板式塔流体力学性能测定
- 格式:doc
- 大小:85.00 KB
- 文档页数:6
化工基础实验报告实验名称板式塔流体力学实验班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林一、实验目的1、观察塔板上气、液两相流动时的特性。
2、测量气体通过塔板的压力降与空塔气速的关系,测定雾沫夹带量、漏液量与气速的关系。
3、研究板式塔负荷性能图的影响因素,做出筛孔塔板的负荷性能图。
二、实验原理当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。
当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相符合均过大时,还会产生液泛这种不正常的操作状态。
塔板的气液正常操作区通常以塔板的负荷性能图表示。
当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验测定。
三、实验装置与流程1、塔主体是用有机玻璃制成的,分段用法兰连接。
2、风源:罗茨鼓风机,D22 / 5型;风压:3500mm H2O;风量5m3/min。
3、气液流量测量用转子流量计:LZB-50,气体流量16~160m3/h。
LZB-25,液体体积流量100~1000 L/h4、U型管压差计:指示液为水,测量范围0~700 mm H2O实验装置图如下:1-水箱;2-泵;3-液体流量计;4-气体流量计;5-压差计;6-板式塔四、实验步骤及注意事项1、熟悉实验装置流程,了解各部分作用。
2、在启动气路前,要检查罗茨鼓风机旁路阀是否开启,转子流量计阀门是否关闭,以免损坏设备。
3、测量干板阻力降与气速关系。
4、启动水泵。
启动前要检查水泵内是否充满水,转动泵的联轴节是否灵活,关闭泵的出口阀门。
5、在一定的喷淋密度下,测定塔板的压降、漏液量和雾沫夹带与空塔速度的关系。
6、改变喷淋密度,重复5的内容。
7、实验结束,先关水,后关气。
五、实验原始数据表格1、设备参数塔内径D=2000mm;堰长l w=130mm;堰高ℎw=30mm;堰宽w d=27mm;孔径d0=8mm;孔数n=36;t=20mm;开孔率φ=12.6%2、原始数据记录表1、干板压降2、不同喷淋密度下的操作状态六、数据处理1、对原始数据表格中的数据进行换算塔半径r=0.1m,则塔截面积A = 0.0314m2;空塔气速=流量÷截面积÷3600;压降(pa)=ρgh=压降(mmH2O)×9.8×1000÷1000=压降(mmH2O)×9.8;漏液量(ml/s)=夹带量/时间;夹带量(ml/s)=夹带量/时间;换算后的数据列表如下:干板气速-压降关系2、干板及各种喷淋密度下压力降与空塔速度的关系曲线(1)空塔压降与气速的关系:对压降与气速取对数做双对数图如下:拟合出的直线斜率为1.43,与理论值2相差较大,原因暂时还不是很清楚,可能是由于塔设备相对于直管路的不理想程度比较大,也有可能是某些参数的错误,但这样大的差距必然有其内在的原因,目前还不能从根本上得出具体的结论。
实验名称:板式塔流体力学性能测定学生姓名:[你的姓名]学号:[你的学号]指导教师:[指导教师姓名]生助教:[生助教姓名]实验日期:[实验日期]交报告日期:[交报告日期]一、实验目的1. 了解板式塔的结构和工作原理。
2. 掌握板式塔的流体力学性能测定方法。
3. 分析不同操作条件下板式塔的流体力学性能。
4. 培养实验操作能力和数据处理能力。
二、实验原理板式塔是一种常用的分离设备,广泛应用于化工、石油、食品等行业。
板式塔的工作原理是利用气液两相在塔板上的接触、传质和分离作用,实现物质的分离。
本实验通过测定板式塔的流体力学性能,包括塔板压降、液相流量、气相流量等参数,分析不同操作条件下板式塔的流体力学性能。
三、实验装置与仪器1. 实验装置:板式塔、进料泵、流量计、压力计、温度计、流量调节阀、冷却水系统等。
2. 实验仪器:秒表、卷尺、计算器、数据采集器等。
四、实验步骤1. 搭建实验装置,检查各连接部分是否严密。
2. 将进料泵、流量计、压力计、温度计等仪器与板式塔连接。
3. 开启冷却水系统,保持实验温度稳定。
4. 调节进料泵,控制进料流量。
5. 测量塔板压降、液相流量、气相流量等参数。
6. 改变操作条件(如进料流量、塔板间距等),重复步骤5,记录实验数据。
7. 对实验数据进行处理和分析。
五、实验结果与分析1. 塔板压降:塔板压降是衡量板式塔流体力学性能的重要指标。
实验结果表明,塔板压降随液相流量和气相流量的增加而增加,这与流体力学原理相符。
2. 液相流量:液相流量是影响板式塔分离效果的重要因素。
实验结果表明,液相流量与塔板压降呈正相关关系,即液相流量越大,塔板压降越大。
3. 气相流量:气相流量对板式塔的分离效果也有较大影响。
实验结果表明,气相流量与塔板压降呈正相关关系,即气相流量越大,塔板压降越大。
4. 操作条件对流体力学性能的影响:实验结果表明,改变进料流量和塔板间距对板式塔的流体力学性能有显著影响。
