第2章 金属材料的组织结构
- 格式:ppt
- 大小:10.99 MB
- 文档页数:129
金属材料的组织结构晶体结构是金属材料中最基本的组织结构。
金属材料的晶体结构是由原子通过化学键的方式排列而成的。
金属晶体结构通常为紧密堆积或者是面心立方结构。
紧密堆积的晶体结构中,原子分布紧密,没有空隙,金属的密度较高。
而面心立方结构中,每个原子周围都有最靠近的三个原子,因此,金属的面心立方结构也是最密堆积的结构之一、晶体结构的不同将导致金属的性能也有所不同。
晶粒结构是金属材料中相当重要的组织结构。
晶粒是由具有相同晶体结构的晶体单元构成的。
在金属材料加工过程中,晶粒会逐渐生长,最终形成多个晶粒相邻而不连续的结构。
晶粒的大小和形状对金属的性能非常重要。
晶粒尺寸越大,金属的强度就越低,但是其塑性和韧性会增加;而当晶粒尺寸较小时,金属的强度会提高,但是韧性和塑性会降低。
晶粒形状的不均衡也会对金属的性能产生重要影响。
晶粒中的缺陷(如晶界、孪晶等)也会影响金属的强度和韧性。
相结构是金属材料中不同组分的混合结构。
金属材料可以由一个或者多个相组成。
相是指具有相同化学成分和结构的区域。
在金属材料中,不同相之间的晶粒大小和分布状态也会影响材料的性能。
例如,在金属合金中,可以通过控制相的种类和分布来调节材料的硬度、强度、抗腐蚀性等性能。
除了上述的基本组织结构外,金属材料中还存在一些其他的组织结构,如晶体缺陷、析出物和纹理等。
晶体缺陷是指晶体中的缺陷或者杂质。
晶体缺陷的种类包括点缺陷(如空位、间隙原子等)、线缺陷(如晶界、位错等)和面缺陷(如孪晶界等)。
晶体缺陷会影响金属的力学性能和电学性能。
析出物是金属中的第二相,它们通过固溶度和固相反应形成。
析出物的尺寸和形状也会影响材料的性能。
纹理是指金属材料中晶粒的方向分布,它会对材料的机械性能、磁性能等产生影响。
综上所述,金属材料的组织结构对其性能和用途有着重要影响。
晶体结构、晶粒结构和相结构是金属材料的基本组织结构。
晶体结构决定了金属的原子排列方式,晶粒结构影响金属的强度和韧性,相结构调节金属的性能调节。
金属材料的结构与组织金属材料是指由金属元素组成的材料,具有优良的电导和热传导性能,因此广泛应用于工业制造和建筑领域。
金属材料的结构与组织对其性能有着重要影响,以下将从晶体结构、晶粒大小、晶界和位错等方面介绍金属材料的结构与组织。
首先是金属材料的晶体结构。
金属是由多个金属原子组成的晶格结构,具有高度的有序性。
常见的金属结构包括面心立方结构(FCC)、体心立方结构(BCC)和密排六方结构(HCP)。
FCC结构中,每个原子周围有12个最近邻原子,原子间的距离相等,如铝和铜。
BCC结构中,每个原子周围有8个最近邻原子,原子间的距离比FCC结构略大,如铁和钒。
HCP结构中,每个原子周围有12个最近邻原子,但原子间的距离比其他两种结构大,如钛和锆。
金属的晶体结构对材料的硬度、延展性和导电性能等有着重要影响。
其次是金属材料的晶粒大小。
晶粒是金属中具有相同晶体结构的晶胞的集合体。
金属材料的晶粒大小对其性能有着重要影响。
晶粒越小,材料的强度和硬度越高,延展性和塑性则较差;晶粒越大,材料的延展性和塑性越好,但强度和硬度相对较低。
晶粒大小的控制通常通过热处理、变形加工和再结晶等方法实现。
金属材料的结构还与晶界有关。
晶界是相邻两个晶粒之间的界面。
晶界具有比晶粒内部更高的活动性,容易成为材料中的非晶区域、孔隙和裂纹的起点。
晶粒内部原子排列有序,而晶界则是原子排列的不规则区域,原子间的距离不够紧密,因此晶界对材料的力学性能和耐腐蚀性能等有着重要影响。
晶界的稳定性和结构特点常通过电子显微镜和X射线衍射等技术进行研究。
最后是金属材料中的位错。
位错是指晶体中原子排列的缺陷或错位。
位错可以增加金属材料的塑性和韧性,使其具有较好的变形能力。
在金属中,位错的形成和移动是塑性变形的主要机制。
位错的种类包括直线位错、螺旋位错和平面位错等,其特点和形成机制各不相同。
位错的存在对金属材料的断裂和疲劳性能有重要影响。
综上所述,金属材料的结构与组织对其性能有着重要影响。
