角平分线与平行线结合的等腰三角形问题
- 格式:doc
- 大小:331.50 KB
- 文档页数:2
当角平分线遇到平行线……教学过程:在几何学习中,我们经常会遇到含有角平分线和平行线的问题,那么当角平分线遇到平行线会产生怎样的火花呢?接下来让我们一起来探索吧!试一试:1.如图,已知BD平分∠ABC ,且DE//BC ,则BE=DE吗?说明理由。
如果我们把其中一个条件和结论调换一下,还能成立吗?变式一:如图,已知DE//BC,且BE=DE,则BD平分∠ABC吗?说明理由。
变式二:如图,已知BD平分∠ABC ,且BE=DE,则DE//BC吗?说明理由。
总结:我们得到了这样一个基本图形:它的特征是:过角的平分线上一点作一条边的平行线与角的另一条边及角平分线围成的三角形是等腰三角形。
我们简单地表示为:当角平分线遇到平行线时,一这会产生等腰三角形。
角平分线+平行线等腰三角形角平分线+等腰三角形平行线平行线+等腰三角形角平分线热身训练看下列四个图,相等的角和平行线都已用记号标出,你能迅速地找出每个图中的等腰三角形吗?(1)(2)(3)(4)例1:如图,AB=AC,BD平分∠ABC,CD平分∠ACB。
问:(1)图中有几个等腰三角形?(2)若过D作EF∥ BC,则图中有几个等腰三角形?(3)线段EF与线段BE,CF有何数量关系?你能说明理由吗?(4) 若AB=4, 求△AEF的周长.变式1:如图,△ ABC中,BD平分∠ABC, CD平分∠ACB,过点D作EF∥ BC分别交AB,AC于点E,F.当AB=12,AC=8,你能求△AEF的周长吗?变式2:如图,△ABC中,∠ABC的平分线和一个外角的平分线CD交于点D,过点D作DE∥BC,交AB于点E,交AC于点F. 写出EF与BE,CF的数量关系,并说明理由.变式3:如图,△ABC的两个外角∠CBE与∠BCF的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F ,则EF与BE,CF三者有何数量关系?我们在折叠问题里也会遇到这类基本图形。
如图:把一张长方形纸片ABCD沿对角线BD对折,点C落在点C’处,BC’交AD于点O,若BC=9,CD=3,求OD的长。
二轮复习之角平分线问题【考点一:角平分线+平行→等腰三角形】典例1. 已知:如图,在平行四边形ABCD 中,AB=4,AD=7,∠ABC 的平分线交AD 于点E ,则ED 的长为( )A .4B .3C .72D .2关键点分析:关注题目中有无平行线环境,这个平行线环境包括题目给出来的平行线条件,也包括平行四边形中的隐性平行线环境,在这样的题目中我们要积极地寻找等腰三角形。
模型图总结:【考点二:角平分线+垂直→等腰三角形】典例2.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则CD 的长是( )A .2B .2.5C .2D .关键点分析:关注题目中有无“双重身份”的线,即角平分线还有另外一重身份“垂线”,这样的题目中图形中也都隐藏着等腰三角形,需要我们作辅助线把这个等腰三角形找出来。
模型图总结:【考点三:见角平分线→作双垂】典例3. 如图,△ABC 中,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,∠BAC=84°,则∠BDC=_______度。
关键点分析:遇到角的平分线作双垂,应用角平分线的性质定理解题是基本的辅助线。
模型图总结:【考点四:见角平分线→作对称】典例4. 如图,在△ABC 中,AD 平分∠BAC ,∠C=2∠B ,若AC=3,CD=2,则AB=________。
关键点分析:轴对称性是角平分线的本质属性,所以遇到含有角平分线的题目经常需要将角平分线一侧的三角形作对称处理,利用角的轴对称性来解决问题。
模型图总结:【模型应用】1.已知OC 平分∠AOB ,点P 为OC 上一点,PD ⊥OA 于D ,且PD=3cm ,过点P 作PE ∥OA 交OB 于E ,∠AOB=30°,求PE 的长度为_________cm 。
2. 如图,在矩形ABCD 中,AB=5,AD=3,点M 在边CD 上,若AM 平分∠DMB ,则DM 的长是________.3. M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则△ABC 的周长等于___________.4.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC=3,AB=5,则CE 的长为( )。
龙文教育个性化辅导教案讲义任教科目:授课题目:年级:任课教师:授课对象:武汉龙文个性化教育常青二校区教研组组长签字:教学主任签名:日期:武汉龙文教育学科辅导讲义教学流程及授课详案一由课本例题引入1 近几年中考题往往由平行线,角平分线来推证同一三角形两个角相等,从而推证两边相等。
或者由其中两个条件推证另一个条件例 (1)AD是 ABC的外角平分线,(2)AD // BC (3)求证: ABC是等腰三角形分析讨论想一想能不能由(1)(3)证明(2)或者(2)(3)证明(1)?变式(2012京门)已知:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF 与FG的数量关系并证明你的结论.EFCBAD2试一试1、 (2011)如图,AC 和BD 相交于O ,且AB ∥DC ,OA=OB, 求证:OC=OD.2.(2012)如图,△ABC 中,AM ,CM 分别是角平分线,过M 作DE ∥AC 求证:AD+CE=DE 3.(2012)如图,∠AOB=30°,OC 平分∠AOB ,CD ⊥OA 于D ,CE ∥AO 交OB 于E CE=20cm ,求CD 的长。