增大进料流量和塔板间距,塔板压降增大,分离效果降低。
化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期: 2017.05.25 交报告日期: 2017.06.01(3) 当气流速度略微增加时,塔板上积液层将很快上升到溢流堰的高度,塔板压力降也随之急剧增大。
当液体开始由溢流堰溢出时,为另一个转折点,如图中B 点。
这时,仍有部分液体从筛孔中泄漏下去。
自该转折点之后,随着气流速度增大,液体的泄漏量不断减少,而塔板压力降却变化不大。
(4) 当气流速度继续增大到某一数值时,液体基本上停止泄漏,则称该转折点为泄漏点,如图中C 点。
自C点以后,塔板的压力降随气速的增加而增大。
(5)当气速高达某一极限值时,塔板上方的雾沫挟带将会十分严重、或者发生液泛。
自该转折点(如图中D点)之后,塔板压降会随气速迅速增大。
塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。
当气速较较小时,气体以鼓泡方式通过液层。
随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。
对传质效率有着重要作用的因素是充气液层的高度及其结构。
充气液层的结构通常用其平均密度大小来表示。
如果充气液层的气体质量相对于液体质量可略而不计,则h fρf= h1ρl(4)式中,h f 、h1分别为充气液层和静液层的高度,m;ρf、ρl分别为充气液层的平均密度和静液层的密度,kg· m– 3;若将充气液层的平均密度之比定义为充气液层的相对密度,即∅=ρfρl=ℎlℎf则单位体积充气液层中滞留的气体量,即持气量可按下式计算:V g=(ℎf−ℎl)/ℎf=1−∅ m3∙m−3(5)单位体积充气液层中滞留的液体量,即持液量可按下式计算:V l=ℎl/ℎf=∅ m3∙m−3(6)气体在塔板上的液层的平均停留时间为:t g=[ℎf S(1−∅ )]V s =ℎfu0(1−∅) s (7)液体在塔板上的平均停留时间为图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线t l =ℎf ∙S∙∅L s=ℎf ∅Ws (8)式中,S 为空塔横截面积,m 2;V s 为气体体积流率,m 3∙s −1;L s 为液体体积流率,m 3∙s −1;W 为液体喷淋密度,m 3∙m −2∙s −1;u 0 为气体的空塔速度,m ∙s −1。
实验十二 板式塔流体力学状态观测一、实验目的1、了解不同类型塔板的结构及流体力学性能,包括:气体通过塔板的阻力、板上鼓泡情况、漏夜情况、雾沫夹带及液泛等。
2、了解风量和水量改变时,各塔板操作性能的变化规律。
3、在相同的操作条件(风量、水量)下比较各塔板的操作性能。
二、实验装置来自风机的空气经转子流量计,由塔底入塔。
经过各塔板,最后经塔顶金属网除雾器后放空。
泵将水打入转子流量计后送入塔顶,与空气逆向接触后,流入塔底的循环水槽(同时起水封作用)循环使用。
有机玻璃制冷模塔内径为φ140,内装有四块不同类型的筛板、泡罩、浮阀和舌形板塔板,塔板间距为150毫米,各塔板均设有弓形降液管:筛孔板:板上有67个φ4直孔,呈等腰三角形排列,开孔率5.5%。
水封循环水槽泡罩板浮阀板舌型板筛板丝网除沫气放空浮阀筛板泡罩全塔舌型泡罩塔板:板上安装φ50×3泡罩两个,泡罩开有15×3气缝30条,,板上开有泪孔,以便在停车时能将塔板上积存的液体排净。
浮阀塔板:装有2个标准F型不锈钢浮阀。
升气孔为φ39阀重33g,浮阀的最小开度为2.5mm,最大开度为8.5mm。
舌形板:板上有五个舌形开孔,喷出角为20°,气液流向一致可减少液面落差和避免板上液体“返混”,舌形板不设溢流堰。
各板均有引压管,用以测定各单板和全塔压降。
三、实验方法及注意事项1.检查泵出口回流阀是否全开。
开启循环泵,逐渐关小回流阀调节水流量到一定值。
2.检查空气流量计前放空阀是否全开。
开启风机,逐渐关小放空阀将风量调到合适。
3.观察正常操作时的情况。
4、关闭水量或气量到偏小,观察各板情况。
5、开大水量或气量到偏大,观察各板情况。
6、实验完毕,开大回流水阀,关泵;开大放空阀,停风机。
四、现象观察1、结构了解观察每块板的结构;舌形板与其它板比较在气液接触方向和接触方式的差别;了解塔底排水水封;了解如何测定每块板的压降;了解如何测定板上清液层的高度;2、正常操作下的现象观察与比较:观察:舌形板的操作特点,观察喷射三角区;降液管内气泡夹带情况;各板的气液接触区和分离空间,在分离区的液滴夹带情况;观察分析:筛板、泡罩板、浮阀板的气液接触情况,判断板效率情况;结合各板的结构特点,结合板效率,评价各板。
化学实验教学中心
实验报告
化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期: 2017.05.25 交报告日期: 2017.06.01
图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线
塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。
当气速较较小时,气体以鼓泡方式通过液层。
随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。
对传质效率有着重要作用的因素是充气液层的高度及其结构。
充气液层的结构通常用其平均密度大小来表示。
如果充气液层的气体质量相对于液体质量可略而不计,则
h fρf= h1ρl(4)
调节阀和孔板流量计进入塔底。
通过塔板的尾气由塔顶排出。
气体通过塔板的压力降由压差计显示。
图3 筛板塔
1.塔体;
2.筛孔塔板;
3.漏液排放口;
4.温度计;
5.溢流装置
图4 板式塔流动特性实验装置流程
空气源;2.放空阀;3.消声器;4.孔板流量计;5.U型水柱压差计;6. U型汞柱压差计;
7.板式塔;转子流量计;9. U型水柱塔压差计;10.高位槽;11.排水管。
实验五板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。
4、观察流体在塔板上的流动状态。
三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。
塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。
实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。
通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。
图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。
孔板流量计计算公式:0v q C A =由《化工原理》查询孔流系数,并计算气体流量。
测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。
干板压降经验式:()220'00.051()1vd Lw h C ρϕρ=- ϕ-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱;'0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。
固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。
每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。
计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。
3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。
板式塔流体力学实验报告引言本实验旨在研究板式塔的流体力学特性。
板式塔是一种常用于化工领域的设备,用于分离液体混合物中的组分。
通过实验观察和数据分析,我们可以了解板式塔的流体流动行为,从而优化塔的设计和操作参数,提高分离效率。
实验装置和方法实验中使用的板式塔装置由一根垂直立管和多层水平放置的板组成。
我们通过向塔底注入液体混合物,控制流量和温度,观察在不同操作条件下的塔内流体流动情况。
实验结果与分析根据实验数据,我们可以得出以下结论:1. 流体流动模式在不同操作条件下,板式塔内流体的流动模式会发生变化。
当流速较低时,流体呈现层流状态,流线整齐有序;而当流速增加时,流体会变为湍流状态,流线杂乱无序。
这对于塔内物质传递和分离过程有着重要影响。
2. 流体分布在塔内的不同位置,流体的浓度和温度分布不均匀。
通常情况下,塔底的浓度较高,而塔顶的浓度较低。
这是由于塔内的物质传递和分离过程导致的。
3. 塔板效率塔板效率是评价板式塔分离效果的重要指标。
通过实验观察和数据分析,我们可以计算出塔板效率,并比较不同操作条件下的效率差异。
从实验结果可以看出,塔板效率随着流速的增加而提高,但也存在一个最佳操作点,超过此点后效率会下降。
结论本实验通过观察和数据分析,深入了解了板式塔的流体力学特性。
我们发现流体流动模式、流体分布和塔板效率对于塔的设计和操作至关重要。
在实际应用中,我们可以根据不同的分离要求和操作条件,优化塔的结构和操作参数,以提高分离效率。
通过本实验,我对板式塔的流体力学特性有了更深入的了解。
我将继续深入研究和探索,在化工领域的实际应用中发挥作用,为工业生产提供技术支持和解决方案。
化工基础实验报告实验名称 板式塔流体力学特性的测定 班级 姓名 学号 成绩 实验时间 同组成员一、实验目的1、观察塔板上气液两相流动状况,测量气体通过塔板的压力降与空塔气速的关系;测定雾沫夹带量、漏液量与气速的关系;2、研究板式塔负荷性能图的影响因素,作出筛孔塔板或斜孔塔板的负荷性能图;比较筛孔塔板与斜孔塔板的性能; 二、实验原理板式塔流体力学特性测定 塔靠自下而上的气体和自上而下的液体逆流流动时相互接触达到传质目的,因此,塔板传质性能的好坏很大程度上取决于塔板上的流体力学状态。
