流体的主要力学性质
- 格式:pptx
- 大小:1.00 MB
- 文档页数:21
第1章流体的力学性质根据现代的科学观点,物质可区分为五种状态:固态、液态、气态、等离子态和凝聚态,其中,固、液、气三态是自然界和工程技术领域中常见的。
从力学的角度看,固态物质与液态和气态物质有很大的不同:固体具有确定的形状,在确定的剪切应力作用下将产生确定的变形,而液体或气体则没有固定的形状,且在剪切应力作用下将产生连续不断的变形——流动,因而液体和气体又通称为流体。
应用物理学基本原理研究流体受力及其运动规律的学科被称为流体力学。
流体力学作为宏观力学的重要分支,与固体力学一样同属于连续介质力学的范畴。
本章将首先阐述流体连续介质模型,在此基础上讨论流体的力学特性。
1.1 流体的连续介质模型1.1.1流体质点的概念流体是由分子构成的,根据热力学理论,这些分子(无论液体或气体)在不断地随机运动和相互碰撞着。
因此,到分子水平这一层,流体之间总是存在着间隙,其质量在空间的分布是不连续的,其运动在时间和空间上都是不连续的。
但是,在流体力学及与之相关的科学领域中,我们感兴趣的往往不是个别分子的运动,而是大量分子的统计平均特性,如密度、压力和温度等,而且,为了准确地描述这些统计特性的空间分布,需要在微分即“质点”的尺度上讨论问题,为此,必须首先建立流体质点的概念。
建立流体质点的概念可借助于物质物理量的分子统计平均方法。
以密度为例,在流体中任取体积为的微元,其质量为,则其平均密度可表示为:(1-1)显然,为了描述流体在“质点”尺度上的平均密度,应该取得尽量地小,但另一方面,的最小值又必须有一定限度,超过这一限度,分子的随机进出将显著影响微元体的质量,使密度成为不确定的随机值。
因此,两者兼顾,我们采用使平均密度为确定值(与分子随机进出无关)的最小微元作为质点尺度的度量,并将该微元定义为流体质点,其平均密度就定义为流体质点的密度:(1-2)推广到一般,所谓流体质点就是使流体统计特性为确定值(与分子随机进出无关)的最小微元,而流体质点的密度、压力和温度等均是指内的分子统计平均值。
流体的主要力学性质流体的主要力学模型1、连续介质模型:假定流体是由无数内部紧密相连、彼此间没有间隙的流体质点(或微团)所组成的连续介质。
不考虑复杂微观分子运动,采用连续函数数学处理。
2、无粘性流体模型:理想流体3、不可压缩流体模型:不考虑压缩及热胀4、实际流体模型表压或真空度:以大气压为基准测得的压力.表压=绝对压力—大气压力真空度=大气压力—绝对压力单位时间内流过管道任一截面的流体体积称流体的体积流量qv ,m3/s或m3/h 单位时间内流过管道任一截面的流体质量表示则称质量流量qm ,kg/s或kg/h 流速(平均流速):单位时间内流体质点在流动方向上所流经的距离质量流速:单位时间内流经管道单位截面积的流体质量粘性:当流体流动时,流体内部存在着内摩擦力,这种内摩擦力会阻碍流体的流动,流体的这种特性称为粘性。
粘度:促使流体流动产生单位速度梯度的剪应力。
牛顿型流体:在流动中形成的的剪应力与速度梯度的关系完全符合牛顿粘性定律的流体。
稳态流动:流体在管路中流动时,在任一点上的流速、压力等有关物理参数都不随时间而改变的流动。
层流(或滞流):流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合.湍流(或紊流):流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。
*减小管内流动阻力的措施一、改进流体外部边界,改善边壁对流动的影响1、减小管壁粗糙度δ2、柔性边壁代替刚性边壁:减35~50%3、采用平顺管道进口:减90%4、采用渐缩管和突扩管5、弯管的R/d取1~4范围6、三通尽可能减小支管与合流管之间的夹角或将折角改缓:减30~50%二、改变流体内部结构实现减阻添加剂减阻,效果显著。
如纳米金属/陶瓷自修复剂,粘度指数调节剂等。
三、改变外界条件:如液体增加温度力学相似性原理两个同类物理现象,在对应的时空点,各标量物理量的大小成比例,各向量物理量的除大小成比例外,且方向相同,则两个现象是相似的。
流体⼒学总复习流体⼒学总复习1.流体连续介质假设,流体的易变形性,粘性,可压缩性2.流体的主要⼒学性质:粘性,压缩性和表⾯张⼒。
3.粘度⼀般不随压⼒变化;对于⽓体温度升⾼则粘度变⼤;对于液体温度升⾼则粘度变⼩。
4.流体的压缩性温度不变时,流体的体积随压强升⾼⽽缩⼩的性质。
5.流体的热膨胀性压⼒不变时,流体的体积随温度升⾼⽽增⼤的性质。
6.不可压缩流体的概念所有的流体均具有可压缩性,只不过液体压缩性很⼩,⽓体的压缩性⼤。
实际⼯程中,对于那些在整个流动过程中压⼒及温度变化不是很⼤,以致流体的密度变化可以忽略不计的问题,不论是液体或是⽓体,假设其密度为常数,并称其为不可压缩流体。
7.⽜顿内摩擦定律,τ=µ*du/dy。
上式说明流体在流动过程中流体层间所产⽣的剪应⼒与法向速度梯度成正⽐,与压⼒⽆关。
流体的这⼀规律与固体表⾯的摩擦⼒规律不同。
符合⽜顿切应⼒公式者为⽜顿流体,如⽔,空⽓;不符合⽜顿切应⼒公式者为⾮⽜顿流体,如油漆,⾼分⼦化合物液体。
8.粘性系数为零的流体称为理想流体,是⼀种假想的流体。
9.⼯程中常⽤运动粘度代替,10.黏性流体与理想流体之分。
⾃然界存在的实际流体都具有黏性,因此实际流体都是黏性流体;若黏性可以忽略不计,则称之为理想流体,即不具有黏性的流体为理想流体。
11.影响黏度的主要因素(1) 温度的影响A. 对于液体,其黏度随温度的升⾼⽽减少。
原因为:液体分⼦的黏性主要来源于分⼦间内聚⼒,温度升⾼时,液体分⼦间距离增⼤,内聚⼒随之下降⽽使黏度下降。
B. 对于⽓体,其黏度随温度的升⾼⽽增⼤。
原因为:⽓体黏性的主要原因是分⼦的热运动,温度升⾼时,⽓体分⼦的热运动加剧,层间分⼦交换频繁,因此⽓体黏度增⼤。
(2) 压强的影响通常压强下,压强对流体黏度的影响很⼩,可以忽略不计。
但在⾼压强下,流体,⽆论是液体还是⽓体,其黏度都随压强的增⼤⽽增⼤。
12.液体的⾃由表⾯存在表⾯张⼒,表⾯张⼒是液体分⼦间吸引⼒的宏观表现。
流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。
