场论
- 格式:doc
- 大小:173.50 KB
- 文档页数:5
场论名词解释传播学
传播学是一门研究人类信息传播过程、传播媒介与传播效果的综
合性学科。
其主要研究内容包括:信息传播的过程、渠道和方式;传
播对象、受众及其反应;传播媒介的特点和影响;传播效果的评估等。
在传播学的研究范畴中,常涉及到以下概念:
1.传播过程:指信息在传播渠道中的传递和交互过程,包括信息源、媒介、受众、语境等环节。
2.受众:指接受信息的人群或个体,是传播的最终目标和关键环节,其特点和反应对传播效果具有重要影响。
3.媒介:指传播信息的载体,包括口头交流、书籍、报刊、广播
电视、互联网等。
4.语境:指信息传播所处的背景、环境和历史条件,对信息的产生、传播和接受产生重要影响。
除此之外,传播学还涉及到相关的理论模型、方法论、策略设计等方面,可以为社会、企业、政府等各类组织提供决策参考和管理依据。
场论的名词解释引言:场论(Field Theory),是物理学中的一个重要分支。
它被广泛应用于粒子物理学、相对论、统计力学等领域,为我们理解自然界的基本原理提供了一种深入的思考方式。
本文将对场论进行详细解释和探讨,带领读者进入这个神秘而美妙的世界。
1. 场的概念与特性在物理学中,场是一种描述物质或物质运动的物理量分布的数学对象。
它可以是标量场(Scalar Field)、矢量场(Vector Field)、张量场(Tensor Field)等。
场具有局部性、连续性和相对性等基本特性。
局部性意味着场的值在空间中的任意一点都是独立的;连续性表示场的取值在空间中任意两点之间是连续变化的;相对性则是指场的取值与观察者的参考系有关。
2. 场的基本描述场论采用数学上的场方程来描述和推导物理现象。
典型的场方程包括著名的波动方程、麦克斯韦方程组和薛定谔方程等。
这些方程可以通过变分原理和作用量原理来推导,从而获得代表系统演化的微分方程。
通过求解这些方程,我们可以得到描述场的物理量和它们随时间和空间的变化而变化的解。
3. 场与粒子的关系场论的一个重要概念是“场粒子二重性”。
根据量子力学的观点,场与粒子是密不可分的。
简单来说,场是描述粒子的数学对象,而粒子则是场的激发或扰动。
例如,在量子场论中,电子场和正电子场可以相互作用,从而产生电子-正电子对。
这种相互作用过程可以通过费曼图等图形进行描述,使我们对粒子的产生和湮灭有更直观的理解。
4. 场的量子化场论的量子化是将经典场论转化为量子场论的过程。
在经典场论中,场是连续的,而在量子场论中,场被量子化成离散的粒子。
量子场论采用了量子力学和量子统计的框架,引入了算符和正则量子化方法等技巧,从而使得场可以像粒子一样被描述。
量子场论的发展为我们理解基本粒子和宇宙微观结构提供了理论基础。
5. 场论的应用和发展场论的应用广泛涉及微观和宏观世界的各个领域。
在粒子物理学中,场论为我们理解基本粒子的相互作用提供了框架。
矢量分析与场论简介矢量分析与场论是研究物理学中的重要分支,广泛应用于电磁学、流体力学、力学等领域。
矢量分析用于描述和分析具有大小和方向的物理量,例如力、速度、加速度等。
场论则将物理量看作空间中的场,并通过场的分布和变化来描述物理现象。
本文将介绍矢量分析的基本概念和常见运算,并探讨场论的基本原理和应用。
矢量分析矢量的定义和表示矢量是具有大小和方向的物理量。
在二维空间中,矢量可以表示为有序对(x, y),其中x和y分别表示矢量在x轴和y轴上的分量。
在三维空间中,矢量可以表示为有序三元组(x, y, z),其中x、y和z分别表示矢量在x轴、y轴和z轴上的分量。
通常将矢量用粗体字母如A表示。
矢量的运算矢量之间可以进行加法、减法和数量乘法等运算。
矢量的加法两个矢量A和B的加法定义为将它们的相应分量相加,即:A +B = (Ax + Bx, Ay + By)两个矢量A和B的减法定义为将B的相应分量取负后与A相加,即:A -B = (Ax - Bx, Ay - By)数量乘法将矢量的每个分量乘以一个实数称为数量乘法,表示为:c A = (cAx, cAy)矢量的模和方向矢量的模表示矢量的大小,矢量的方向表示矢量的指向。
在二维空间中,矢量(x, y)的模可以通过勾股定理求得:||A|| = sqrt(x2 + y2)在三维空间中,矢量(x, y, z)的模可以通过类似的方法求得:||A|| = sqrt(x2 + y2 + z2)矢量的方向可以用一个角度来表示,通常用与x轴的夹角来表示,记为θ。
矢量的点积和叉积矢量的点积和叉积是矢量分析中常用的运算。
两个矢量A和B的点积定义为两个矢量的模相乘再乘以它们夹角的余弦值,表示为A·B:A·B = ||A|| ||B|| cos(θ)点积的结果是一个标量,即一个没有方向的量。
点积还满足交换律和分配律。
矢量的叉积两个矢量A和B的叉积定义为一个新的矢量,其模等于两个矢量模的乘积再乘以它们夹角的正弦值,表示为A×B:A×B = ||A|| ||B|| sin(θ) n其中n是一个垂直于A和B的单位矢量,它的方向由右手法则确定。
第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。