当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。
当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相负荷均过大时还会产生液泛等几种不正常的操作状态。
塔板的气液正常操作区通常以塔板的负荷性能图表示。
负荷性能图以气体体积流量(m 3/s )为纵坐标,液体体积流量(m 3/s )为横坐标标绘而成,它由漏液线、液沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成。
当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。
传质效率高、处理量大、压力降低、操作弹性大以及结构简单、加工维修方便是评价塔板性能的主要指标。
为了适应不同的要求,开发了多种新型塔板。
本实验装置安装的塔板可以更换,有筛板、浮阀、斜孔塔板可供实验时选用,也可将自行构思设计的塔板安装在塔上进行研究。
筛板的流体力学模型如下: 1) 压降l c p p p ∆+∆=∆式中,Δp —塔板总压降,Δp c —干板压降,Δp l —板上液层高度压降, 其中20)(051.0c u g p v c ρ=∆式中 ρv —气相密度,kg/m 3;g —重力加速度,m/s 2,u 0—筛孔气速,m/s ,c 0—筛孔流量系数,筛板上因液层高度产生的压降Δp l 即液层有效阻力h l :l l l gh p ρ=∆式中ρl —液相密度,kg/m 3,g —重力加速度,m/s 2,h l —液层有效阻力,m 液柱。
第三蒸馏和吸收塔设备(下册)塔设备可分为板式塔与填料塔两大类。
评价塔设备的基本性能指标主要包括以下几项:生产能力,分离效率,适应能力及操作弹性,流体阻力。
第一节板式塔一塔板结构类型及特点1泡罩塔其传质元件为泡罩,泡罩分圆形和条形两种,多数选用圆形泡罩,其尺寸一般为①80,100,150 (mm三种直径,泡罩边缘开有纵向齿缝,中心装升气管。
升气管直接与塔板连接固定。
塔板下方的气相进入升气管,然后从齿缝吹出与塔板上液相接触进行传质。
不易发生漏液现象,有较好的操作弹性,塔板不易堵塞,对于各种物料的适应性强;结构复杂,金属耗量大,造价高;板上液层厚,气体流径曲折,塔板压降大,兼因雾沫夹带现象较严重,限制了气速的提高,生产能力不大。
液面落差大,气体分布不均,使得板效率不高。
抱罩塔2浮阀塔板浮阀是20世纪二战后开始研究,50年代开始启用的一种新型塔板,后来又逐渐出现各种型式的浮阀,其型式有圆形、方形、条形及伞形等。
较多使用圆形浮阀,而圆形浮阀又分为多种型式,如图所示。
浮阀取消了泡罩塔的泡罩与升气管,改在塔上开孔,阀片上装有限位的三条腿,浮阀可随气速的变化上、下自由浮动,提高了塔板的操作弹性、降低塔板的压降及液面落差,同时具有较高塔板效率,生产能力大。
在生产中得到广泛的应用。
V-4 型一筛板塔盘去掉泡罩和浮阀,直接在塔板上,按一定尺寸和一定排列方式开圆形筛孔,作为气相通道。
气相穿过筛孔进入塔板上液相,进行接触传质。
结构简单,金属耗量小,造价低廉;气体压降小,板上液面落差也较小,其生产能力及板效率较泡罩塔的高。
操作弹性范围较窄,小孔筛板容易堵塞。
篩扳塔板4其他型式的塔板: 喷射塔板与浮舌塔板:将塔上冲压成斜向舌形孔,张角20°左右,如图6.9.8所示。
气相从斜孔中喷射出来,一方面将液相分散成液滴和雾沫,增大了两相传质面,同时驱动液相减小液面落差。
液相在流动方向上,多次被分散和凝聚,使表面不断更新,传质面湍动加剧,提高了传质效率。
实验八、板式塔流体力学性能测定一、实验目的1.观察塔板上气、液两相流动状况。
2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。
3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。
二、实验原理板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。
气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。
塔板传质的好坏很大程度取决于塔板上的流体力学状况。
1.塔板上的气液两相接触状况及不正常的流动现象。
(1)气液两相在塔板上接触的三种状态:1)当气体的速度较低时,气液两相呈鼓泡接触状态。
塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。
2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。
3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。
(2)塔板上不正常的流动现象1)漏液当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。
