模糊逻辑入门经典
- 格式:ppt
- 大小:2.62 MB
- 文档页数:32
3-3 模糊逻辑及不精确推理方法3-3-1 模糊逻辑3-3-1-1 模糊、概率和传统精确逻辑之间的关系传统逻辑:强调精确性、严格性。
概率事件的结局是:非此即彼。
模糊事件的结局是:亦此亦彼。
另外,处理概率问题和模糊问题的具体方法也不一样。
3-3-1-2 模糊逻辑的历史100多年前,Peirce 指出了模糊性在思维中的重要作用; 1923年Russel 再次指出这一点;1937年美国哲学家Black 首先对“模糊符号”进行了研究; 1940年德国数学家Weyl 开始研究模糊谓词;1951年法国数学家Menger 第一个使用“模糊集”术语(但解释仅在概率意义上);1965年Zadeh 发表了著名的“模糊集”论文。
模糊术语或模糊现象:“年轻”、“派头大”“一般”“可接受”“舒服”等。
3-3-1-3 模糊集合论一. 引入传统集合论中,一个对象是否属于一个集合是界线分明的。
可以用其特征函数⎩⎨⎧∉∈=A x Ax x C A ,0,1)(表示。
)(x C A 定义在某集合B 上,则称A 是B 的一个分明子集。
在模糊集理论中,)(x C A 仍然定义在B 上,但取值是0到1之间的任何实数(包含0和1)。
此时,A 是模糊子集。
B 的元素x 可以: 属于A (即)(x C A =1); 或不属于A (即)(x C A =0);或“在一定程度上”属于A (即0<)(x C A <1)。
一般,称模糊子集A 的特征函数)(x C A 为隶属函数,表示其在B 元素x 上的取值对A 的隶属度,用)(x A μ表示。
B 的模糊子集A 可表示为:}|))(,{(B x x x A A ∈=μ。
注:非空集合B 可以有无穷多个互不相同的模糊子集。
而空集只有一个模糊子集。
例子:各年龄阶段的人的集合。
则如果用B :表示各种年龄人的集合(实际上是一个小于人类最大岁数的整数集合);青年集合A 是B 的一个子集。
则一个人属于青年的程度随其年龄而不同。
第三章 模糊逻辑3.1 模糊逻辑代数的基本知识一、布尔代数和德·摩尔根代数逻辑代数是布尔(G .Boole )为把逻辑思维数学化而创立的一门学科,因此逻辑代数也叫布尔代数。
定义3.1.1 一个集合L ,如果在其中定义了两种运算∨和∧,具有下列性质: (P1)幂等律 对任意α∈L ,有α∨α=α α∧α=α (P2)交换律对任意α,β∈L 有α∨β=β∨α α∧β=β∧α(P3)结合律对任意α,β,γ∈L 有()=()αβγαβγ∨∨∨∨ ()=()αβγαβγ∧∧∧∧(P4)吸收律()αβββ∨∧= ()αβββ∧∨=则称L 是一个格,记作L = (,,)L ∨∧。
记普通关系≤为L 中的偏序,它定义为αβαββ≤⇔∨=(3.1)设A L ⊂,对任意A α∈,若存在L β∈,使αβ≤,则称β为A 的上界。
如果0β是A 的上界中最小的一个上界,则称0β为A 的上确界,记为}{0sup |A βαα=∈ 或 0Aαβα∈=∨ (3.2)若存在L γ∈,使γα≤,则称γ为A 的下界。
如果0γ是A 的下界中最大的一个下界,则称0γ为A 的下确界,记为{}0inf |A γαα=∈ 或0Aαγα∈=∧ (3.3)关于两个元素α和β的上确界记为α∨β,下确界记为α∧β。
定义3.1.2设(,,)L ∨∧是一个格,如果它还满足如下性质:(P5)分配律()()()αβγαγβγ∨∧=∧∨∧()()()αβγαγβγ∧∨=∨∧∨则称(,,)L ∨∧是一个分配格。
定义3.1.3设(,,)L ∨∧是分配格,在L 中存在两个元素,记为0和1,以及存在运算c,对L α∀∈,满足:(P1) 么元律11α∨= 1αα∧= 0αα∨= 00α∧=分别称0、1为最小、最大元。
(P2) 复原律()c c αα=(P3) 补余律1c αα∨=0c αα∧=则称(,,,)cL ∨∧是一个布尔代数。
({0,1},,,)c ∨∧是一个布尔代数。