当前位置:文档之家› 周期比、位移比、层间位移角与刚性楼板假定

周期比、位移比、层间位移角与刚性楼板假定

周期比、位移比、层间位移角与刚性楼板假定
周期比、位移比、层间位移角与刚性楼板假定

结构的位移比、周期比、楼层侧向刚度比都是要求在刚性楼板假定条件下进行的。

层间位移角,对于一般的结构,可以采用刚性楼板的假定;对于有转换层等复杂高层建筑,不宜采用刚性楼板的假定。而且计算层间位移角时,不考虑偶然偏心,不考虑双向地震。

首先:SATWE参数---对所有楼层强制采用刚性楼板假定:

规范规定:高规(2010)5.1.5条:进行高层建筑内力与位移计算时,可假定楼板在其自

身平面内为无限刚性。

条文说明:可把楼板视作水平放置的深梁,可近似认为楼板在其自身平面内为无限刚性。

采用这一假设后,结构分析的自由度数目大大减少,使计算过程及计算结果大为简化。且

满足工程精度。

程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。操作

要点:

1:如果设定了弹性楼板活楼板开大洞,在计算位移、周期等控制参数时,应选择该项,将弹性楼板强制为刚性楼板参与计算,以满足规范要求的计算条件;计算完成后应去掉此项

选择,以弹性楼板方式进行配筋和其他计算分析。

2:如果没有定义弹性板或楼板开大洞,一般不选择此项,避免出现异常情况。

*********************************************************************** (1)判断结构的位移比与周期比必须考虑强制刚性楼板:

《抗震规范》的条文说明3.4.2,3.4.3指出:对于扭转不规则,按刚性楼板计算,当最大

层间位移与其平均值的比值为1.2时,相当于一端为1.0,另一端为1.45;当比值为1.5

时,相当于一端为1.0,另一端为3。《抗震规范》的条文说明隐约透露出了判断结构的位移比应该是基于刚性楼板的假定。

而《抗震规范》的主编王亚勇在《建筑抗震设计规范疑问解答》一书 4.2中更是明确指出:在刚性楼板假定条件下,当计算小震作用的楼层最大弹性水平位移(或层间位移)值与该

楼层两端弹性水平位移(或层间位移)平均值的比值大于1.2时,判断为扭转不规则;当

比值接近1.5时,判断为特别不规则;当比值大于1.5时,一般判断为严重不规则。

(2)判断弹性层间位移角是否必须考虑强制刚性楼板:

李国胜在《多高层钢筋混凝土结构设计中疑难问题的处理及算例》3.13条明确指出:高层

建筑结构水平地震作用下的最大位移,应在单向水平地震作用下,不考虑偶然偏心的影响,采用考虑扭转耦联振动影响的振型分解反应谱法进行计算,并应采用刚性楼板假定。李国

胜是《高规》的编委之一。

张维斌在《多层及高层钢筋混凝土结构设计释疑及工程实例》[7]也指出:结构的弹性层间

位移角需满足《建筑抗震设计规范》第5.5.1条的要求。需要说明的是,此时位移的计算

是在“楼板平面内刚度无限大”这一假定下的。

而荣维生、王亚勇在《楼板刚、弹性计算假定对梁式转换高层建筑地震作用效应的影响》

一文中指出:若楼板采用刚性膜假定能够满足多遇地震下的抗震变形验算,而采用弹性板

假定未必能满足。

因而,在侧向刚度较小的结构中,需按弹性板假定来进行结构抗震变形验算。文章同时指出:建议在复杂的高层建筑中,进行结构内力与位移计算时,楼板宜按弹性板考虑。

故:计算层间位移角时,对于一般的结构,可以采用刚性楼板的假定;对于有转换层等复

杂高层建筑,不宜采用刚性楼板的假定。

最大层间位移、位移比是在刚性楼板假设下的控制参数。“强制性刚性楼板”是新规范设计“位移比”的需要,楼层中的房间可能是“刚性板”、“弹性板”、“板厚为0”等这三种情况,这

样在计算楼层平均位移时,只有把楼层中的所有房间均按“强制刚性楼板”计算,平均位移

才能计算准确,则位移比也能计算合理。模型建好后,若没有对该房间定义为“弹性楼板”,则程序自动按“刚性楼板假定”分析,也就是说不论是否点选“强制采用刚性楼板假定”这个

选项算出的位移结果应该是一样的。但是“强制刚性楼板”仅用于位移比的计算,而作构件

设计计算时则需另备份模型,不应选择“强制刚性楼板”,是弹性板的还是要定义为弹性板,这样算出的构件才比较准确。以上均为个人见解,仅供参考。

关于框架结构加少量剪力墙结构层间位移角的取值

关于框架结构加少量剪力墙结构层间位移角的取值 对于框架加少量剪力墙的结构,《建筑抗震设计规范》(GB50011—2001)没有明确提出要求,只是在6.1.3条提出了框架—剪力墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加。 《高层建筑混凝土结构技术规程》(JGJ3—2002)第8 .1 .3条提出了抗震设计的框架—剪力墙结构,在基本振型地震作用下,框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其框架部分的抗震等级应按框架结构采用,轴压比限值宜按框架结构的规定采用;其最大使用高度和高宽比限值可比框架结构适当增加。 《高层建筑混凝土结构技术规程》(JGJ3—2002)第 6 .1 .7条提出了抗震设计的框架结构中,当仅布置少量钢筋混凝土剪力墙时,在结构分析计算时应考虑剪力墙与框架的协同工作。如楼、电梯间位置较偏而产生较大的刚度偏心时,宜采取将此剪力墙减薄、开竖缝、开结构洞等措施以减小剪力墙的作用,并宜增加与剪力墙相连之柱子的配筋。 但是,对于这种结构的层间位移角如何控制?是按纯框架结构的

