化为映波头数目的“数字信号形式”,利于MCU 的检测和判断。

4)3相输出电压/频率检测电路

3相输出电压检测电路,在少数变频器产品中有采用。其主要作用,是检测逆变电路的输出状态,由此起到对IGBT的保护作用,如同驱动电路的IGBT管压降检测与保护电路一样。有些变频器,驱动电路没有IGBT管压降检测保护电路,对IGBT的保护,一定程度上依赖于三相输出电压检测电路——三相输