《工程材料及机械制造基础》习题参考答案第一章材料的种类与性能(P7)1、金属材料的使用性能包括哪些?力学性能、物理性能、化学性能等。
2、什么是金属的力学性能?它包括那些主要力学指标?金属材料的力学性能:金属材料在外力作用下所表现出来的与弹性和非弹性反应相关或涉及力与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
第二章材料的组织结构(P26)1、简述金属三种典型结构的特点。
体心立方晶格:晶格属于立方晶系,在晶胞的中心和每个顶角各有一个原子。
每个体心立方晶格的原子数为:2个。
塑性较好。
面心立方晶格:晶格属于立方晶系,在晶胞的8个顶角和6个面的中心各有一个原子。
每个面心立方晶格的原子数为:4个。
塑性优于体心立方晶格的金属。
密排六方晶格:晶格属于六方棱柱体,在六棱柱晶胞的12个项角上各有一个原子,两个端面的中心各有一个原子,晶胞内部有三个原子。
每个密排六方晶胞原子数为:6个,较脆2、金属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和面缺陷。
使金属抵抗塑性变形的能力提高,从而使金属强度、硬度提高,但防腐蚀能力下降。
3、合金元素在金属中存在的形式有哪几种?各具备什么特性?存在的形式有固溶体和金属化合物两种。
合金固溶在金属中引起固溶强化,使合金强度、硬度提高,塑性、韧性下降。
金属化合物提高合金的强度和硬度。
4、什么是固溶强化?造成固溶强化的原因是什么?固溶强化:因溶质原子的溶入引起合金强度、硬度升高的现象。
原因:固溶体中溶质原子的溶入引起晶格畸变,使晶体处于高能状态。
3、金属结晶的基本规律是什么?金属结晶由形核和长大两部分组成,并存在过冷度。
4、如果其他条件相同,试比较在下列铸造条件下,铸件晶粒的大小。
(1)金属型浇注与砂型浇注。
金属型浇注晶粒小。
(2)铸成薄件与铸成厚件。
铸成薄件晶粒小。
(3)浇注时采用振动与不采用振动。
采用振动晶粒小。
10、过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?冷却速度越快过冷度越大,使晶核生长速度大于晶粒长大速度,铸件晶粒得到细化。
第二章 金属与合金的晶体结构与结晶第一节 金属的晶体结构自然界的固态物质,根据原子在内部的排列特征可分为晶体与非晶体两大类。
晶体与非晶体的区别表现在许多方面。
晶体物质的基本质点(原子等)在空间排列是有一定规律的,故有规则的外形,有固定的熔点。
此外,晶体物质在不同方向上具有不同的性质,表现出各向异性的特征。
在一般情况下的固态金属就是晶体。
一、晶体结构的基础知识(1)晶格与晶胞为了形象描述晶体内部原子排列的规律,将原子抽象为几何点,并用一些假想连线将几何点连接起来,这样构成的空间格子称为晶格(图2-1)晶体中原子排列具有周期性变化的特点,通常从晶格中选取一个能够完整反映晶格特征的最小几何单元称为晶胞(图2-1),它具有很高对称性。
(2)晶胞表示方法不同元素结构不同,晶胞的大小和形状也有差异。
结晶学中规定,晶胞大小以其各棱边尺寸a 、b 、c 表示,称为晶格常数。
晶胞各棱边之间的夹角分别以α、β、γ表示。
当棱边a b c ==,棱边夹角90αβγ===︒时,这种晶胞称为简单立方晶胞。
(3)致密度金属晶胞中原子本身所占有的体积百分数,它用来表示原子在晶格中排列的紧密程度。
二、三种典型的金属晶格1、体心立方晶格晶胞示意图见图2-2a。
它的晶胞是一个立方体,立方体的8个顶角和晶胞各有一个原子,其单位晶胞原子数为2个,其致密度为0.68。
属于该晶格类型的常见金属有Cr、W、Mo、V、α-Fe等。
2、面心立方晶格晶胞示意图见图2-2b。
它的晶胞也是一个立方体,立方体的8个顶角和立方体的6个面中心各有一个原子,其单位晶胞原子数为4个,其致密度为0.74(原子排列较紧密)。
属于该晶格类型的常见金属有Al、Cu、Pb、Au、γ-Fe等。
3、密排六方晶格它的晶胞是一个正六方柱体,原子排列在柱体的每个顶角和上、下底面的中心,另外三个原子排列在柱体内,晶胞示意图见图2-2c。
其单位晶胞原子数为6个,致密度也是0.74。
属于该晶格类型常见金属有Mg、Zn、Be、Cd、α-Ti等。