1/550控制?还是按框架—剪力墙结构的1/800控制?规程JGJ 3—2002没有明确规定,抗震规范GB 50011—2001也没有具体规定,设计中如何控制是个亟待解决的问题。 小伙伴们,想更快地掌握天正CAD的入门技巧吗?并迅速的运用在工作中欢迎各有朋友加入CAD交流群230086281 如有对绿色建筑有兴趣的盆友可以加群:383831540 我们是一群学习和研究绿色建筑的好青年。

楼层位移比”和“层间位移角”

关于“楼层位移比”和“层间位移角”问题结构 2009-08-02 23:30:53 阅读1481 评论0 字号:大中小订阅 常有人问起“楼层位移比”和“层间位移角”的相关问题,此处一并答复: 1、“楼层位移比” 1)定义——“楼层位移比”指:楼层的最大弹性水平位移(或层间位移)与楼层两端弹性水平位移(或层间位移)平均值的比值; 2)目的——限制结构的扭转; 3)计算要求——考虑偶然偏心(注意:不考虑双向地震)。 2、“层间位移角” 1)定义——按弹性方法计算的楼层层间最大位移与层高之比; 2)目的——控制结构的侧向刚度; 3)计算要求——不考虑偶然偏心,不考虑双向地震。 3、综合说明: 1)现行规范通过两个途径实现对结构扭转和侧向刚度的控制,即通过对“扭转位移比”的控制,达到限制结构扭转的目的;通过对“层间位移角”的控制,达到限制结构最小侧向刚度的目的。 2)对“层间位移角”的限制是宏观的。“层间位移角”计算时只需考虑结构自身的扭转藕联,无需考虑偶然偏心及双向地震。 3)双向地震作用计算,本质是对抗侧力构件承载力的一种放大,属于承载能力计算范畴,不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断。 4)常有单位要求按双向地震作用计算控制“扭转位移比”和“层间位移角”,这是没有依据的。但对特别重要或特别复杂的结构,作为一种高于规范标准的性能设计要求也有它一定的合理性。 4、相关索引 1)江苏省房屋建筑工程抗震设防审查细则第5.1.3条规定:先计算在刚性楼板、偶然偏心情况下的扭转位移比,当扭转位移比大于等于1.2时,分别按偶然偏心和双向地震计算,再取最不利的扭转位移比进行扭转不规则判别。(博主提示:请注意,这是很严格的要求)。 2)复杂高层建筑结构设计(徐培福主编)第195页,图7.1.7,先按不考虑偶然偏心计算

详解位移比

位移(层间位移比):此数比值是控制结构平面规则兼有控制扭转的作用。此数值可以在SATWE 位移输出文件 WDISP.OUT 中查看。 解释下位移比和层间位移比以及位移角的意思(这2个比值应该有很多人搞不清,也包括我)。 1.位移比:楼层竖向构件的最大水平位移与平均水平位移的比值。 2.层间位移比:楼层竖向构件的最大层间位移角与平均位移角的比值。 3.位移角:楼层竖向构件层间位移与层高只比。(《高规》 4.6.3对最大层间位移角也有明确的规定,从1/550、1/800、1/1000不同结构体系限制不同。) 《高规》4.3.5条对此有明确的规定,最大水平位移和最大层间位移角A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍,且A级高度不应大于1.5倍,B级高度、混合结构、以及复杂高层,不应大于1.4倍。从WDISP.OUT 中即是要求 Ratio-(X),Ratio-(Y)=Max-(X),Max-(Y)/Ave-(X),Ave-(Y),最好小于1.2,对于A级高度不能超过1.5,B级高度、混合结构、以及复杂高层,不超过1.4倍。(位移比) Ratio-Dx,Ratio-Dy=Max-Dx ,Max-Dy/Ave-Dx ,Ave-Dy 最好小于1.2,对于A 级高度不能超过1.5,B级高度、混合结构、以及复杂高层,不超过1.4倍。(层间位移比) 还需控制层间最大位移角的限制,即《高规》4.6.3条规定。 以上这些数值WDISP.OUT 都有输出,所以操作起来还是比较方便的,在设计时只要注意就行 假如位移(层间位移比)超过限制需要考虑双向地地震作用。 必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性”楼板假定的选择,以弹性楼板设定进行后续配筋计算。 验算位移比还需要考虑偶然偏心,验算层间位移角则不需要考虑。

midas 刚性连接和弹性连接

首先需要明确: 刚性连接=主从节点弹性连接中的刚性连接=刚臂 刚性连接的功能是强制某些节点(从属节点)的自由度从属于某节点(主节点)。包括从属节点的刚度分量在内的从属节点的所有属性(节点荷载或节点质量)均将转换为主节点的等效分量。 弹性连接中的刚性连接只是使得被连接的两个节点具有相同的自由度,没有刚性连接的从属关系,一般用于一个节点已经有约束的情况。主从约束: 是老的FEM软件里的说法,是指两个或多个节点在特定自由度上其总体矩阵(刚度、质量、荷载)取相同的编号。主从约束和刚臂有很多区别,在结构分析时要注意区分。 主从约束可以在节点的某个自由度上建立,没有距离效应。 刚臂: 顾名思义,所有自由度都连接在一起,存在你说的剪力二次弯矩。 在midas中,弹性连接的刚接就是形成刚臂单元(由于刚臂用来模拟共节点但不同坐标,可以认为同编号的节点间形成了一个刚臂单元),主要用来模拟墩梁固结位置和同位置左右截面不同的情况。在这里我有一个小问题就是,为什么midas中将墩梁固结处应本共节点的位置设置成两个节点,可能是程序中不像平面程序共节点之间自动形成刚臂,不过计算结果应该是一样的,因为在有限元分析中,都应该是加入一个[A]矩阵来处理的,只是midas中需要指定刚臂。而主从约束,