2)雾沫夹带当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。
3)液泛当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。
2.流体力学性能测定(1)压降在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。
板式塔的流体力学性能介绍★评价塔设备性能的主要指标生产能力塔板效率操作弹性塔板压强降★板式塔的流体力学性能塔板压强液泛雾沫夹带漏液液面落差一、塔板压降也就是气体通过塔板时的阻力损失。
包括:干板阻力:由板上各部件所造成的局部阻力板上充气液层的静压强板上液体的表面张力(摩擦阻力)∙塔板压降对板式塔操作特性的影响∙影响塔底操作压强:塔板压降↑若为吸收操作,则要求送气压强↑ ;若为精馏操作,则要求釜底压强↑ ;若为真空精馏操作,则同样要求釜底压强↑ →导致实际操作不能在真空下进行。
∙影响板效率:∙干板压降↑ → 气体流动不畅↑ 气液接触时间↑ → 板效率↑∙板上充气液层静压↑(即板上液层厚度↑)→ 气液传质时间↑→板效率↑总而言之,要综合考虑,原则:在保证较高板效率的前提下,力求减小塔板压强,以降低能耗,改善塔的操作性能。
二、液泛正常操作时,降液管中有一足够的液体高度,以克服两板间由气体压差造成的压降使液体能够自上而下流动。
∙但若气相的流量↑→塔板压降↑→降液管内液体流动不畅→管内液体积累;∙若液相的流量↑→降液管内截面不能满足该液体顺利流过→管内液体积累;从而必然使降液管内液体不断增高→最终使整个板间充满液体→塔操作被严重破坏。
这种现象即为液泛(淹塔)。
一般,气速↑→有利于形成湍动的泡沫层→传质速率↑。
但显然不能超过液泛时的气速。
因此,液泛时的气速应为塔操作的极限速度。
此外,板间距↑→可提高液泛速度。
三、雾沫夹带∙当气速↑,使塔板处于泡沫状态或喷射状态时→液体被吹塔板,该现象称为雾沫夹带。
∙雾沫夹带造成的影响:液相在塔板间返混→塔板效率↓∙因此,应限制雾沫夹带。
eV<0.1kg(液)/kg(气)∙影响雾沫夹带量的因素:空塔气速↑塔板间距↓雾沫夹带量↑四、漏液∙在正常操作的塔板上,液体横向流过塔板,然后通过降液管流下。
∙但若气体通过塔板的速度↓ → 上升气体通过孔道的动压不足以克服板上液体的重力→液体从塔板上的开孔处往下漏,称漏液。
板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、立体传质塔板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。
4、观察流体在塔板上的流动状态。
三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入板式塔,由鼓风机送来的气体,经孔板流量计送入塔的底部。
塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。
实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。
通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。
图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。
由《化工原理》查询孔流系数,并计算气体流量。
测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。
干板压降经验式:()22000.051()1vd Lw h C γϕγ=- ϕ-----开孔率(开孔面积/开孔区域面积);v γ-----气相密度;L γ-----液相密度;d h -----干板压降,米液柱;0C -----孔流系数;0w -----孔气速;(单位如不说明均为国际单位制)(假设矩形孔和导向孔气速一致,开孔面积=矩形开孔面积+导向孔面积) 2、测定湿板压降、夹带和漏液调节气体流量为一定值,打开转子流量计。
固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。
每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。
计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。
3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。