*1.【圆函数】e (φ)=cos φi +sin φj .*2.a.弧长的微分ds =以点M 为界,当ds 位于s 增大一方时取正号;反之取负号.b.矢性函数的微分的模,等于(其矢端曲线的)弧微分的绝对值.矢性函数(其矢端曲线的)弧长s 的导数d r /ds 在几何上为一切单位矢量,恒指向s 增大的一方.+3.证明||.ds d d r t dt=证,d dx dy dz dtdt dtr i j k dt =++d dt r =由于ds 与dt 有相同的符号,故有.ds d dt dt r ===由此可知:矢端曲线的切向单位矢量.d d ds d d dt dt dt dtd r s r r r ==*4.【二重矢积】公式:a ×(b ×c )=(a ·c )b -(a ·b )c .+5.矢性函数A (t)的模不变的充要条件是.d d A A t•=0证假定|A |=常数,则有A 2=|A |2=常数.两端对t 求导[左端用导数公式],就得到.d d A A t •=0反之,若有.d d A A t •=0则有,d dt A =20从而有A 2=|A |2=常数.所有有|A |=常数.定常矢量A (t)与其导矢相互垂直.*6.''.A B A dt t B B A d ×=×+×∫∫''.A B A dt t B B A d •=•−•∫∫+7.一质点沿曲线r =rcos φi +rsin φj 运动,其中r,φ均为时间t 的函数.求速度v 在矢径方向及其垂直方向上的投影v r 和v φ.解将r 写成r =r e (φ),则有()().d dr d r dt dt v d r e e t ϕϕϕ==+1由此可知:,.r dr d v v r dt dtϕϕ==[使用圆函数e (φ),则e (φ)及e 1(φ)之方向即为矢径方向及与之垂直的方向.]*8.【矢量线】A =A x i +A y j +A z k 为单值、连续且有一阶连续导数。
场论和宏观场论-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括以下信息:场论是物理学和数学中的一个重要分支,它研究的是各种物理量的时空分布,并描述它们随时间和空间的变化规律。
场论的引入使我们能够更好地理解自然界中的各种现象,并为我们提供了解释和预测宏观世界的新方法。
本文将重点介绍场论以及它在宏观领域的应用,即宏观场论。
场论作为一种研究方法,可以广泛应用于物理学、化学、生物学、经济学等多个领域。
它的核心思想是将物质和能量视为场的传播和相互作用,从而揭示了宏观世界中复杂现象背后的规律。
在场论中,我们将物理量视为场,即空间中的标量场、矢量场或张量场。
这些场可以是连续的、定态的,也可以是随时间和位置变化的动态场。
而场的性质和特点则决定了它们所描述的物理现象的行为和规律。
宏观场论则是将场论的方法应用于大尺度、大体积的系统中,以研究其宏观性质和行为。
宏观场的概念引入了统计物理的思想,通过对大量微观粒子的平均行为进行描述,从而揭示宏观系统的宏观行为和宏观规律。
宏观场论在物理学、化学、生物学等领域都有着广泛的应用。
在物理学中,它被用来描述电磁场、引力场、量子场等各种场的相互作用和传播规律。
在化学中,它被用来研究物质的相变、反应动力学等宏观性质。
在生物学中,它被用来分析生物体内的电信号传导、化学信号传递等过程。
通过本文的研究,我们将深入探讨场论和宏观场论的重要性,并展望未来的发展方向。
希望通过对场论和宏观场论的探索,我们能够更好地理解和解释自然界中的各种现象,为人类社会的发展提供新的思路和方法。
文章结构部分的内容可以描述文章的整体框架和各个章节的内容安排。
可以参考以下内容:1.2 文章结构本文将按照以下结构进行阐述场论和宏观场论的相关内容:第一部分:引言在引言中,我们将首先概述场论和宏观场论的背景和发展,介绍它们在物理学、社会科学和生物学等领域的应用。
然后,我们将简要叙述本文的结构,概括各个章节的内容,以便读者对全文有一个整体的了解。
第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。
均匀场:同一时刻内各点函数的值都相等。
反之为不均匀场。
定常场:场内函数值不依赖于时间。
反之为不定常场。
1.2场的几何表示标量场:等位线。
矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。
1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。
在s 方向上的方向导数等于梯度矢量在s 方向上的投影。
梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。
2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。
定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。
例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。
I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。
§2 场论初步
一、场论的基本概念及梯度、散度与旋度
[标量场] 空间区域D的每点M(x,y,z)对应一个数量值(x,y,z),它在此空间区域
D上就构成一个标量场,用点M(x,y,z)的标函数(x,y,z)表示.若M的位置用矢
径r确定,则标量可以看作变矢r的函数=(r).