是对于两个节点而言的,顾名思义主要是模拟两个节点自由度之间的关系,在有限元分析中,增加一个自由度方向上的主从约束关系相当于增加一个约束方程,在实际计算中采用充0置1法,也就说,主从自由度改变了总刚的阶数,只是为了计算方便,才保留原结构的刚度矩阵阶数不变,这是两者分析上的不同。而且刚臂位置是一个单元,因此存在二次弯矩,而主从约束一般是同一个位置的两个节点。 1 / 6 发一个北京迈达斯技术有限公司桥梁技术部高工总结的区别,应该比较权威: (责任编辑: admin) midas中弹性连接和刚性连接是指什么意思 技术知识2008-06-18 09:18:34阅读32评论0字号: 大中小 两种作用效果是差不多的,只是主从约束刚性不可以钝化,弹性连接里的刚性连接可以钝化。 两者各有千秋—— 相同点: 两者都可以作为刚臂,都考虑附加弯矩作用。 不同点: 弹性连接刚性——连接两点的的所有自由度耦合,相当于100x100m

浅谈一些调整层间位移角的方法

5 Building Structure 设计交流 We learn we go 浅谈一些调整层间位移角的方法 赵 兵/中国建筑科学研究院PKPM 工程部,北京 100013 0 引言 层间位移角限值是结构设计的一项重要指标,当不满足要求时如何对其调整是广大设计人员比较关心的问题。结合具体工程实例,利用SATWE 软件,讨论层间位移角的调整过程,供同类工程借鉴。 1 工程实例 某工程为框剪结构,地面以下4层,地上17层,结构主体总高度62.9m 。地震设防烈度8度,基本加速度0.2g ,场地土类别Ⅱ类。工程在层10存在较大收进(图1),层11结构平面见图2。 图1 工程示意图 图2 层11的结构平面图 采用SATWE 软件计算,其X ,Y 向层间位移角曲线如图3所示。Y 向最大层间位移角出现在层13,其值为1/956,满足规范要求,而X 向最大层间位移角出现在层12,其值为1/761,不满足规范要求。 X Y 位移角/rad 楼层 图3 各层层间位移角曲线 图4 层11~15在X 向 地震作用下的变形图 2 计算结果分析 (1)增加最大节点位移所在位置竖向构件的刚度 上述计算结果显示,本工程层12,13的层间位移角均不满足要求,其最大节点位移均出现在图2所示 的节点1处,经分析,这是由于墙1开设了两个较大的洞口,使其侧向刚度明显减小。由于建筑师只允许增加墙厚,不允许减小洞口尺寸,因此只对墙体厚度进行了调整,将层4~17墙体厚度由原来的250mm 改为300mm ,墙厚增加后的计算结果显示,X 向最大层间位移角刚好满足1/800的限值要求,但并没有多少安全储备,稍有变化就有可能满足不了规范要求,而此时墙厚已不能再继续增加,这就需要提高其他构件的抗侧刚度以提高最大层间位移角的安全储备。 (2)查看变形图,寻找最需要加强的部位 本工程层11~15在X 向地震作用下的变形见图4。图中显示,在X 向地震作用下,层11~15的变形图并 不是沿正X 向振动,而是沿某一个与X 轴呈一定角度的方向,所以同时加强X ,Y 向构件的刚度要比仅加强X 向刚度有效一些。从图中还可以看出,结构的角部变形明显大于周边的,因此加大角部竖向构件的刚 度也是比较有效的。为此,将层11~15的柱1截面尺寸由原来的600×600增加至800×800,将梁1(600×500)和梁2(600×600)截面尺寸调整为500×650。调整后计算结果显示,X 向最大层间位移角为1/848,基本可以满足设计要求。 层间位移角的大小跟结构的抗扭转效应的好坏是紧密相关的,在很多情况下,与其增加刚度使结构的层间位移角满足要求,不如从调整结构的扭转效应入手,通过提高结构的抗扭刚度降低层间位移角。比如此工程,通过图4显示结构存在一定的扭转变形,由变形最大位置出现在角部可知,加强角部竖向构件刚 度对提高结构抗扭刚度最有效。本工程方案调整前,X 向最大层间位移比为1.22>1.2,方案调整后,X 向最大层间位移比为1.12<1.2,显示结构X 向抗扭转效 应得到了很大的改善。 3 结语 在进行结构层间位移角的调整中,对结构进行正确的分析,合理地选取设计参数,通过变形图找到需要加强的构件,可以避免在调整过程中的盲目性,提高工作效率。 作者简介:赵兵,高级工程师,Email :pkpmzb@https://www.doczj.com/doc/5d13711008.html, 。

y方向最大层间位移与平均层间位移的比值规范在哪

竭诚为您提供优质文档/双击可除 y方向最大层间位移与平均层间位移的 比值规范在哪 篇一:位移比 satwe位移输出文件||文件名称:wdisp.out (2)位移比(层间位移比)是控制结构平面不规则性的重要指标。其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。 4、位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2,高规4.3.5。 位移比不满足时的调整方法:

1)程序调整:satwe程序不能实现。 2)人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;可利用程序的节点搜索功能在satwe的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。五、位移比(层间位移比):主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致 结构产生较大的扭转效应。见抗规3.4.2,高规4.3.5及相应的条文说明。位移比(包括层间位移比,下同)不满足规范要求,说明结构的刚心偏离质心的距离较大,扭转效应过大,结构抗侧力构件布置不合理。 位移比不满足规范要求时的调整方法: 1、程序调整:satwe程序不能实现。 2、结构调整:只能通过调整改变结构平面布置,减小结构刚心与质心的偏心距;调整方法如下: 1)由于位移比是在刚性楼板假定下计算的,结构最大水平位移与层间位移往往出现在结构的边角部 位;因此应注意调整结构外围对应位置抗侧力构件的刚度,减小结构刚心与质心的偏心距。同时在设计中,应在构造措施上对楼板的刚度予以保证。