4.(2012)如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中等腰三角形的个数( )(A )1个 (B )3个 (C )4个 (D )5个5(2012北京)、如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( )A.5 B.4 C . 3D .2ODCBAAEB CD 第16题例2(2012浙江).(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.[来源:Z*xx*]三 课堂小结1 当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等:要证明两条线段的和与一条线段相等时常用的两种方法: (1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。
三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1图2图3条件:如图1,OO'平分∠MON,过OO'的一点P作PQ⎳ON. 结论:△OPQ是等腰三角形。
条件:如图2,△ABC中,BD是∠ABC的角平分线,DE∥BC。
结论:△BDE是等腰三角形。
条件:如图3,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.结论:△BOM、△CON都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE平分∠CBA,∠ACB=∠CDA=90°. 结论:三角形CEF是等腰三角形。
1(2023·浙江·八年级假期作业)如图,已知∠AOB,以点O为圆心,以任意长为半径画弧,与OA、OB分别于点C、D,再分别以点C、D为圆心,以大于12CD为半径画弧,两弧相交于点E,过OE上一点M作MN∥OA,与OB相交于点N,∠MOB=50°,则∠AOM=.【答案】25度/25°【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN∥OA,∴∠AOB=∠MNB=50°,由题意可知:OM平分∠AOB,∠AOB=25°.故答案为:25°.∴∠AOM=∠MOB=12【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.2(2023·浙江·八年级期中)如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于.【答案】13【分析】根据BO平分∠CBA,CO平分∠ACB,且ED∥BC,可得出OD=OB,OE=OC,所以三角形ADE的周长是AB+AC.【详解】解:∵BO平分∠CBA,CO平分∠ACB,∴∠DBO=∠OBC,∠OCE=∠OCB,由∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠EOC=∠ECO,∴DO=DB,EO=EC,·又∵AB=5,AC=8,∴ADE的周长=AD+DE+AE=AB+AC=13【点睛】本题主要考查了角平分线的定义、平行线的性质以及等腰三角形的判定,其中运用角平分线的定义和平行线的性质创造等腰三角形的条件是关键.3(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF 平分∠BCD交AD于F点,则EF的长为cm.【答案】1【分析】根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB,DF=DC,进而推出EF=AE+DF-AD.【详解】∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD-AD=3+3-5=1cm.故答案为:1.【点睛】本题考查了平行四边形的性质,关键是运用角平分线的概念和平行线的性质,由等角推出等边.4(2023.江苏八年级期中)如图,已知:在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的角平分线交AD与F,交AB于E,FG⎳BC交AB于G.AE=4cm,AB=12cm,则BG=,GE=.【答案】4cm;4cm.【详解】过E作EH垂直BC交BC于H点,易证△AEC≌△EHC;由角度分析易知∠AEF=∠AFE,即AE=AF,则有EH=EA=AF;又可证△AGF≌△BHE,则AG=EB=12-4=8,则BG=8-4=4,GE=4.【点睛】这道题主要讲解角平分线加射影模型必出等腰三角形的模型.角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC中,若AD是∠BAC的平分线。
