工程数学 场论
- 格式:ppt
- 大小:3.16 MB
- 文档页数:10
工程数学系列课---矢量分析与场论《矢量分析与场论》教学大纲Vector Analysis and Field Theory课程编号:1000120 课程类别:必修课适用专业:电气专业本科学时:36学分:3 教研室主任:刘照升大纲执笔人:王佳秋大纲审批人:一、本课程的教学目的、性质和任务《矢量分析与场论》是高等院校机电等专业一门重要的技术基础课程,也是一门工具课程。
本课程的任务是要求学生掌握矢量分析与场论方面的有关基本理论,并应用所学知识解决所从事专业及在科学、工程技术中实际问题的能力《矢量分析与场论》的主要内容:矢量分析、场论、哈米尔顿算子。
二、本课程的基本要求(一)矢量分析1.理解矢性函数、矢端曲线的概念;2.了解矢性函数极限及连续性概念;3.掌握矢性函数的导数与积分的求法,了解导矢的几何意义与物理意义;4.掌握矢性函数的积分求法(二)场论1.理解场的概念、数量场的等值面及矢量场的矢量线的概念;2.掌握数量场的梯度的物理意义,掌握梯度的求法及与方向导数的关系;3.掌握矢量场的散度的物理意义,掌握散度的求法及与通量的关系;4.掌握矢量场的旋度的物理意义,掌握旋度的求法及与环量的关系;5.知道几种重要的矢量场(有势场、管形场、调和场)。
(三)哈米尔顿算子∇1.掌握哈米尔顿算子《W.R.Hamilton》的记号及运算规则;2.能使用∇算子进行一些简单的计算及证明。
三、本课程与有其它课程的关系本课程是多元微积分学的延伸与高等数学、线性代数、复变函数等课程具有密切的关系,它是高等工科学校机电专业一门重要的技术基础课程及工具课程,通过本课程的学习,使学生掌握矢量分析与场论方面的有关知识及基本方法,为学好后继课程:电工学、电磁学、电动力学、流体力学、热力学的学习奠定良好的基础。
四、本课程的教学内容重点、难点1.第一章的重点是掌握矢性函数的概念及矢性函数极限与连续性概念,掌握矢性函数导数与微分、积分的求法。
*1.【圆函数】e (φ)=cos φi +sin φj .*2.a.弧长的微分ds =以点M 为界,当ds 位于s 增大一方时取正号;反之取负号.b.矢性函数的微分的模,等于(其矢端曲线的)弧微分的绝对值.矢性函数(其矢端曲线的)弧长s 的导数d r /ds 在几何上为一切单位矢量,恒指向s 增大的一方.+3.证明||.ds d d r t dt=证,d dx dy dz dtdt dtr i j k dt =++d dt r =由于ds 与dt 有相同的符号,故有.ds d dt dt r ===由此可知:矢端曲线的切向单位矢量.d d ds d d dt dt dt dtd r s r r r ==*4.【二重矢积】公式:a ×(b ×c )=(a ·c )b -(a ·b )c .+5.矢性函数A (t)的模不变的充要条件是.d d A A t•=0证假定|A |=常数,则有A 2=|A |2=常数.两端对t 求导[左端用导数公式],就得到.d d A A t •=0反之,若有.d d A A t •=0则有,d dt A =20从而有A 2=|A |2=常数.所有有|A |=常数.定常矢量A (t)与其导矢相互垂直.*6.''.A B A dt t B B A d ×=×+×∫∫''.A B A dt t B B A d •=•−•∫∫+7.一质点沿曲线r =rcos φi +rsin φj 运动,其中r,φ均为时间t 的函数.求速度v 在矢径方向及其垂直方向上的投影v r 和v φ.解将r 写成r =r e (φ),则有()().d dr d r dt dt v d r e e t ϕϕϕ==+1由此可知:,.r dr d v v r dt dtϕϕ==[使用圆函数e (φ),则e (φ)及e 1(φ)之方向即为矢径方向及与之垂直的方向.]*8.【矢量线】A =A x i +A y j +A z k 为单值、连续且有一阶连续导数。
考研工程数学知识点梳理一、数列与数学归纳法数列的概念与性质等差数列与等差数列的通项公式等比数列与等比数列的通项公式数学归纳法的基本思想与应用二、极限与连续函数函数极限的概念与性质极限的四则运算法则无穷大与无穷小连续函数与间断点利用极限计算函数的连续性与间断点初等函数的连续性与间断点三、导数与微分函数的导数概念与性质基本初等函数的导数公式导数的四则运算法则高阶导数与莱布尼兹公式隐函数求导参数方程求导微分的概念与性质高阶微分与泰勒展开四、定积分与不定积分定积分的概念与性质定积分的计算与应用牛顿—莱布尼兹公式不定积分的概念与性质不定积分的基本公式换元积分法分部积分法定积分与不定积分的关系五、微分方程常微