原子物理学复习资料
- 格式:doc
- 大小:438.98 KB
- 文档页数:17
原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,康普顿效应理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:氢原子谱线跃迁、类氢原子谱线跃迁,碱金属原子能级跃,精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。
2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。
3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。
4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5. 原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。
6. 原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。
原子物理复习资料一、原子的结构原子是由位于中心的原子核和核外电子组成的。
原子核带正电荷,电子带负电荷,它们之间的静电引力使得电子围绕原子核做高速运动。
原子核由质子和中子组成,质子带正电,中子不带电。
原子的质子数决定了它的元素种类,而质子数和中子数共同决定了原子的质量数。
电子在原子核外分层排布,离核越近的电子能量越低,越稳定;离核越远的电子能量越高,越不稳定。
二、原子的能级和跃迁原子中的电子只能处于一系列不连续的能量状态,这些能量状态称为能级。
处于基态的原子是最稳定的,当原子吸收一定能量的光子或与其他粒子发生碰撞时,电子会从低能级跃迁到高能级;反之,电子会从高能级跃迁到低能级,同时释放出光子。
跃迁过程中吸收或释放的光子能量等于两个能级的能量差,即$h\nu = E_{m} E_{n}$,其中$h$ 是普朗克常量,$\nu$ 是光子的频率,$E_{m}$和$E_{n}$分别是高能级和低能级的能量。
三、氢原子的能级结构对于氢原子,其能级公式为$E_{n} =\frac{136}{n^2} \text{eV}$,其中$n$ 是量子数,$n = 1, 2, 3, \cdots$。
当$n = 1$ 时,对应的能级为基态,能量为$-136 \text{eV}$;当$n = 2$ 时,对应的能级为第一激发态,能量为$-34 \text{eV}$;以此类推。
氢原子从高能级向低能级跃迁时,可以发出一系列不同频率的光子,形成线状光谱。
四、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量,如果吸收的能量足够大,电子就能从金属表面逸出,这种现象称为光电效应。
光电效应的实验规律:1、存在饱和电流,光电流的强度与入射光的强度成正比。
2、存在遏止电压,与入射光的频率有关,而与入射光的强度无关。
3、存在截止频率(红限),当入射光的频率低于截止频率时,无论光强多大,都不会产生光电效应。
爱因斯坦提出了光子说,成功解释了光电效应。
原子物理学知识点总结一、理论知识基础1。
离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。
除此之外,原子的能级状态还与其带电的状态有关。
如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。
而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。
2。
共价化合物 2。
共价化合物1。
配位化合物配位化合物是含有共用电子对的分子。
其实质是在形成配位键时,电子云必须重新排布。
两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。
2。
配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。
配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。
1。
钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。
2。
锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。
2。
锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。
第一章 原子的位形:卢瑟福模型一、学习要点1、原子的质量和大小R ~10-10 m , N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2、原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论: 库仑散射理论公式:221212200cot cot cot 12422242C Z Z e Z Z e a b E m v θθθπεπε===⋅'⋅ 卢瑟福散射公式:222124401()4416sin sin 22Z Z e a d d dN N nAt ntN E A θθπεΩΩ'== 2sin d d πθθΩ=实验验证:1422sin ,,Z , ,2A dN t E n N d θρμ--'⎛⎫∝= ⎪Ω⎝⎭,μ靶原子的摩尔质量 微分散射面的物理意义、总截面 24()216sin 2a d d b db σθπθΩ==()022212244()114416sin 22Z Z e d a d E Sin σθσθθθπε⎛⎫≡== ⎪Ω⎝⎭ (5)原子核大小的估计: α粒子正入射(0180θ=)::2120Z Z 14m c e r a E πε=≡ ,m r ~10-15-10-14m第一章自测题1. 选择题(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍? A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14 (6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少? A. 16 B.8 C.4 D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A .质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2. 填空题(1)α粒子大角散射的结果证明原子结构为 核式结构 .(2)爱因斯坦质能关系为 2E mc = .(3)1原子质量单位(u )= 931.5 MeV/c 2. (4) 24e πε= 1.44 fm.MeV. 3.计算题习题1-2、习题1-3、习题1-5、习题1-6.4.思考题1、什么叫α粒子散射?汤姆孙模型能否说明这种现象?小角度散射如何?大角度散射如何?2、什么是卢瑟福原子的核式模型?用原子的核式模型解释α粒子的大角散射现象。