角平分线中常用的作辅助线的方法角平分线是天然的涉及对称的模型,通常有下列四种作辅助线的方法:(1)角平分线+平行线→必有等腰三角形①OP是平分线,②AB//ON,则③△OAB是等腰三角形;可知二⇒一。
(2)角平分线+两边垂线→线等全等必出现角平分线的性质定理:角平分线上的点到角的两边距离相等;(3)角平分线+垂线延长→等腰三角形必呈现(4)角平分线+截取相等线段→必有对称全等图1 图2 图3 图4方法1:角平分线+平行线1.△ABC的两条角平分线OB、OC相交于点O,MN经过点O,且 MN∥BC交AB、 A C分别于点M、N;求证:△AMN的周长是AB+AC;方法2:作一边的垂线段2.如图,已知△ABC的周长是20cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=1.8cm,求△ABC的面积。
方法3:作两边的垂线段3.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD。
方法4:延长作对称图形法4.如图,在△AOB中,AO=OB,∠AOB=90°,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE方法5:截取作对称图形法5.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线,求证:BE+CF>EF。
综合演练题1.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.(1)如图1,当∠B=∠D时,求证:AB+AD=AC;(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变并说明理由.八年级《数素》之练习(13) 1、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,求PQ 的最小值.2、已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC3、如图,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,过D 作DE ⊥AB 于E ,作DF ⊥AC 于F .求证:BE=CF .A CB D。
角平分线模型模型 4 角平分线+平行线如图,P 是∠MON 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。
结论:△POQ 是等腰三角形。
模型证明∵PQ∥ON∴∠PON=∠OPQ又∵OP 是∠MON 的平分线∴∠POQ=∠PON∴∠POQ=∠OPQ∴△POQ是等腰三角形模型分析有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
模型实例解答下列问题:(1)如图①所示,在△ABC 中,EF∥BC,点 D 在 EF 上,BD、CD 分别平分∠ABC、∠ACB,写出线段 EF 与 BE、CF 有什么数量关系;(2)如图②所示,BD 平分∠ABC、CD 平分∠ACG,DE∥BC 交 AB 于点 E,交 AC 于点 F,线段 EF 与 BE、CF 有什么数量关系?并说明理由。
(3)如图③所示,BD、CD 分别为外角∠CBM、∠BCN 的平分线,,DE∥BC 交AB 延长线于点 E,交 AC 延长线于点 F,直接写出线段 EF 与 BE、CF 有什么数量关系?解析:(1)由模型可知,ED=BE,DF=CF∴EF=ED+DF=BE+CF(2)∵DE∥BC∴∠EDB=∠DBC又BD 平分∠ABC∴∠DBE=∠DBC∴∠EDB=∠DBE∴△EBD为等腰三角形∴BE=ED同理可证:FD=CF∴EF=ED-FD=BE-CF∴EF=BE-CF(3)EF=BE+CF(由模型可轻松证明)模型练习1.如图,在△ABC 中,∠ABC、∠ACB 的平分线交于点E,过点E作MN∥BC,交 AB 于点 M,交 AC 于点 N。
若 BM+CN=9,则线段 MN 的长为。
解析:由模型可得,ME=BM,EN=CN∴MN=ME+EN=BM+CN=92.如图,在△ABC 中,AD 平分∠BAC,点 E、F 分别在 BD、AD 上,且 DE=CD,EF=AC 求证:EF∥AB。
中考常考几何模型专题16 角平分线四大模型1、角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。
结论:PB=PA。
2、截取构造对称全等如图,P 是∠MON 的平分线上一点,点 A 是射线 OM 上任意一点,在 ON上截取 OB=OA,连接 PB。
结论:△OPB≌△OPA。
3、角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP⊥OP 于 P 点,延长 AP 于点 B。
结论:△AOB 是等腰三角形。
4、角平分线+平行线如图,P 是∠MO 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。
结论:△POQ 是等腰三角形。