板式精馏塔筛板的流体⼒学验算.筛板的流体⼒学验算(⼀) ⽓体通过筛板压降相当的液柱⾼度ph1、根据 pc l hh h h σ=++⼲板压降相当的液柱⾼度c h 2、根据0/5/4 1.25d δ==,查⼲筛孔的流量系数图00.89c =①精馏段由下式得c h =220015.16 3.780.0510.0510.03010.891394.3v l u mC ρρ== ? ? ? ?????????②提馏段由下式得220015.16 5.140.0510.0510.04830.891574.8v c l u h mC ρρ'=== ? ? ? ?????????3、①精馏段⽓流穿过板上液层压降相当的液柱⾼度l h1.040.20/1.3270.1062sv u msA A α===--0.389F u α===由图充⽓系数0ε与a F 的关联图查取板上液层充⽓系数0ε为0.57 则l h =0εLh =0ε()0.570.070.0399w ow h h m +=?=②提馏段⽓流穿过板上液层压降相当的液柱⾼度l h '0.9560.783/1.3270.1062stv u msA A α'===--1.775a F u α'===由图充⽓系数0ε与a F 的关联图查取板上液层充⽓系数0ε为0.58则l h '=0εLh =0ε()0.580.070.0406w ow h h m +=?=3、①精馏段克服液体表⾯张⼒压降相当的液柱⾼度h σ由 h σ=34426.06100.001521384.39.810.005L mgd σρ-??==??②提馏段克服液体表⾯张⼒压降相当的液柱⾼度h σ'由 h σ'=34422.09100.001441574.89.810.005L mgd σρ-??==??故①精馏段 ph=0.0301+0.0399+0.00152=0.07152m单板压降p L P h gρ?==0.071521394.39.819710.971( 1.0)pa kpa kpa ??==<(设计允许值)故②提馏段 0.00483+0.0406+0.00144=0.0903mph'=单板压降p L P h gρ'?==0.09031574.89.819890.989( 1.0)pa kpa kpa ??==<(设计允许值)(⼆)①精馏段雾沫夹带量v e 的验算由式v e = 3.265.710Tf u H h ασ-?? ?- = 3.2635.7100.226.06100.4 2.50.07--?-?=41.510-?kg 液/kg ⽓<0.1kg液/kg ⽓故在设计负荷下不会发⽣过量雾沫夹带②提馏段雾沫夹带量v e 的验算由式v e = 3.265.710T f u H h ασ-??? ? ?-??= 3.2635.7100.78322.09100.4 2.50.07---?=0.0239kg 液/kg ⽓<0.1kg液/kg ⽓故在设计负荷下不会发⽣过量雾沫夹带(三)①精馏段漏液的验算4.4owuC == 4.4x =8.6 /m s 筛板的稳定性系数 015.16 1.76( 1.5)8.9owu k u ===>故在设计负荷下不会产⽣过量漏液②提馏段漏液的验算4.4owuC =4.4=?=8.6 /m s 筛板的稳定性系数 015.16 1.92( 1.5)7.89owu k u ===>故在设计负荷下不会产⽣过量漏液(四)①精馏段液泛验算为防⽌降液管液泛的发⽣,应使降液管中清液层⾼度()d T w H H h ≤Φ+由dp L d Hh h h =++计算 d H 22030.00230.1530.1530.910.0251.56100.00156S d w L h l h m -== ? ??????=d H =0.082+0.06+0.00098=0.143m取Φ=0.5,则()Tw H h Φ+=0.5(0.4+0.057)=0.229m故dH ()T w H h ≤Φ+,在设计负荷下不会发⽣液泛②提馏段液泛验算为防⽌降液管液泛的发⽣,应使降液管中清液层⾼度()d T w H H h ≤Φ+由dp L d Hh h h =++计算 d H 22030.002770.1530.1530.910.03041.534100.00153S d w L h l h m -== ? ??????==0.0903+0.07+0.00153=0.162mdH = 取Φ=0.5,则()=0.5(0.4+0.0554)=0.2272mT w H h Φ+? 故d H ()T w H h ≤Φ+,在设计负荷下不会发⽣液泛⼋.塔板负荷性能图①提馏段(⼀) 雾沫夹带线(1) ve 3.265.710T f u x H hασ-??=-式中0.8191.3270.1062sss T fv v u v A A α===-- (a ) f h =()2/3336002.5 2.5 2.8410sw ow w w L h h h E l -+=+? ?近似取E ≈1.0,w h =0.057m ,w l =0.91m故f h =2/3336002.50.057 2.84100.91S L x -+?? ??=0.1425+1.7762/3SL(b )取雾沫夹带极限值v e 为0.1Kg 液/Kg ⽓,已知σ=20.06/m N m , T H =0.4m ,并将(a ),(b )式代⼊ 3.2 65.710vTf u e H h ασ-=-??得 3.2632/30.8195.7101.026.06100.40.1425 1.776sS v L --=--整理得 s v =2/32.13214.70SL - (1)此为雾沫夹带线的关系式,在操作控制范围内去⼏个Ls,计算出相应的Vs 值。