分方程的基本概念与性质一阶常微分方程解法可分离变量方程一阶线性齐次方程与非齐次方程二阶常系数齐次线性方程解法二阶常系数非齐次线性方程解法常系数线性微分方程组应用问题的建模与求解六、无穷级数与幂级数数项级数的基本概念与性质正项级数的审敛法交错级数与绝对收敛性函数项级数与幂级数幂级数的收敛半径与收敛区间幂级数的逐项求导与逐项积分幂级数的和函数七、多元函数微分学二元函数的极限与连续性偏导数的定义与计算全微分的概念与计算多元函数的隐函数求导多元函数的极值与条件极值多元复合函数的导数多元函数的泰勒公式八、空间解析几何空间点、直线、平面的基本性质空间直线与平面的位置关系空间曲线与曲面的方程与性质曲线的切向量与法平面柱面与曲面的求交与切线空间曲线与曲面的参数方程九、多元函数积分学二重积分的概念与性质二重积分的计算方法三重积分与累次积分三重积分的计算方法曲线积分与曲面积分格林公式与高斯公式应用问题的建模与求解总结:本文对考研工程数学的知识点进行了梳理,包括数列与数学归纳法、极限与连续函数、导数与微分、定积分与不定积分、微分方程、无穷级数与幂级数、多元函数微分学、空间解析几何和多元函数积分学等内容。
每个知识点都有相应的概念、性质、公式和应用问题的求解方法,在文章中运用合适的格式进行叙述,使读者能够清晰地理解每个知识点的要点和重点。
工程数知识点总结工程数学是工程领域中的一门基础学科,它是数学的一个分支,旨在为工程问题建立数学模型,并使用数学方法解决工程中的问题。
工程数学的研究内容非常广泛,包括微积分、线性代数、概率统计、离散数学等多个方面的知识。
本文将从工程数学的基本概念和基本原理出发,系统地介绍工程数学的各个知识点。
一、微积分微积分是工程数学中最重要的一个分支,它是研究函数的极限、导数、积分和级数的数学方法。
在工程领域中,微积分被广泛应用于求解各种问题,包括曲线的长度、曲线下面积、物体的体积和表面积、动力学分析、电路分析等。
因此,对微积分的学习是工程学生的必修课程。
1.1 函数的极限与连续性几乎所有的微积分知识都是建立在函数的极限和连续性基础上的。
函数的极限是描述函数在某一点附近的变化趋势,它是微积分的基本概念。
函数在某一点处的极限存在的充分必要条件是函数在该点处连续。
因此,函数的连续性也是微积分中的重要内容。
1.2 导数与微分导数是描述函数在某一点处的变化率,它是微积分的重要概念。
在工程中,导数被广泛应用于求解问题的最优解,如最小化成本、最大化收益等。
微分是导数的一种近似表达,它被应用在函数近似和微分方程的求解中。
1.3 积分与不定积分积分是描述函数下方的面积,它是微积分的另一重要概念。
在工程领域中,积分被广泛应用于求解曲线下的面积、物体的体积和表面积等。
不定积分是积分的一种形式,它是积分的反运算,常用于求解不定积分方程。
1.4 微分方程微分方程是描述自变量和因变量及其导数之间关系的方程,它是微积分在实际问题中的应用。
在工程领域中,微分方程被广泛应用于描述动力学系统、电路系统、热传导系统、弹性系统等,因此它是工程数学中非常重要的知识点。
二、线性代数线性代数是研究向量空间和线性变换的数学方法,它是工程数学中的另一个重要分支。
在工程问题中,线性代数被广泛应用于解决线性方程组、矩阵运算、特征值和特征向量等问题,因此对线性代数的学习也是工程学生的必修课程。
工程数学知识点第一篇线性代数第1章行列式1.二阶、三阶行列式的计算F 22.行列式的性质(转置,换行,数乘,求利数乘求和)P3, P4, P52—-3(2)3.行列式展开(代数余子式)P74.利用性质及行列式展开法则计算行列式(造零降阶法)5.字母型行列式计算(爪型)P53——5 (2)6.矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别7.矩阵的运算I加减P20、数乘P21、乘法P22、转置P26、方阵的幕、乘法不滅足交疾卿消去律)(枫次口)8.特殊的矩阵(对角、数量、单位矩阵(E)、三角形矩阵)9.矩阵的初等变换(三种)、行阶梯形、行最简形10.逆矩阵的定义、运算性质11.伴随矩阵P3812.利用初等变换求逆矩阵—P44例31 (两阶更简单)13.矩阵的秩的概念及利用初等变换求矩阵的秩第2章线性方程组1.线性方程组的求解〈分非齐次的和齐忧扪P65例3、例4第3章特征值的求解(特征向量不作要求)P89例1笫二篇概率论第4章概率的基木概念及计算1.基本概念:必然现象、随机现象、随机试验、样本空间、样本点、随机事件(事件)、基本事件(样本点)、不可能事件、必然事件、事件的包含与相等、和(并)事件、积(交)事件、互不相容(互斥)的事件、逆事件、频率、概率、概率的可加性(互不和容)、概率的加法公式(相容)、古典(等可能)概型P130、放回抽样方式、不放回抽样方式P132——例13、事件相互独立、条件概率P135引例2、基本公式:n概率的可加性(互不相容)P(£U舛…U A”)=£P(4)概率的加法公式(相容)P (AU B) = P (A) + P(B)- P(AB)击落飞机问题概率的乘法公式P (AB )= P (B )P (A/B )事件A 和B 独立,妙歹P (AB ) = P (A )P (B )3、基本结论:当事件A 和B 相互独立时,我们可以证明,事件亦相互独立。