模型精练:1.(2019•东平县二模)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°2.(2019•桂平市期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm3.(2020•浙江自主招生)如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定4.(2019•兰山区一模)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=11,则线段MN的长为.5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D,试说明:BF=2CD.6.如图,在△ABC中,∠ABE=2∠C,AD是∠BAC的平分线,BE⊥AD,垂足为E (1)若∠C=30°,求证:AB=2BE.(2)若∠C≠30°,求证:BE=12(AC﹣AB).7.(2019•沂源县期末)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,求证:∠ECA=40°.8.(2019•临洮县期末)已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AC+CD.9.(2019•自贡期中)如图,在四边形ABCD中,BC>BA,AD=DC,(1)若BD⊥CD,∠C=60°,BC=10,求AD的长;(2)若BD平分∠ABC,求证:∠A+∠C=180°.10.(2019•宜昌期中)(1)已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分线,交CB边的延长线于点D.求证:BD=AB+AC;(2)对于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图2,请你写出线段AC、AB、BD之间的数量关系并加以证明.11.(2019•潮南区期中)在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.12.(2019•蔡甸区校级月考)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.13.(2019•崇安区校级月考)如图,在梯形ABCD中,AD∥BC,AE平分∠BAD,BE平分∠ABC,且AE、BE交CD于点E.试说明AD=AB﹣BC的理由.14.(2019•江夏区校级月考)如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=25∠BAC,∠DCP=25∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=13∠BAP,∠DCQ=13∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.15.(2019•东湖区校级月考)(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC =10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.中考常考几何模型专题16 角平分线四大模型1、角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。
角平分线和平行线出等腰例题角平分线和平行线出等腰例题角平分线和平行线是我们在几何学中经常遇到的概念。
它们是几何学中的基础知识,很多几何问题都离不开这两个概念。
在这篇文档中,我将讨论关于角平分线和平行线出等腰三角形的例题。
例题1:证明:如果一条角平分线与另一条边相交,那么这条角平分线将这个角分成两个相等的小角。
解析:首先,我们假设有一个角ABC,角平分线AD将其分成两个小角BAD和DAC。
我们需要证明角BAD等于角DAC。
根据角平分线的定义,角BAD和角DAC是由角ABC的两边所构成的。
我们可以将角BAD和角DAC的顶点放在一起,形成一个角BAC。
那么,角BAC的两条边AB和AC都是角ABC的边,这意味着角BAC等于角ABC。
然后,我们可以通过角相等的性质来得到结论。
角BAD等于角BAC,而角DAC等于角BAC,所以角BAD等于角DAC。
这样,我们就证明了角平分线将角ABC分成了两个相等的小角。
例题2:证明:如果一条平行线与一个角的两边相交,那么这条平行线将这个角分成两个相等的小角。
解析:给定一个角ABC和一条平行线DE,我们需要证明角ADE等于角BAC。
首先,我们可以通过转角的定义知道角ADE和角BAC 都是由角ABC的两条边所构成的。
我们将角ADE的顶点放在一起,形成一个角ABC。
由于平行线DE与角ABC的两边相交,可以知道平行线DE和线段AC构成了交角。
接下来,我们可以应用平行线的性质。
平行线与一条直线相交时,对应角相等。
所以,角ADE等于角ABC。
最后,我们可以通过角相等的性质得到结论。
角ADE 等于角ABC,而角BAC也等于角ABC,所以角ADE等于角BAC。
这样,我们就证明了平行线将角ABC分成了两个相等的小角。
例题3:证明:如果一条角平分线与一条平行线相交,那么这条平行线将角平分线所分的角分成两个相等的小角。
解析:给定一条角平分线AD和一条平行线BC,我们需要证明角BAD等于角DAC。