实验八、板式塔流体力学性能测定一、实验目的1.观察塔板上气、液两相流动状况。
2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。
3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。
二、实验原理板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。
气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。
塔板传质的好坏很大程度取决于塔板上的流体力学状况。
1.塔板上的气液两相接触状况及不正常的流动现象。
(1)气液两相在塔板上接触的三种状态:1)当气体的速度较低时,气液两相呈鼓泡接触状态。
塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。
2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。
3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。
(2)塔板上不正常的流动现象1)漏液当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。
2)雾沫夹带当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。
3)液泛当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。
2.流体力学性能测定(1)压降在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。
实验八、板式塔流体力学性能测定
一、实验目的
1.观察塔板上气、液两相流动状况。
2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。
3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。
二、实验原理
板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。
气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。
塔板传质的好坏很大程度取决于塔板上的流体力学状况。
1.塔板上的气液两相接触状况及不正常的流动现象。
(1)气液两相在塔板上接触的三种状态:
1)当气体的速度较低时,气液两相呈鼓泡接触状态。
塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。
2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。
3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。
(2)塔板上不正常的流动现象
1)漏液
当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。
2)雾沫夹带
当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。
3)液泛
当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。
2.流体力学性能测定
(1)压降
在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。
压降通常包括干板压降和液层压降两部分。
干板压降是指塔内不通液体,只有气体穿过塔板时测得的塔板压降,这部分压降主要是通过筛孔时克服阻力而产生的压降,液层压降是指气体通过塔板的清液层和泡沫层克服阻力而产生的压降。
(2)雾沫夹带率
在塔板上设置一层液体收集板,可以把气体从下层塔板带上来的液体收集,然后用一个导管将这些液体引出、收集并测量,可得夹带液体流量,再除以气体流量,可得雾沫夹带率。
(2—55)(3)泄漏率
再塔板下面设置一个液体出口,可以把从筛孔流下的液体收集并测量,可得泄漏液体流量,泄漏液体流量除以液体流量即可得泄漏率。
(2—56)3.筛板的流体力学模型
(1)压降
式中:Δp——塔板总压降,Pa;
Δp c——干板压降,Pa;
Δp L——板上液层高度压降,Pa。
上式中,
式中:ρv——气相密度,kg/m3;
g——重力加速度,m/s2;
u0——筛孔气速,m/s;
C0——筛孔流量系数,可通过图2—69求取。