MIDAS入门-支座模拟

MIDAS中支座的模拟 弹性连接刚性与刚性连接的区别 1、概念解释: 1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两 节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍, 此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计 算奇异。 2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个 主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由 刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果 约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节 点有相对的平动位移。 2、弹性连接定义多支座反力: 注:如图所示,可以把端横梁定义成弹性连接的刚性,这样

端部刚度越大,分配下部的支反 力越均匀,如左边显示,三个支座反力均相等; 而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结 果是错误,建议选用刚性连接的方法来定义单梁多支座。 3、刚性连接定义多支座反力: 注:定义多支座反力,尽量选用刚性连接来做。还有一个问题,用弹性连接的刚性容易出错, 因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如 承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异; 4、建议: 1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建 议采用刚性连接来处理,防止计算奇异。 2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两 个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。 3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

楼层位移比”和“层间位移角”

关于"楼层位移比”和''层间位移角”问题结构2009-08-02 23:30:53阅读1481评论0 字号:大中小订阅 常有人问起“楼层位移比”和"层间位移角”的相关问题,此处一并答复: 1、“楼层位移比” 1)上义一一“楼层位移比”指:楼层的最大弹性水平位移(或层间位移)与楼层两端弹性水平位移(或层间位移)平均值的比值: 2)目的——限制结构的扭转: 3)计算要求一一考虑偶然偏心(注意:不考虑双向地震)。 2、"层间位移角” 1)泄义一一按弹性方法计算的楼层层间最大位移与层高之比: 2)目的——控制结构的侧向刚度; 3)计算要求一一不考虑偶然偏心,不考虑双向地震。 3、综合说明: 1)现行规范通过两个途径实现对结构扭转和侧向刚度的控制,即通过对“扭转位移比”的控制,达到限制结构扭转的目的:通过对“层间位移角”的控制,达到限制结构最小侧向刚度的目的。 2)对"层间位移角”的限制是宏观的。"层间位移角” il?算时只需考虑结构自身的扭转藕联,无需考虑偶然偏心及双向地震。 3)双向地丧作用计算,本质是对抗侧力构件承载力的一种放大,属于承载能力计算范畴,不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断。 4)常有单位要求按双向地震作用讣算控制“扭转位移比”和“层间位移角”,这是没有依据的。但对特别重要或特别复杂的结构,作为一种髙于规范标准的性能设计要求也有它一左的合理性。 4、相关索引 1)江苏省房屋建筑工程抗農设防审查细则第5.1.3条规泄:先计算在刚性楼板、偶然偏心情况下的扭转位移比,当扭转位移比大于等于1.2时,分别按偶然偏心和双向地震计算,再取最不利的扭转位移比进行扭转不规则判别。(博主提示:请注意,这是很严格的要求)。 2)复杂高层建筑结构设计(徐培福主编)第195页,图7.1.7,先按不考虑偶然偏心计算扭转位

多折线弹性连接功能的工程应用

多折线弹性连接功能在工程上的应用 Revision No. : v1.0 Revision Date : 2010.01.13 Program Version : Civil2009 V.2.0.0 R1 Mail to : jwlee@https://www.doczj.com/doc/5d13711008.html,

01.概要 弹性连接是由连接两个节点的单元,程序提供的弹性连接的类型如下。 弹性连接类型 功能说明 一般 线弹性弹簧,可输入六个方向的弹簧刚度 刚性刚性弹簧,其刚度为刚度矩阵中最大的单元刚度的105 倍。 只受压只有轴向刚度的弹簧,只能承受压力,属于非线性单元,需要通过迭代计算达到位移收敛。 只受拉只有轴向刚度的弹簧,只能承受拉力,属于非线性单元,需要通过迭代计算达到位移收敛。 多折线具有多个线性刚度值,属于非线性单元,需要通过迭代计算达到位移收敛。 本资料将重点介绍Civil 2010 V7.8.0版本中新增的多折线类型的弹性连接的功能,并介绍该功能在实际工程上的应用方法。 02.功能说明 如前所述,多折线类型的弹性连接属于非线性单元,需要通过迭代计算满足位移收敛条件。因此可以用于模拟具有非线性特性的材料或连接。其刚度由弹簧内力和位移的关系决定。正向内力和负向内力的对应的刚度可以是对称也可以是非对称,非对称类型可以用于模拟在受拉和受压时具有不同特性的材料。程序默认弹簧受压时的位移为正“+”。 1)对称多折线类型 Spring Force Displacement |多折线弹性连接对话框||对称类型的多折线数据| 没有定义的范围之外的刚度使用最终刚度

02.功能说明 2) 非对称多折线类型 |多折线弹性连接对话况|Spring Force Displacement |非对称多折线类型数据| 3)多折线弹性连接的方向 多折线弹簧的刚度方向遵循单元坐标系方向。例如模拟车轨与桥梁之间的纵桥向连接特性时需要按下图所示定义弹性连接的 Dz方向特性。程序默认弹性连接的两个节点连线方向为Dx方向。 |多折线弹性连接的局部坐标轴方向| |多折线弹性连接对话框|