由角平分线与平行线构成的等腰三角形在我们学习几何的过程中,有些知识点之间关系密切,往往带有一定的共性,比如当角平分线与平行线同时出现,那么一定会得到等腰三角形.下面通过几例说明“角平分线+平行线→等腰三角形”的规律,希望同学们能够举一反三,触类旁通,在解题中灵活运用.一、基本图形(分两种情况):1.平行线平行于角的一边,如图1,OC 平分∠AOB ,CD ∥OB. 则DO=DC,2.平行线平行于角的平分线,如图2,OC 平分∠AOB ,OC ∥BD.则OD=OB.二、应用举例例1.如图3,在△ABC 中,若AD 平分∠BAC ,交BC 于D,DE ∥AB ,则△ADE 是等腰三角形.证明:如图3,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵DE ∥AB ,∴∠BAD =∠ADE ,∴∠CAD =∠ADE ,∴AE =DE ,即△ADE 为等腰三角形.变式1:如图4,在△ABC 中,AD 平分∠BAC ,交BC 于D,CE ∥AB ,则△ACE 是等腰三角形;变式2:如图5,在△ABC 中,AD 平分∠BAC ,交BC 于D, BE ∥AC ,则△A BE 是等腰三角形.仿例1可以给出证明.例2.如图6,在△ABC 中,AD 平分∠BAC ,交BC 于D,CE ∥AD ,则△ACE 是等腰三角形.证明:∵AD 平分∠ABC , ∴∠1=∠2,AEB CD图3图5 AE BCD图4 AEBCD图1图2∵CE ∥AD ,∴∠2=∠3,∠1=∠E , ∴∠3=∠E ,∴AC =CE.变式1:如图7,在△ABC 中,AD 平分∠BAC ,交BC 于D,EF ∥AD ,交AC 于点G ,交BA 延长线于E,则△AEG 是等腰三角形.变式2:如图8,在△ABC 中,若AD 平分∠BAC ,交BC 于D, EF ∥AD ,交BC 于F ,交CA 的延长线于G ,则△AEG 是等腰三角形.这些基本规律在解题中有一定的指导作用.例3.如图9,在△A BC 中,∠ABC 与∠ACB 的平分线交于点D ,过点D 作EF ∥BC 交AB 于E ,交AC 于F ,(1)求证:EF =BE +CF .(2)若AB=9,AC=8,求△AEF 的周长.分析:观察图形,看到EF 已被点D 分成了两条线段(DE 和DF),而条件中恰好具备“角平分线+平行线”,可得到两个等腰三角形△BDE 和△CDF ,于是可分别证明DE =BE ,DF =CF 即可.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2, ∵EF ∥BC ,∴∠3=∠2, ∴∠1=∠3,∴BE =DE , 同理DF =CF ,∴DE +DF =BE +CF ,即EF =BE +CF (2)由(1)得:△AEF 的周长 =AE+AF+EF =AE+AF+(BE +CF) =AB+AC =9+8 =17.上述两例都是由角平分线、平行线构成的等腰三角形,并且同时出现两个,而这个发现是突破此类问题难点的关键.例4.如图10,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,BE 、CF 交于点G ,,AEB CD F G图7BCDFE AG 图8)13(AE BCF D 图9)2A EB CD)1)2图6(1)求证:AF=DE,(2)若AB=3,BC=4,FG=1,求∠A 的度数. (3) 若△EFG 为等腰直角三角形,求∠A 的度 数.解:(1)在平行四边形ABCD 中 ∵AD ∥BC, ∴∠2=∠5,又 ∠2=∠5, ∴∠1=∠5,∴AE=AB, 同理可证:DF=CD. ∵AB=CD ∴AE=DF .∵ AF=AE -EF; DE=DF-EF , ∴AF=DE.(2)在平行四边形ABCD 中,设BE 与CF 交于点G,, ∵AB ∥CD ,∴∠ABC+∠BCD=180°,∵BE 平分∠ABC ,CF 平分∠BCD ,∴12,2ABC ∠=∠ 13,2BCD ∠=∠ 123()902ABC BCD ∠+∠==∠+∠=°,∴∠BGC=90°,即BE ⊥CF ; 因为AD=BC=4,DF=DC=3,∴AF=AD-DF=4-3=1; 又AF=AE -EF; ∴1=3-EF , ∴EF=2.又∵FG=1,∴1,2FG EF =∴∠5=30°,∵AE=AB ,∠1=∠5=30°, ∴∠A=120°. (3)由(2)得∠BGC=90°,∴∠EGF=90°,若△EFG 为等腰直角三角形,则∠5=45°,∴∠1=∠5=45°, ∴∠A=90°.评注:①此题关键在于利用角平分线、平行线发现两个等腰三角形,即△ABE 和△DCF,②利用平行四边形的对边相等,分别得到AF=DE=1,③利用平行线的性质得到Rt △BGC ,Rt △EGF , ④如果直角边为斜边的一半则直角边所对的角为30°.例5.已知:如图11,在△ABC 中,AD 平分∠BAC,EF ∥AB 交BC 于E 、交AD 于F ,若DE=DC.求证:EF=AC.证明:过作CM ∥EF ,交AD 的延长线于M ,连结CM ,则∠M=∠3,,ABCDFE G)2)1 4(3(5(图10图11∠EDF=∠CDM ,又 DE=DC. ∴△EDF ≌△C DM , ∴EF=CM. ∵ EF ∥AB ,∴∠3=∠1,又∠1=∠2,∴ ∠M=∠2,∴AC=CM , 从而EF= AC.评析:本题的关键在于作通过添加平行线构成以AC(或EF)为腰的等腰三角形,再证EF=CM.