原子物理学总复习量子物理卢瑟福微分截面d dN c ( ) d Nntd 散射在某个范围内(θ1到θ2)的几率有效散射截面2d 2 b dba 2 d 16 Sin42dN ' 2 d nt d nt N 3 1 1 4 si n 22a 2 cos第十九章Ch2 原子的量子态量子物理玻尔理论:三步曲1.定态条件(量子态概念); 2.频率条件(量子跃迁); h 3.角动量量子化。
Ln nEn Em实验验证:1.夫兰克-赫兹实验:证实了量子态的存在;2.光谱:三类单电子体系~ 1 Z 2R 1 1 T( m ) T( n ) H 2 n2 m第十九章量子物理~ 1 Z 2R 1 1 T( m ) T( n ) H m 2 n2光谱项R T , E hcT 2 n*n , 碱金属n* n l Z对氢n* n, 类氢n*~ hc 物理量的关系E h hc第十九章量子物理氢光谱rn r1n2 , r1 0.053nm(n 1,2,3, )E1 13.6eVEn E1 n能量E2类氢离子光谱:n2 半径rn a1 ZhcR 2 Z 2 n线系n 4 n 3 n 2n第十九章量子物理E 0帕邢系巴耳末系莱曼系布拉开系n 1E碱金属光谱Li四个线系主线系,nP→2S, T2 s Tnp 主线系~ R R 2 (2 s ) (n p )2第十九章量子物理n 2, 3, 4, 基线系锐线系,nS→2P,又称第二辅线系线系T2 p Tnsn 3, 4, 5, n 3, 4, 5,锐线系漫线系漫线系,nD→2P,又称第一辅线系;线系T2 p Tnd基线系,nF→3D 又称柏格曼线系主线系系T3d Tnfn 4, 5, 6,第十九章量子物理mM Δ 几个光谱名词二体问题me→ M mRA线系限共振线主线rm Mme M r1 r1 (基态) M meR m 1 e M.典型题目:三种体系的光谱计算2-6~2-10,2-13~2-14第四章原子的精细结构第十九章量子物理碱金属精细结构史特恩―盖拉赫实验塞曼效应电子的自旋S基础:原子磁矩,空间量子化1.一个假设(核心)――电子的自旋第十九章量子物理它是与粒子运动状态无关的、粒子的内禀性特性。
原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj 耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,?c,玻尔磁子,拉莫尔进动频率著名实验的内容、现象及解释:a粒子散射实验,夫兰克一赫兹实验,施特恩一盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,康普顿效应理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(I,S, j ),LS耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:氢原子谱线跃迁、类氢原子谱线跃迁,碱金属原子能级跃,精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1. 同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。
2. 类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子3. 电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。
4. 激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电5. 原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。
6. 原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当 由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小 的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极 化。
第一章 原子的基本状况一、学习要点1.原子的质量和大小,R ~ 10-10 m , N o =×1023/mol2.原子核式结构模型 (1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式:(5)原子核大小的估计 (会推导): 散射角θ:),2sin11(Z 241220θπε+⋅=Mv e r mα粒子正入射:2024Z 4Mv e r m πε= ,m r ~10-15-10-14 m二、基本练习1.选择(1)原子半径的数量级是: A .10-10cm; C. 10-10m(2)原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180︒ B.α粒子只偏2︒~3︒ C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小()(X)Au AA g M N ==12-27C 1u 1.6605410kg12==⨯的质量22012c 42v Ze b tgM θπε=角散射(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍 A. 1/4 B . 1/2 C . 1 D. 24一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。