位移比层间位移角与刚性楼板假定

位移比、层间位移角与刚性楼板假定 1刚性楼板假定 其含义是假定楼板平面内刚度无限大,平面外刚度为零。这是一个特有概念能使结构计算概念明了,计算简便;使结构在每层板内只有3个公共自由度,即两个平移自由度dx、dy和一个绕竖轴扭转自由度θz,在板内的每个节点的独立自由度也只有3个;使电算的效率大大提高,程序的运用范围越来越广泛。刚性楼板假定认定平面外刚度为零,忽略了楼面梁的有效翼缘对平面外刚度的贡献,使结构总刚度偏小,周期加长,吸引的地震作用小,不安全。为此,规范规定用梁刚度增大系数来间接的考虑楼板平面外的刚度。于是高规第5.2.2规定在内力和位移计算时,对现浇楼面和装配式整体楼面的梁刚度采用1.3-2.0增大系数来考虑翼缘的增大作用。 通过上述处理,目前设计中的绝大多数工程的楼面都能符合刚性楼板的假定,以此进行的计算分析可用于工程设计。 2弹性楼板假定 对于复杂楼板,如不规则楼面,狭长、环形楼面,大开洞楼面及多塔、板柱结构、厚板转换层结构等,其楼板面内的变形会使楼层中各抗侧构件位移和内力发生较大的变化,特别是抗侧刚度较小构件的位移和内力会加大,若仍用刚性楼板假定来计算分析,其计算结果会不真实,且无法保证其结果的可靠性,必须采用弹性楼板的计算方法。 弹性楼板假定充分考虑了楼板平面内刚度的削弱和不均匀性,采用符合楼板平面内和平面外的实际刚度进行计算分析,其结果更真实的符合结构的计算模型。在SATWE中弹性楼板有弹性板6,弹性楼板3及弹性膜假定楼板等三种。 (1)弹性楼板6,采用壳单元计算楼板面内和面外的刚度,是针对板柱结构和板柱剪力墙结构的。其计算结果会使梁的配筋偏少而不安全,所以不适用于梁板结构楼面。. (2)弹性板3,采用楼板平面内无限刚,平面外刚度按实计算的方法,用厚板弯曲单元进行计算,适用于厚板转换层结构的转换厚板分析计算。 (3)弹性膜,上述两种假定对框架、剪力墙、框-剪、框-筒等结构及空旷的厂房、体育场馆等的复杂形状楼板的计算都不适合,特别是梁配筋的安全性不可靠,从而提出了弹性膜假定,它采用平面应力膜单元来真实地计算楼板的平面内刚度,而不是无限刚。为简化计算,同时忽略楼板平面外的刚度,即面外刚度为零。有点近似刚性楼板假定但又不同于刚性假定,要理解它的真实概念。 应注意: A弹性楼板假定是用总刚分析法来进行结构整体计算的,所以计算软件必须具有总刚的计算功能。仅有侧刚计算功能的软件是只适用于刚性楼板假定的软件,它不能识别弹性楼板。 B用总刚法、弹性楼板进行结构整体计算时,应再用刚性楼板假定补充计算位移比、周期比和层刚比,因为这些参数规范要求是在刚性楼板假定下进行的计算值。

【结构设计】“层间位移角”和“楼层位移比”的问题分析

“层间位移角”和“楼层位移比”的问题分析 “楼层位移比”和“层间位移角”的相关问题: 1、楼层位移比: 1)定义——“楼层位移比”指:楼层的最大弹性水平位移(或层间位移)与楼层两端弹性水平位移(或层间位移)平均值的比值; 2)目的——限制结构的扭转; 3)计算要求——考虑偶然偏心(注意:不考虑双向地震)。 2、层间位移角:

1)定义——按弹性方法计算的楼层层间最大位移与层高之比; 2)目的——控制结构的侧向刚度; 3)计算要求——不考虑偶然偏心,不考虑双向地震。 3、综合说明: 1)现行规范通过两个途径实现对结构扭转和侧向刚度的控制,即通过对“扭转位移比”的控制,达到限制结构扭转的目的;通过对“层间位移角”的控制,达到限制结构最小侧向刚度的目的。 2)对“层间位移角”的限制是宏观的。“层间位移角”计算时只需考虑结构自身的扭转藕联,无需考虑偶然偏心及双向地震。 3)双向地震作用计算,本质是对抗侧力构件承载力的一种放大,属于承载能力计算范畴,不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断。

4)常有单位要求按双向地震作用计算控制“扭转位移比”和“层间位移角”,这是没有依据的。但对特别重要或特别复杂的结构,作为一种高于规范标准的性能设计要求也有它一定的合理性。 4、相关索引 1)江苏省房屋建筑工程抗震设防审查细则第5.1.3条规定:先计算在刚性楼板、偶然偏心情况下的扭转位移比,当扭转位移比大于等于1.2时,分别按偶然偏心和双向地震计算,再取最不利的扭转位移比进行扭转不规则判别。(博主提示:请注意,这是很严格的要求)。 2)复杂高层建筑结构设计(徐培福主编)第195页,图7.1.7,先按不考虑偶然偏心计算扭转位移比,根据计算结果分两种情况分别计算,一是,当扭转位移比小于1.2时,按偶然偏心计算;二是,当扭转位移比大于等于1.2时,按双向地震计算。再根据两次计算结果取不利情况对结构的扭转不规则进行判别。(博主提示:请注意,这里对采用双向地震的判别是比1)放松许多,注意,这里的规定都是对复杂高层建筑而言的,对一般工程,原则上不需要进行这样严格的判别)。