通过上述例题,我们发现,尽管每道题目的结论各异,但每道题中都有角平分线、平行线,故都可得等腰三角形这一共性.所以,在学习过程中,要善于发现、总结规律.真正驳清了基本概念,变成一个个知识板块,其本质属性理解透彻,就能收到举一反三,融会贯通的效果.附:参考习题1.如图12,在△ABC中,O是∠ABC、∠ACB的角平分线的交点,OD∥AB,交BC于点D,OE∥AC,交BC于点E,若BC=10cm ,求△DOE 的周长,2.如图13,在△ABC 中,∠ABC 的平分线与∠ACB 的外角∠ACP 的平分线交于D 点,过点D 作EF ∥BC ,交AB 于E ,交AC 于F ,求证:EF =EB -FC3.如图14:平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BCD 的平分线交AD 于F ,且AB=3,DE=2,(1)求平行四边形ABCD 的周长.(2)求证:BE ⊥CF (3)若CF=2,求BE 的长..参考答案:1.△DOE 的周长为10cm ; 2.证明略;3.(1)平行四边形ABCD 的周长为16;(2)证明略;(3)BE=22226242BE BN EN =-=-=.AE B COD图12 )1 )2 4(图14A EBCFDP图13。
专题17 等腰三角形的判定例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.ABCABDM FCABCMDE【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b ac a c =+-,BCA D图2B CA D图1O ACDB B ′A ′(第2题)ABCDE F (第3题)(第4题)9915EA BDCFBCAD44422c a b a b =+-,则△ABC ()A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .300 B .300或1500 C .1200或1500 D .300或1200或15008.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个第5题图 第8题图 第9题图9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .ACDBACD EBCABCADFG E AC ENMBD⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.B 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.506.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 8 7.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.A BDFE C图1A B D FEC图2A ′E ′D ′AB C D(第1题)(第2题)ABD E CA BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ).10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.ABPQCA BPACBB ′图1图2ABD MFE。
利用平行线构造等腰三角形知识纵横:等腰三角形有丰富的性质,这些性质为我们解几何题提供了新的理论依据,所以寻找发现等腰三角形是解一些几何题的关键。
常用构造等腰三角形方法有:①.“角平分线+ 平行线”②.“角平分线+垂线”③.“垂直平分线”④.“三角形中角的2倍关系”一.作腰的平行线构造等腰三角形基本图形:如图,若AB=AC,DE//AC ,则BDE为等腰三角形例1.如图,△ABC中,AB=AC,点D为AB上一点,延长AC至E,使CE=BD,连接DE交BC于F,求证:DF=EF练习1.如图,等边三角形ABC中,AD=CE,DE交AC于点F,求证DF=EF二.作底边(或高)的平行线构造等腰三角形例2.如图,在△ABC中,AB=AC,点E在AC上,点D在BA的延长线上,且AD=AE,连接DE,求证:DE⊥BC练习2.如图,已知:BAC CBF ∠∠与的平分线相交于P ,联结CP ,分别过点B 、C 作PC 、PB 的垂线交AC 、AB 的延长线于E 、F ,G 、H 为垂足。
求证:BF=CE三.利用“角平分线+平行线”构造等腰三角形例3. 如图,BD 平分∠ABC 交AC 于点D ,点E 为CD 上一点,且AD=DE ,EF//BC 交BD 于点F ,求证:AB=EF 。
练习3..如图,△ABC 中,CE 为△ABC 的角平分线,交AB 于点E ,过点E 作EF//BC 交AC 于点O ,交△ABC 外角∠ACD 的平分线于点F ,求证:OE =OF练习4. 如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E ,求证:AE=BE .四.等腰直角三角形中的双垂线构造基本图形例4,如图,在四边形ABCE中,AB=BC,AB⊥BC,CE⊥AE,BD⊥AE于点D,求证:BD - CE=AD练习5.如图,在△ABC中,AB=AC,∠BAC=90°,D为BC上一点,过点D作DE⊥AD,且DE=AD,连接BE,求∠DBE的度数。