若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为:A. b ; B . 2b ; C. 4b ; D. 。
2.简答题(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么 3.褚书课本P 20-21:(1).(2).(3);第二章 原子的能级和辐射 一、学习要点:1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)11(~22nmR -=ν、光谱项()2n R n T =、并合原则:)()(~n T m T -=ν2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞2222422Z 2Z )41(πε,n =1.……(3)实验验证:(a )氢原子4个线系的形成)11(Z ~,)4(222232042n m R ch e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁)(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势 3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等 (2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动ee m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =.能量224222Z )41(ne E n μπε-=,里德伯常数变化Mm R R eA +=∞11重氢(氘)的发现 4.椭圆轨道理论索末菲量子化条件q q n h n pdq ,⎰=为整数a nn b n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,222022422,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并。
原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,精细结构常数,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。
2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。
3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。
4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。
6.原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。
7.轨道贯穿:当电子处在原子实外边那部分轨道时,原子实对它的有效电荷数Z是1,当电子处在穿入原子实那部分轨道时,对它起作用的有效电荷数Z 就要大于1。
8. 有效电荷数:9.电子自旋:电子既有某种方式的转动而电子是带负电的,因而它也具有磁矩,这个磁矩的方向同上述角动量的方向相反。
从电子的观点,带正电的原子实是绕着电子运动的,电子会感受到一个磁场的存在,电子既感受到这个磁场,它的自旋取向就要量子化。
(电子内禀运动或电子内禀运动量子数的简称) 10. 磁矩:11. 旋磁比:粒子磁动量和角动量的比值。
12. 拉莫尔进动:是指电子、原子核和原子的磁矩在外部磁场作用下的进动。
13. 拉莫尔频率:f=4ππmveB,式中e 和m 分别为电子的电荷和质量,μ为导磁率,v 为电子的速度。
该频率被称为拉莫尔频率14. 朗德g 因子: 磁矩j p me2gj=μ 对于单个电子:)1(2)1()1()1(1++++-++=j j s s l l j j g对于LS 耦合:式子中的L ,S ,J 是各电子耦合后的数值15. 塞曼效应:当光源放在足够强的磁场中,所发出光谱的谱线会分裂成几条,而且每条谱线的光是偏振的。
16. 电子组态:价电子可以处在各种状态,合称电子组态。
17. 泡利原理:不能有两个电子处在同一状态。
18. 同科电子:n *和l 二量子数相同的电子称为同科电子。
19. 壳层:20. 原子基态:原子的能量最低状态。
21. 洪特定则:只适合于LS 耦合,从同一电子组态形成的级中,(1)那重数最高的亦即S 值最大的能级位置最低。
(2)重数相同即具有相同S 值的能级中,那具有最大L 值的位置最低。
22. 朗德间隔定则:在一个多重能级的结构中,能级的二相邻间隔同有关的二J 值中较大那一值成正比。
数据记忆:电子电量1.602×10-19C质量:9.11×10-31kg普朗克常量:6.63×10-34J·s玻尔半径:==22014em a e πε 5.29×10-11m氢原子基态能量:E=-13.6ev 里德堡常量:17100974.1-∞⨯=m R 17100968.1-⨯=m R Hhc ħc (π2h =)玻尔磁子:m s v m e⋅⋅⨯==-290B101654.12eμμ精细结构常数::3-02107.2972⨯==hce a ε拉莫尔进动频率: f=4ππmveB ,式中e 和m 分别为电子的电荷和质量,μ为导磁率,v 为电子的速度。
该频率被称为拉莫尔频率。
理论解释: 氢原子光谱:● 光谱是线状的,谱线有一定位置。
● 谱线间有一定的关系 ● 每一条谱线的波数都可以表达为两光谱项之差,为整数。
其中氢的光谱项是n nR ),()(2Hn T m T -=-ν 1,2En R hc-= 能级计算公式:R 为里德伯常数17100974.1-∞⨯=m R 17100968.1-⨯=m R H2,量子化通则:........3,2,1n nh pdq ⎰==,3,电子椭圆轨道半径:长半轴Za n a12= 短半轴Za nn b1φ=;0,.......,3,2,1;........,321n n r ---==n n n n n n r ,,,表示径量子数,表示角量子数,φφ4,史特恩---盖拉赫实验;其中磁力F的夹角。