MIDAS截面输入,刚性连接,坐标系

有关模型建立的基本问题 1、关于MIDAS截面面输入的讨论 问:请问fem2000兄,为什么只有变截面能导入已定义的PSC截面,必须先定义PSC截面,而其他变截面为什么不能导入(除PSC之外),且手工输入葙梁截面数据似乎太慢了,请问有还有没有其他便捷的输入截面方法,最主要的是解决葙梁截面输入,如桥博的节线输入,坐标输入,我觉得MIDAS的输入法应该不会比其他软件差的(单位新买的正版的MIDAS,小弟在初步学习之中) 答:(1)以在EXCEL里面编辑好,在拷贝到截面表格里面哦 (2)在添加截面时候,有个导入功能,可以导入原先做过截面数据!如以前有相同或类似的就方便了许多。不妨试下。 (3)可以充分利用midas的截面特性计算器以及mct文件编辑器,截面的cad图你该有吧?将cad图存成dxf文件,导入截面特性计算器,不过要注意图形文件不能有面域,只能是线,因为他可以进行批量计算,所以你只要将所有截面放到一张图里,然后进行计算,最后导出mct文件,假若说是变截面,可以用mct的命令流将你得到的mct文件进行编辑,然后就可以导入变截面了。 (4)mct命令窗口中对各项mct命令都有提示,只要点插入命令你就能得到那个命令的命令流格式,如果对各项所代表的意义不明白可以参考在线帮助,相对来说,要比ansys的命令流好学多了,毕竟他有中文帮助。 你从spc导出来的mct文件里面给出的是section里的value格式,你可以参照value跟tapered之间的差别,将你得到的value截面1,2拷贝到tapered形式里作为i,j截面,以此类推,然后修改其中的部分不同内容,就会得到了你想要的。 在编辑的时候推荐你用ultraedit编辑器,主要的方便之处是它可以进行行快和列快的转换,至于说怎么能提高编辑的效率,可以慢慢摸索,只要熟练了,看起来麻烦的事也会变得非常简单。 (5)MIDAS变截面输入可以采用变截面组的方式!一个变截面的梁,可以定义变截面组,变截面组里面包括你所需要的变截面单元,此时把变截面组的所有单元设成一种变截面类型,变截面组的i端就是变截面的i端,j端就是变截面的j端!在变截面组里面i端到j端的截面特性是均匀变化的,可以定义成按线形或者多项式变化!变截面组可以再转换成变截面,此时,每个变截面组里的单元都会赋予不同的截面类型,同时,变截面组也会被删除!注意:在截面对话框的“数值表单”中定义的变截面不能使用该功能。 (6)用截面特性计算器以后导入的截面默认的都是等效的矩形截面,如果要显示是箱形截面你应该在截面数据\变截面下选择合适的箱形截面然后输入数值。这样的到的才是箱形截面,如果这里面没有你要的截面你也可以用mct来编辑。 2、建模中如何快速生成单元 问:各位好 想问一个midas中很基础的问题,就是我在建立了大量的节点后,想再生成单元,有没有方便一点的办法,能不能像ansys中一样可以做一些循环什么的,还请指教! 答:(1)midas没有类似的循环,不过想实现批量的编辑也不难,利用mct文件的编辑,你可以先建立了节点然后利用节点重新编号的功能,对建立的节点按一定规律重新排列,然后在ultraedit(一种文本编辑工具,非常方便,可以使用列编辑)里面进行编辑,第一列是单元号,当然是1,2,3,4。。。依次排列,第二列是单元类型,批量输入你的类型,第五列输入i端节点,你直接就把第一列的单元号copy过来就可以了,然后第二列的可以将第一列

【结构设计】“楼层位移比”和“层间位移角”解析

“楼层位移比”和“层间位移角”解析关于“楼层位移比”和“层间位移角”,很多人会迷糊,这里做详细说明: 1、“楼层位移比” 1)定义——“楼层位移比”指:楼层的最大弹性水平位移(或层间位移)与楼层两端弹性水平位移(或层间位移)平均值的比值; 2)目的——限制结构的扭转; 3)计算要求——考虑偶然偏心(注意:不考虑双向地震). 2、“层间位移角” 1)定义——按弹性方法计算的楼层层间最大位移与层高之比; 2)目的——控制结构的侧向刚度; 3)计算要求——不考虑偶然偏心,不考虑双向地震. 3、综合说明: 1)现行规范通过两个途径实现对结构扭转和侧向刚度的控制,即通过对“扭转位移比”的控制,达到限制结构扭转的目的;通过对“层间位移角”的控制,达到限制结构最小侧向刚度的目的. 2)对“层间位移角”的限制是宏观的.“层间位移角”计算时只需考虑结构自身的扭转藕联,无需考虑偶然偏心及双向地震.

3)双向地震作用计算,本质是对抗侧力构件承载力的一种放大,属于承载能力计算范畴,不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断. 4)常有单位要求按双向地震作用计算控制“扭转位移比”和“层间位移角”,这是没有依据的.但对特别重要或特别复杂的结构,作为一种高于规范标准的性能设计要求也有它一定的合理性. 4、相关索引 1)江苏省房屋建筑工程抗震设防审查细则第5.1.3条规定:先计算在刚性楼板、偶然偏心情况下的扭转位移比,当扭转位移比大于等于1.2时,分别按偶然偏心和双向地震计算,再取最不利的扭转位移比进行扭转不规则判别.(博主提示:请注意,这是很严格的要求). 2)复杂高层建筑结构设计(徐培福主编)第195页,图7.1.7,先按不考虑偶然偏心计算扭转位移比,根据计算结果分两种情况分别计算,一是,当扭转位移比小于1.2时,按偶然偏心计算;二是,当扭转位移比大于等于1.2时,按双向地震计算.再根据两次计算结果取不利情况对结构的扭转不规则进行判别.(博主提示:请注意,这里对采用双向地震的判别是比1)放松许多,注意,这里的规定都是对复杂高层建筑而言的,对一般工程,原则上不需要进行这样严格的判别).

关于“楼层位移比”和“层间位移角”问题

关于“楼层位移比”和“层间位移角”问题 1、“楼层位移比” 1)定义——“楼层位移比”指:楼层的最大弹性水平位移(或层间位移)与楼层两端弹性水平位移(或层间位移)平均值的比值; 2)目的——限制结构的扭转; 3)计算要求——考虑偶然偏心(注意:不考虑双向地震)。 2、“层间位移角” 1)定义——按弹性方法计算的楼层层间最大位移与层高之比; 2)目的——控制结构的侧向刚度; 3)计算要求——不考虑偶然偏心,不考虑双向地震。 3、综合说明: 1)现行规范通过两个途径实现对结构扭转和侧向刚度的控制,即通过对“楼层位移比”的控制,达到限制结构扭转的目的;通过对“层间位移角”的控制,达到限制结构最小侧向刚度的目的。 2)对“层间位移角”的限制是宏观的。“层间位移角”计算时只需考虑结构自身的扭转藕联,无需考虑偶然偏心及双向地震。 3)双向地震作用计算,本质是对抗侧力构件承载力的一种放大,属于承载能力计算范畴,不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断。 4)常有单位要求按双向地震作用计算控制“楼层位移比”和“层间位移角”,这是没有依据的。但对特别重要或特别复杂的结构,作为一种高于规范标准的性能设计要求也有它一定的合理性。 高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和 6.4.6。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2。 4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。见抗规3.4.2。 5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规 6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。 转自钢结构论坛。 1.一个建筑物结构设计部分,一般来说,包含两个过程: 1)结构分析;2)结构设计 方案选定后要结构分析,结构分析就是看方案的布置是否合理,包括水平布置和竖向布置;