初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。
不少同学遇到这类问题时,不清楚应该怎样去作辅助线。
实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。
能做到这三点,就能在解题时得心应手。
【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。
角平分线和平行线构成等腰三角形的探究-----李春蕊北京市育英学校一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。
等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。
这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据.学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。
学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。
二、教学目标:(1)掌握角平分线和平行线形成等腰三角形的基本规律;(2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系.(3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心.教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题.教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题.突出重点方法:观察,思考,证明.突出难点方法:自主探究教学方法:启发与探究相结合教学准备:PPT,课本,作图工具三、教学设计:(一)复习等腰三角形相关知识1、请同学们对等腰三角形的知识要点进行自我回顾:(由学生先进行回顾,教师补充)(二)探究过程问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗?解:是;EB=ED发现:无论点D 在BD 上如何运动,△EBD 都是等腰三角形结论:角平分线+平行线 等腰三角形我们在几何证明中,一般不单独研究角,大多数都是借助图形,比如在三角形中研究问题,上面问题如果放在三角形中,我们可以作三角形中一个角的角平分线,然后过角平分线上一点,作这个角的一边的平行线。
角平分线与平行线构造等腰三角形问题
基本图形1
已知:AB∥CD, (1)CE平分∠ACD交AB于E.问⊿ACE是什么特殊三角形
(2)反过来,若AC=AE,问CE是∠ACD的平分线吗
基本图形2
已知:△ABC,AB=AC,(1)AE是外角∠BAD的平分线.问AE与BC平行吗
(2)若AE∥BC,问∠DAE=∠BAE吗(3)若AE是外角∠BAD的平分线,且AE∥BC,
AB=AC吗
问题举例
1.已知:如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF 是菱形。
2.(2016•泰安)如图,在□ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F ,则AE+AF的值等于()
A.2 B.3 C.4 D.6
3.如图,CD、BD平分∠BCA及∠ABC,EF过D点且EF∥BC,AB=8,AC=6 。
则△AEF的周长是______
4.(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4 D.8
5.(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP 交CE于D,∠CBP的平分线交CE于Q,当CQ=
3
CE时,EP+BP= .
6.如图,正方形ABCD中,AB=6,点E在边C D上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC =3.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
7.已知:□ABCD,BE平分∠ABC, CF平分∠BCD,BE、CF分别交AD于E、F,BE与CF交于点G.
(1)求证:BE⊥CF.
(2)若AB=5,BC=8,求EF的长.
8.(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;
9.(2013泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
10.已知:△ABC,AB=AC,AE是外角∠BAD的平分线,点D为BC的
中点,DE∥AC交AE于E,连接BE.求证:四边形AEBD是矩形.
11.(2017.岱岳区)如图,已知一次函数y=23x-3与反比例函数y=x k
的图象相交于点A (4,n ),与X
轴相交于点B.
(1)求反比例函数的表达式;
(2)将线段AB 沿X 轴向右平移5个单位到DC ,设DC 与双曲线交于点E ,求点E 到x 轴的距离.。