3.如图,它可以看作是由一个菱形绕某一点旋
转一个角度后,顺次按这个角度同向旋转而得
到的,
①请你在图中用字母O标注出这一点;
②每次旋转了_______度;
③一共旋转了_______次.
O
4. 如图:ABC是等边三角形,D是BC上一点, ABD经过 旋转后到达ACE的位置。
(1)旋转中心是哪一点?
(2)旋转了多少度?
分析:关键是确定△ADE三个顶点的对 应点,即它们旋转后的图形。
1.下列现象中属于旋转的有( )个 ①地下水位逐年下降;②滑雪运动员在 雪地上滑行;③方向盘的转动;④水龙 头开关的转动;⑤钟摆的运动;⑥荡秋 千运动. A.2 B.3 C.4 D.5
2、香港特别行政区区旗中央的紫荆
花图案由5个相同的花瓣组成,它是由其 中一瓣经过几次旋转得到的?
旋转的概念: 旋转的性质:
变式:本图案可以看做是一个菱形通过几次
旋转得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
33个个 11次次 1680000
水 车
目标引领
1.通过观察具体实例认识旋转, 理解旋转的基本涵义; 2.探索旋转的基本性质; ⒊利用旋转的性质解决数学问题。
观察思考
问题
(1)钟表的指针在不停地旋转,从3点到5点, 时针转动了多少度? (2)风车车轮的每个叶片在风的吹动下转动到 新的位置. 这些现象有哪些共同特点?
归纳新知:
请大家运用刻度尺 和量角器度量线段和 有关角,并探索旋转 的性质.