3.技术资料-弹性连接设置要点

midas Civil 技术资料 ----弹性连接的使用和设置 目录 midas Civil 技术资料 1 ----弹性连接的使用和设置 1 1 弹性连接的概念及理解 2 2 功能介绍 2 2.1一般弹性连接 2 2.2 刚性弹性连接 5 2.3只受压/拉弹性连接[5] 7 2.4 多折线弹性连接 7 3 总结 9 参考文献 9 北京迈达斯技术有限公司 桥梁部 2013/04/18

弹性连接是一种常用的边界条件,包含4种类型:一般弹性连接、刚性弹性连接、只受拉/压弹性连接、多折线弹性连接,下面对各种类型弹性连接的功能进行详细的介绍。 1 弹性连接的概念及理解 弹性连接是一种把两个节点按照用户所要求的刚度连接而成的有限计算单元,通过定义不同方向的线刚度,来模拟节点对节点的约束,约束方向为单元坐标系。 例如用弹性连接模拟x方向的活动支座,设置如图1-1: 图1-1 活动支座图1-2 单元坐标系 这里SDz方向的刚度值为0,表示单元坐标系z方向没有约束,而此方向就是整体坐标轴的X方向,如图1-2所示。 2 功能介绍 2.1一般弹性连接 从主菜单中选择模型> 边界条件> 弹性连接...。定义弹性连接的对话框如上图1,主要参数的含义如下: SDx、SDy、SDz:单元局部坐标系x轴、y轴、z轴方向的平动刚度

SRx、SRy、SRz:绕单元局部坐标系x轴、y轴、z轴方向的转动刚度 以上6个参数定义的是不同方向约束的刚度,概念比较明确,一般我们都能准确的 输入。在midas Civil中,可以通过一般弹性连接模拟板式橡胶支座,详见桥梁荟10期[2]。 下面重点介绍“剪切弹簧位置”的功能及其对分析结果的影响。如下图2-1,勾选“剪切弹簧位置”后,参数“SDy”和“SDz”相应激活。注意:这里的“SDy”和“SDz”表示该方向上,剪切弹簧位置距离弹性连接i端的相对距离,其值为0时,表示在弹性连接i 端,为1表示在弹性连接j端,与上述刚度参数SDy、SDz不同。 图2-1 剪切弹簧位置 首先,对于弯矩M,由于剪切弹簧的存在,水平剪力会通过设置的剪切弹簧把其产生的弯矩传递到支座底节点,这时支座底节点的弯矩不只是水平剪力在柱高范围内产生的弯矩FX×L,同时,包括在弹性连接长度产生的弯矩FX×Lt。因此,底节点的弯矩为:M=FX×(L+Lt),详见图2-2中的“注”。然而,非剪切型弹性连接底节点弯矩M=F×L,与弹性连接的长度Lt是无关的。 图2-2 支座底节点弯矩 注:1、模型1、2,剪切型:My=FX·(L+Lt)。可见,对于剪切型弹性连接,具体的剪切弹簧位置是不影响支座底节点弯矩值的。 2、模型3,非剪切型:My=FX·L。可见,非剪切型弹性连接,其弹性连接长度Lt并不影 响支座底节点弯矩计算。

超限报告系列总04层间位移角超限

超限报告中的几点问题04——层间位移角超限 关于结构层间位移角限值的问题,颇受争议。前段时间,吴伟河在iStructure图文并茂地讲述了“层间位移角超限怎么办?”这个问题,个人认为,讲得非常好。在阅读过程中,笔者自己曾经陆陆续续读过的相关资料,也一并在脑海中浮现。索性,把不同的观点都罗列出来,各种缘由,便一目了然。 1、《抗规》5.5.1条及条文说明 “计算楼层内最大的弹性层间位移时,除以弯曲变形为主的高层建筑外,可不扣除结构整体弯曲变形”;“计算时,一般不扣除由于结构重力P-△效应所产生的水平相对位移,高度超过150m或H/B>6的高层建筑,可以扣除结构整体弯曲所产生的楼层水平绝对位移值,因为以弯曲变形为主的高层建筑结构,这部分位移在计算的层间位移中占有相当的比例,加以扣除比较合理。如未扣除,位移角限值可有所放宽。” 2、魏链总相关文献 《论高层建筑结构层间位移角限值的控制》

“在高层建筑中,发生最大层间位移的楼层一般位于结构的中部、偏上或偏下,恰恰那里的竖向构件两端转角较大,造成无论是柱或剪力墙,它们的非受力层间位移均很大,而受力层间位移则很小,因此用总的层间位移作为控制高层建筑竖向杆件的受力层间位移的措施是值得商榷的,那种认为层间位移角最大的楼层是受力最危险的楼层,在概念上是不正确的。” 框剪结构层间位移角曲线与受力层间位移角曲线

框筒结构层间位移角曲线与受力层间位移角曲线 “结构竖向杆件,无论是柱或剪力墙,其受力层间位移往往都是底部最大,沿高往上变化总体趋势是在减小,因此控制结构的受力层间位移应着眼于控制结构的底部而不是结构的中上部。” 魏总对不同结构类型受力层间位移角限值的建议如下。

