解排列组合问题的十六种常用策略ppt
- 格式:ppt
- 大小:572.51 KB
- 文档页数:36
解排列组合问题的十七种常用策略排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。
同学们只有对基本的解题策略熟练掌握。
根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。
一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置113344A A A注:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 2545A A 1440二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
522522A A A =480注:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形有多少种? 20三.不相邻问题插空策略例 3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有46A 种不同的方法,由分步计数原理,节目的不同顺序共有5456A A =43200种注:元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。
解决排列组合问题常见策略一、合理选择主元素(确定谁选谁、选过的能否再选,用分步乘法计数原理)1、公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?2、公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?3、把4封不同的信全部任意投入到3个信箱中,不同的投法有多少种?4、某公车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有多少种?5、三个比赛项目,六人报名参加,下列条件下各有多少种不同方法?(1)每人参加一项; (2)每项一人且每人至多参加一项;(3)每项一人且每人参加项目数不限6、在5天内安排3次不同的考试,若每天至多安排1次考试,则有多少种不同的安排方案?二、特殊元素优先法(合理分类,准确分步)1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?2、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种?3、0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数?4、上午要上语文、数学、体育和外语四门课,而体育教师因故不能上第一节和第四节,则不同的排课方案有多少种?5、5人站成一排,A不能站两端,B不能站中间,有多少种不同的站法?6、五列火车停在五条轨道上,若甲车不停在第一轨道上,丙车不停在第三轨道上,则不同的停车方法有多少种?8、7、从6名短跑运动员种选4人参加4×100米接力赛,若甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法?三、相邻问题——捆绑法1、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?2、三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?3、10个人站成一排,规定甲乙两人之间必须有4个人,不同的排法有_______种.4、一排长椅上共有10个座位,现有4人就坐,恰有五个连续空位的坐法种数为______种.四、不相邻问题——插空法1、7人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?2、三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?3、6个停车位置,有3辆车需要停放,若要使三个空位连在一起,则停放的方法有_________种。
完成一件事,有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法. 12nN=m +m ++m 复习巩固1.分类计数原理(加法原理)完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 12nN=m m m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.※解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置先排末位共有___ 然后排首位共有___最后排其它位置共有___13C 13C 14C 14C 34A 34A 由分步计数原理得=28813C 14C 34A 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件1.7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习题解一:分两步完成;第一步选两葵花之外的花占据两端和中间的位置35A 有种排法第二步排其余的位置:3454A A ∴共有种不同的排法44有A 种排法解二:第一步由葵花去占位:24A 有种排法第二步由其余元素占位:55A 有种排法2545A A ∴共有种不同的排法小结:当排列或组合问题中,若某些元素或某些位置有特殊要求的时候,那么,一般先按排这些特殊元素或位置,然后再按排其它元素或位置,这种方法叫特殊元素(位置)分析法。
排列、组合全部解题方法一、特殊元素和特殊位置优先策略例1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数?解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C ,然后排首位共有14C ,最后排其它位置共有34A 。
由分步计数原理得113434288C C A =。
练习:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,有多少不同的种法?二、相邻元素捆绑策略例2、 7人站成一排,其中甲乙相邻且丙丁相邻,有多少种不同的排法?解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法。
练习:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20种。
三、不相邻问题插空策略例3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行:第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法。
由分步计数原理,节目的不同顺序共有5456A A 种。
练习:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30种。
四、定序问题倍缩空位插入策略例4、7人排队,其中甲乙丙3人顺序一定,共有多少不同的排法? 解:(1)(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A 。
(2)(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。
解排列组合问题的常见方法及策略一、特殊元素(位置)优先策略对于“在”与“不在”等有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法)。
练习1、7名同学站成一排,甲、乙不站排头和排尾的排法有多少种?练习2、由0,1,……,5可以组成多少个无重复数字的五位奇数?练习3、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,有多少种不同的播放方式(结果用数值表示)?练习4、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习5、甲、乙、丙、丁、戊5名学生进行某种劳动技术竞赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”。
从这个回答分析,5人的名次排列共有多少种不同情况?二、相邻问题捆绑法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.这种方法叫做捆邦法练习1、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有多少种?练习2、7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习3、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形有多少种?三、不相邻问题插空法不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
练习1、6名同学排成一排,其中甲,乙两人不相邻的排法有多少种?练习2、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法?练习3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有多少个?练习4、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,有多少种不同的排法?练习5、八把椅子放成一排,现有三个人去坐,要求每人两边都有空椅子,共有多少种不同的坐法?练习6、三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?四、总体淘汰法有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.练习1、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习2、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?练习3、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有多少个?练习4、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中1不在个位的数共有多少种?五、多排问题直排策略一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究练习1、8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法?练习2、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少排法?六、环排问题线排策略练习1、8人围桌而坐,共有多少种坐法?练习2、6颗颜色不同的钻石,可穿成几种钻石圈?七、定序问题倍缩策略定序问题可以用倍缩法,还可转化为占位插空模型处理练习1、某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
排列组合问题的十七种常用策略教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运 用解题策略解决简单的综合应用题。
提升学生解决问题分析问题的水平3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类加法计数原理完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:n 21m m m N +++= 种不同的方法. 2.分步乘法计数原理完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:n 21m m m N = 种不同的方法 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都能够独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时实行,确定分多少步及多少类3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素※解决排列组合综合性问题,往往类与步交叉,所以必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5能够组成多少个没有重复数字五位奇数.解:因为末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置:先排末位共有 13C然后排首位共有 14C ,最后排其它位置共有 34A ,由分步乘法计数原理得341413 A C C总结:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。