是磁矩与磁场方向之间,磁感应强度变化的陡度是沿磁场方向的量,是磁矩在磁场方向的分;其中βμβμμdzBdz dB dz dB zd cos F z == βμμcos )(21)(21)(2121S 2222vL dz dB m v L dz dB m v L m F at z ====5,(1)电子的角动量=轨道角动量+自旋角动量;j 2s l s l j hjP P P P P s l s l j -=+==-+=或其中或π(2)但是较为准确的角动量计算公式为:;,2)1(,2)1(,2)1(s l j s l j hj j P h s s P h l l P j s l -=+=+=+=+=或其中故πππ 单电子辐射跃迁的选择定则:1,0,1±=∆±=∆j l6,课后习题中两个问题的解释:主线系最长波长是电子从第一激发态向基态跃迁产生的,辅线系系限波长是电子从无穷远处像第一激发态跃迁产生的。
7,碱金属原子的光谱项可以表达为: 22*)(T ∆-==n Rn R 它与氢原子光谱项的差别在于有效量子数不是整数,而是主量子数减去一个数值∆ 8,(1)LS 耦合:,称为三重态值,相当于有三个能级,共有三个,,时有,对于一个单一态;那就是一个能级,称为时,显然对于,,其中其中;或故或而J 1L L 1L J 1S L J 0S ;S -L .........,1-S L S L J ,2)1(;,,.........1,L ,2)1(P 10S s S 2)1(2121212121+-====++=+=--++=+==-=+=+=πππhJ J P l l l l l l hL L s s S s hS S P J L S (2)jj 耦合..........,1j j j j J J ,21)J(J P p .21,212121J j j hp p j s s l s l j j j j --++=+==+-=,,只能有如下数值:合成原子的总角动量:电子的再和另一个,每个电子的值,也就是有两个故每个电子有两个而或π9,原子磁矩的计算: (1)磁矩j p m e2gj=μ 对于单个电子:)1(2)1()1()1(1++++-++=j j s s l l j j g(2)记。
耦合过于复杂,可以不。
是各电子耦合后的数值,其中耦合是原子的总角动量。
,的原子,对两个或两个以上电子jj S J J S S L L J J g LS P megJ J ,,L )1(2)1()1()1(1P 2J J ++++-++==μ 10,外磁场对原子的作用:原子受磁场作用的附加能量:为波尔磁子。
磁场强度,因子,是朗德,,,如下数值:称为磁量子数,只能取其中B B g ,..........1J J M 4M E μμπg J B Mg B mhegB --==∆11,塞曼效应的理论解释:[][]2'11221122'1114L 4111λλλλλλλππλλλ∆-=-=∆=-=-=-=∆)(相差不大时和对于为洛伦兹单位。
其中)(‘mcBe Lg M g M mc Beg M g M发生,只有下列情况的跃迁塞曼跃迁也有跃迁定则:1,除外)。
时,线(当,产生0M 0M 0J 0M 12=→==∆=∆π 2,线。
,产生σ1M ±=∆原子物理复习资料一、选择题1.德布罗意假设可归结为下列关系式:( A ) A .E=h υ, p =λh; B.E=ω ,P=κ ; C. E=h υ ,p =λ; D. E=ω ,p=λ2.夫兰克—赫兹实验的结果表明:( B )A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化3为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:B A.电子的波动性和粒子性 B.电子的波动性 C.电子的粒子性 D.所有粒子具有二项性 4.若镁原子处于基态,它的电子组态应为:( C ) A .2s2s B.2s2p C.3s3s D.3s3p 5.下述哪一个说法是不正确的?( B )A.核力具有饱和性;B.核力与电荷有关;C.核力是短程力;D.核力是交换力. 6.按泡利原理,主量子数n 确定后可有多少个状态?( D )A.n 2; B.2(2l +1); C.2j+1; D.2n 27.钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:( D )A.第一辅线系和基线系B.柏格曼系和第二辅线系C.主线系和第一辅线系D.第二辅线系和第一辅线系 8.碱金属原子光谱精细结构形成的根本物理原因:( A )A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化 9.铍(Be )原子若处于第一激发态,则其电子组态:( D ) A.2s2s ; B.2s3p ; C.1s2p; D.2s2p10如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:( C )A.0=∆l; B. 0=∆l 或±1; C. 1±=∆l ; D. 1=∆l11.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有:C A.4个 ; B.9个 ; C.12个 ; D.15个12.氦原子由状态1s2p 3P 2,1,0向1s2s 3S 1跃迁,可产生的谱线条数为:( C )A.0;B.2;C.3;D.113.设原子的两个价电子是d 电子和f 电子,在L-S 耦合下可能的原子态有:( D )A.9个 ;B.12个 ;C.15个 ;D.20个 ; 14.原子发射X 射线特征谱的条件是:( C )A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强 15正常塞曼效应总是对应三条谱线,是因为:CA .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同; C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁16.钍23490Th的半衰期近似为25天,如果将24克Th贮藏100天,则钍的数量将存留多少克? ( A )A.1.5;B.3;C.6;D.12.17.如果原子处于2P1/2态,它的朗德因子g值:( A )A.2/3;B.1/3;C.2;D.1/26.氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:( C )A.1P1;B.3S1;C .1S0;D.3P0 .18.原子发射伦琴射线标识谱的条件是:( C )A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。