筛板上因液层高度产生的压降Δp L即液层有效阻力h L:
(2—57)式中:ρL——液相密度,kg/m3;
g——重力加速度,m/s2;
h i——液层有效阻力,m液柱,可通过图2—70求取。
图2-69 干筛孔的流量系数图2-70 有效液层阻力
δ—板厚;d0—孔径,mm
图中,气相动能因子表示为:
板上清液层高度表示为:
式中:h w——堰高,m;
h ow——堰上液流高度,m。
液层有效阻力h i,也可用如下方程计算:
当Fo<17时:
当Fo>17时:
(2)雾沫夹带量:
(2—58)式中:e v——雾沫夹带量,kg液/kg气;
σ——液相表面张力,N/m;
u G——按有效面积计算的气速,m/s;
(2—59)式中:V s——气相流量,m3/s;
A T——塔截面积,m2;
A f——降液管截面积,m2;
H T——板间距,m;
h f——塔板上鼓泡层高度,m;
ф——表示鼓泡层平均相对密度,一般情况下:取ф=0.4,
即h f=2.5h L。
(3)漏液
为保证筛孔不漏液的下限气速为u ow,筛板的u ow可按下面的经验式计算:
(2—60)式中:u ow——漏液点的筛孔气速,m/s;
C o——筛孔流量系数;
h L——板上清液层高度,m;
hσ——与液体表面张力相当的液柱高度,m。
(2—61)式中:σ——液体表面张力,N/m;
g——重力加速度,m/s2;
d o——筛孔孔径,m;
ρL——液体密度,kg/m3。
4.塔板负荷性能图及操作弹性
塔板的气液正常操作通常以塔板的负荷性能图表示,如图2—71,负荷性能图以气体体积流量(m3/s)为纵坐标,液体体积流量(m3/s)为横坐标标绘而成,它由漏液线、雾沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成,其中每条线代表一个极限操作情况,五条线包围部分是正常操作范围。
当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。
图2-71 塔板负荷性能图
1.雾沫夹带线2。
液冷线3。
液相上限线4。
漏液线5。
液相下限线
塔的操作弹性是评价塔性能的重要指标,在塔的操作液气比下,如图2-71所示,操作线OAB与界限曲线的交点的气相最大负荷V大与气相允许最小负荷V小之比称为操作弹性,即:
操作弹性=(2—62)设计塔板时,可适当调整塔板结构参数使操作点P在图中适中位置,以提高塔的操作弹性。
三、实验装置及流程
图2-72 板式塔流体力学性能测定实验装置流程示意图
1-空气出口,2-雾沫夹带收集板,3-雾沫夹带液出口,4-进水流量计
5-进水口,6-实验塔板(筛板、浮阀、泡罩塔板),7-泄漏率测定板
8-降液管,9-出水口,10-进气流量计,11-空气进口,12-泄漏液出口
板式塔流体力学性能测定实验装置的塔体是用有机玻璃制成,三层塔板分段用法兰连接。
上层塔板为雾沫夹带收集板,中间塔板为可更换实验板(筛板、浮阀、泡罩塔板),下层塔板为泄漏率测定板。
气体从下面通入塔内,从塔顶流出;液体从中间塔板上面加入,从下层塔板的降液管中流出。
塔板压降的测定:在中间实验塔板的上下各设置了一个测压口,分别连在U型压差计的两端,压差计的读数直接反映了塔板压降的大小。
雾沫夹带的测定:在雾沫夹带收集板的下面引出这些液体,并测定流率,可以计算雾沫夹带。
泄漏率的测定:在塔底引出泄漏液,收集后测定泄漏速率,可计算泄漏率。
塔板主要结构参数:
塔内径 D=190mm;板间距 H T=200mm;出口堰长L w=100mm;
出口堰高h w=25mm;降液管直径d=21mm;降液管底隙高度h0=18mm;
筛孔直径d0=3mm;筛孔数n=210。
其他结构尺寸入板厚σ等应根据塔板的结构测量求得。
四.实验步骤及主意事项。
1.实验步骤
(1)熟悉实验装置流程,了解各部分的作用。
(2)启动风机改变气体流量,测量干板压降与气速的关系。
(3)选定一个液体流量,改变气体流量,测量塔板压降、雾沫夹带率和泄漏率。
(4)改变液体流量,重复(3)的内容。
(5)实验结束,先关水,后关气。
2.注意事项
(1)在做一定液体负荷下的压降与气速关系实验时,应先通水,后开气。
(2)液体流量选定后,气体量避免太小,以防止过大的泄漏率;同时应避免气体量太小,以防止过大的雾沫夹带率造成液泛。
(3)测定雾沫夹带率和泄漏率时,应用秒表计时,以通过测得一定时间内的雾沫夹带量和泄漏量来获得雾沫夹带率和泄漏率。
五.实验报告要求
1.在双对数座标纸上描绘出干板和各种液体流量下塔板和压降与空塔速度的关系图。
2.在双对数座标纸上描绘泄漏率、雾沫夹带率与空塔速度的关系图。
3.示意画出塔板的负荷性能图,并说明理由。
4.描述气速从小到大,塔板上的几种流动状态。
六.思考题
1.分析气相负荷对压降对空塔气速△p~u,雾沫夹带率对空塔气速e~u,泄漏率对空塔气速θ~u的影响。
2.定性分析液泛与那些因素有关。
3.板间距加大,塔板的负荷性能图将发生什么变化?
4.如何利用该实验装置得到塔板的负荷性能图?
塔板上的流动状态主要取决于哪几个方面?。