流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。
4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。
稀薄空气和激波情况下不适合。
5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。
体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。
10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。
气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。
满足牛顿内摩擦定律的流体为牛顿流体。
12. 理想流体:黏度为0,即0μ=。
完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。
2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。
重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。
一、 班名:二、 授课内容:引言 三、 时间:60分钟 四、 重点流体的密度与重度、流体的压缩性与膨胀性、流体的粘滞性。
五、 难点流体的粘滞性及牛顿内摩擦定律。
六、 课程性质:综合课 七、 教学目的通过讲解流体的主要物理性质,使学院对流体有更为具体和量化的认识,也为后续学习的展开奠定基础。
八、 教学目标理解流体密度、压缩性和膨胀性、粘滞性;应用粘滞性来分析实际问题。
九、 所需教具黑板、粉笔、板擦、计算机和投影仪。
十、 教学过程首先组织教学,把学员的精神都集中到课堂上来。
(一)回顾上一讲内容(启发式教学,用时5分钟) 1、什么是流体?流体是易于流动的物质;它包括气体、液体及分散状的固体微粒的集合体。
如我们日常生活中的水、空气、燃气等都是流体。
2、什么是流体力学?流体力学研究流体平衡和运动规律以及流体与固体壁面间作用力的一门科学。
3、流体力学的任务(1)流体力学主要研究大量流体分子的宏观运动特性。
(2)流体力学学科的分类流体力学根据研究的重点与方法不同分为:理论流体力学和工程流体力学; 流体力学根据流体性质不同分为:水力学、空气动力学以及两相流体力学。
- 2 -(3)本课程的主要研究内容和对象本课程主要以流体在容器和管道内的特性为研究内容。
(二)本节内容首先向大家说明一个基本问题。
流体不同于固体的基本特征是流体的流动性。
一般而言,流体的流动性与其分子间距d 成正比。
1、密度、比容及重度(直观式教学,用时10分钟) (1)密度密度是一般物质的基本属性,对于均匀流体而言,单位体积的质量称为密度。
/m V ρ=ρ——流体的密度,kg/m 3; m ——流体的质量,kg ; V ——该质量流体的体积,m 3。
(2)比容也叫做比体积;表示单位质量的流体所占的体积;简单来说就是密度的倒数。
在燃气行业中,比容是应用较多的定义之一。
因为燃气在输送过程中其体积和密度是随着压力级制的不同而发生变化的,但其总质量是不会改变的,因为质量是守恒的。
流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。
从宏观上看,流体也可看成一种连续媒质。
与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。
如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。
大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。
例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。
同样的条件下,水银的体积减少量不到原体积的百万分之四。
因为液体的压缩量很小,通常可以不计液体的压缩性。
气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。
但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。
物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。
由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。
总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。
2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。
在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。
此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。
实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。
通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。
若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。
流体的特点和流体的相关性质
流体的特点是:不像固体那样能单独保持一定的形状;而且具有流动性。
流体主要力学性质:
1、流体具有易流动性;
2、流体具有质量,有一定的密度;
3、流体受有重力作用;
4、流体具有粘性;
5、流体具有一定的压缩性和膨胀性;
6、流体具有一定的表面张力;
7、流体的连续介质模型:
任何流体都是由无数分子组成的,分子与分子间有空隙,所以微观上流体并不是连续分布的物质。
但是流体力学并不研究微观的分子运动,因此在研究流体宏观运动时,要对流体作力学模型假设。