例如温度场u(x,y,z),密度场,电位场e(x,y,z)都是标量场.
[矢量场] 空间区域D的每点M(x,y,z)对应一个矢量值R(x,y,z),它在此空间区域D上就构成一个矢量场,用点M(x,y,z)的矢量函数R(x,y,z)表示.若M的位置用矢径r确定,则矢量R可以看作变矢r的矢函数R(r):
R(r)=X(x,y,z)i+Y(x,y,z)j+Z(x,y,z)k
例如流速场(x,y,z),电场E(x,y,z),磁场H(x,y,z)都是矢量场.
与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义.
[梯度]
grad=(,,)==i+j+k
式中=i+j+k称为哈密顿算子,也称为耐普拉算子.grad有的书刊中
记作del.
grad的方向与过点(x,y,z)的等量面=C的法线方向N重合,并指向
增加的一方,是函数变化率最大的方向,它的长度等于.
梯度具有性质:
grad(+)=grad+grad(、为常数)
grad()=grad+grad
grad F()=
[方向导数]
=l·grad=cos+cos+cos
式中l=(cos,cos,cos)为方向l的单位矢量,,,为其方向角. 方向导数为在方向l上的变化律,它等于梯度在方向l上的投影. [散度]
div R=++=·R=div(X , Y , Z)
式中为哈密顿算子.
散度具有性质:
div(a+b)=div a+div b(、为常数)
div(a)=div a+a grad
div(a×b)=b·rot a-a·rot b
[旋度]
rot R=()i+()j+()k=×R=
式中为哈密顿算子,旋度也称涡度,rot R有的书刊中记作curl R.
旋度具有性质:
rot(a+b)=rot a+rot b(、为常数)
rot(a)=rot a+a×grad
rot(a×b)=(b·)a-(a·)b+(div b)a-(div a)b
[梯度、散度、旋度混合运算] 运算grad作用到一个标量场产生矢量场grad,
运算div作用到一个矢量场R产生标量场div R,运算rot作用到一个矢量场R 产生新的矢量场
rot R.这三种运算的混合运算公式如下:
div rot R=0
rot grad=0
div grad=++=
grad div R=(R)
rot rot R=×(×R)
div grad(+)=div grad+div grad(、为常数)
div grad()=div grad+div grad +2grad·grad
grad div R-rot rot R=R
式中为哈密顿算子,=·=2为拉普拉斯算子.
[势量场(守恒场)] 若矢量场R(x,y,z)是某一标函数(x,y,z)的梯度,即
R=grad或X=,Y=,Z=
则R称为势量场,标函数称为R的势函数.
矢量场R为势量场的充分必要条件是:rot R=0,或
=,=,=
势函数计算公式
(x,y,z)=(x
,y0,z0)++
+
[无散场(管形场)] 若矢量场R的散度为零,即div R=0,则R称为无散场.这时必存在一个无散场T,使R=rot T,对任意点M有
T=
式中r为dV到M的距离,积分是对整个空间进行的.
[无旋场] 若矢量场R的旋度为零,即rot R=0,则R称为无旋场.势量场
总是一个无旋场,这时必存在一个标函数,使R=grad,而对任意点M有
=-
式中r为d V到M的距离,积分是对整个空间进行的.。