MIDAS刚性连接问题

MIDAS刚性连接问题 1.Midas刚性连接与弹性连接刚性的区别 Midas里面实现节点与节点之间的刚性连接有两种途径,分别是刚性连接和弹性连接刚性。二者在处理刚性上是有区别的!Midas刚性连接是纯粹的边界条件,定义节点的主从约束来实现刚性,而且在施工阶段只能激活,不能钝化!Midas弹性连接刚性则是一种弹簧单元,相当于EI无穷大的单元,在施工阶段可以激活和钝化。注意:Midas默认弹性连接刚性的刚度值为最大截面刚度的10万倍!所以当模型中出现较大截面时应避免使用弹性连接刚性。 2.刚性连接处理 既然刚性连接能够通过设置总从节点约束自由度,那么当一个节点与多个节点建立刚性连接时,模型是按照同位移处理吗可以看下面这个试验模型。节点1为主节点,节点2、3、4为从节点,节点1、2、3、4建立刚性连接。 查看在F作用下4个节点X方向的位移变形图如下所示: X方向边形图 Y方向边形图 从上面两个图可以看出,刚性连接对于多个节点程序会自动按照力学模型对主从节点自由度进行合理的释放,是结构计算符合实际情况! 3.刚性连接模拟刚臂

通过上面的分析,可以大致得到如下结论:刚性连接建立了两个节点某些自由度的联系。那么如果用刚性连接模拟刚臂,怎么分析里面的力学关系呢本人建立了两个模型来一探究竟。 模型1: 模型2: 模型1和模型2施加 荷载都一样,只是刚性 连接的节点偏心不一 样。模型1不设置偏心, 模型将偏心设置在左上 角。然后再悬臂端截面 质心上施加相同集中力,计算发现,桁架内力一样,桁架节点位移相同! 那么 有理由说明刚性连接建立的刚臂实际上计算是按照平截面假 定,根据质心来算刚臂连接的节点位移。

PKPM位移比

PKPM刚度比、位移比、周期比详细讲解 周期比 规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。 对于通常的规则单塔楼结构,如下验算周期比: 1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T1 3)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。再考察下一个次长周期。4)考察第一平动周期的基底剪力比是否为最大 5)计算Tt/T1,看是否超过0.9 (0.85) 周期比控制什么?如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性 周期比不满足要求,如何调整?一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不满足要求说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。 F验算周期比的目的,主要为控制结构在罕遇大震下的扭转效应。 F多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算。如果上部没有连接,应该各个塔楼分别计算并分别验算,如果上部有连接,验算方法尚不清楚。 F体育场馆、空旷结构和特殊的工业建筑,没有特殊要求的,一般不需要控制周期比。 F当高层建筑楼层开洞口较复杂,或为错层结构时,结构往往会产生局部振动,此时应选择“强制刚性楼板假定”来计算结构的周期比。以过滤局部振动产生的周期。 位移比 规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平

楼层位移比”和“层间位移角”

关于“楼层位移比”和“层间位移角”问题结构2009-08-02 23:30:53 阅读1481 评论0 字号大中小订阅常有人问起“楼层位移比”和“层间位移角”的相关问题此处一并答复1、“楼层位移比” 1定义——“楼层位移比”指楼层的最大弹性水平位移或层间位移与楼层两端弹性水平位移或层间位移平均值的比值2目的——限制结构的扭转3计算要求——考虑偶然偏心注意不考虑双向地震。2、“层间位移角” 1定义——按弹性方法计算的楼层层间最大位移与层高之比2目的——控制结构的侧向刚度3计算要求——不考虑偶然偏心不考虑双向地震。3、综合说明1现行规范通过两个途径实现对结构扭转和侧向刚度的控制即通过对“扭转位移比”的控制达到限制结构扭转的目的通过对“层间位移角”的控制达到限制结构最小侧向刚度的目的。2对“层间位移角”的限制是宏观的。“层间位移角”计算时只需考虑结构自身的扭转藕联无需考虑偶然偏心及双向地震。3双向地震作用计算本质是对抗侧力构件承载力的一种放大属于承载能力计算范畴不涉及对结构扭转控制的判别和对结构抗侧刚度大小的判断。4常有单位要求按双向地震作用计算控制“扭转位移比”和“层间位移角”这是没有依据的。但对特别重要或特别复杂的结构作为一种高于规范标准的性能设计要求也有它一定的合理性。4、相关索引1江苏省房屋建筑工程抗震设防审查细则第5.1.3条规定先计算在刚性楼板、偶然偏心情况下

的扭转位移比当扭转位移比大于等于1.2时分别按偶然偏心和双向地震计算再取最不利的扭转位移比进行扭转不规则判别。博主提示请注意这是很严格的要求。2复杂高层建筑结构设计徐培福主编第195页图7.1.7先按不考虑偶然偏心计算扭转位移比根据计算结果分两种情况分别计算一是当扭转位移比小于1.2时按偶然偏心计算二是当扭转位移比大于等于1.2时按双向地震计算。再根据两次计算结果取不利情况对结构的扭转不规则进行判别。博主提示请注意这里对采用双向地震的判别是比1放松许多注意这里的规定都是对复杂高层建筑而言的对一般工程原则上不需要进行这样严格的判别。转载与朱炳寅老师以下网友的问题回答朱总谈到楼层位移比是限制结构的扭转扭平周期比也是控制结构扭转一直没有搞清楚二者对于扭转的控制实质上是一致的还是从不同的角度加以控制回答“豆豆居” 限制楼层位移比是限制结构实际扭转的量值限制扭转平动周期比限制的是结构的抗扭能力扭转周期过大说明该结构抗扭能力弱注意结构不一定有扭转可能是完全对称的结构这类结构一旦遭遇意外扭转情况将会导致较大的扭转破坏。朱总请教一个和本文内容无关的问题。多塔结构转换层设置在塔楼内时该采取何种加强措施规范条文说明不够详细。回答“吴客” 你说的这种情况属于“多重复杂结构”不是采取简单加强措施所能解决的按建设部【建质2006第220号】文件要求一般

相关主题
文本预览
相关文档 最新文档