第5章随机变量1、基本概念:随机变量、离散型和连续型随机变量、离散型随机变量的概率分布律、概率分布函数(F (x ) = P{X5x},-ooVxv+oo )、连续型随机变量的 概率密度函数(密度函数或密度)、分布函数6P{X<x} = F(x) = J v /(zM-oo<x<+oo , P{X>x} = l-P{X<x} ; P158、P161——例20、随机变量的独立、随机变量的函数及其分布(P192 定理)2、 基本公式:六种分布的分布律或概率密度函数3、基本结论:连续型随机变量在某一点的概率为0,即P{X=x}=0 第6章 随机变量的数字特征、几个极限定理1、基本概念:痔散劉口连续型随机变量的数学期望PL90、方差P 恢 及其性 质、随机变量函数的数学期望P195——例12、k 阶(原点)矩、k 阶中心 矩 2、基木公式:(1)数学期望(平均值、期望值、均值人1) E(X) = £xf{X =兀} = £壬口,E(X) = ^2 xf {x)dx /=l i=l f2 ) Y = g(X\E (y )= E(g(X)) = Yg(Xi )Pi ,E(Y) = E(g(X))=匚g (兀)代x)必Z=1 YE(C) = C, E(CX) = CE(X),E(X + 丫)二 E(X) + E(Y),E(XY) = E(X)E(Y)(X, 丫独立)(2)方差:1) D (X) = E[X-E(X)]2=£x-E(X)]2p=匚[兀—E(X)]2/(Q 心i=l f服从正态分布的随机变量的概率计算P165 例23、例25D (C )=o,o (cx )= C 2D (X ),o (x + y )= D (X )+o (y )(x, 丫独立) (3)标准差(均方差):EX ) = JD (X )(与随机变量有相同的量纲) 3、基本结论:(1) 0-1 (p )分布:(P151 表格形式)P{X=k} = p k (\-p )[-\k = ^\ E(X) = p , D(X) = pq = p(l_p)(2) n 重贝努里试验、二项分布(b(n,p)):p[X=k} = C^p k (\-p)n 'k,k = 0,1,2,…,M P153 ——例 10 E(X) = np , D(X) = npq - np(\ - p)(3) 泊松公布(Poisson 龙(2)): P{X = £} = ・一K = 0丄2,… k\ E(X) = a, D(X) = A***在实际计算中,当n >10,p<0」时,我们有如下的泊松近似公式E(X) = “,D(X) = CT 2,(T (X) =(T 1 上(7)标准正态分布(N0角):(p{x )^-=e \-00<%<+00,①(兀)+①(_尢)=1yjl/l (5)均匀分布 5,b )): /(x)= 1 b-a 0 a<x<b ,F(x)= 其它 x-a b-a x<a a <x<b x>b(6)正态分布 (N(“Q 2)): /(x) 1y/27T (T (4)指数分布(E(/t),A>0): f(x) =p, F(x) = x<0 1-e~Ax 0 x>0 x<0(8) n 个相互独立的正态随机变量的线性函数述是服从正态分布(P202)第三篇数理统计第7章数理统计的基本概念1、 基本概念:总体(母体)、个体、样本(子样)、样本观测值(实现)、简单 随机样本(随机性、独立同分布性)、统计量的判断P218、统计量的观测值、 抽样分布2、 基本公式:(1) 样本平均值:x=-Yx i(2) 样本方差:s 2 =-Y (X i -X )2 =-^—(YX i 2 -nX 2)n — 1 匸] n — l /=i (3) 样本标准差:s =1 ”(4)样本k 阶原点矩:人=一£X :,k 八2 (5)样本k 阶中心矩:B 严一工(X 厂戈Y,k = \,2,…53、基本结论:设X 〜N (O ,I ),X 「X2,・・・X ”,为X 的一个样本,它们的平方各也是 一个随机变量,记才=X : + X ;,+・・・+ X :,则才〜X \ri )设X 〜), “和,已知,X|, X?,…X”,为X 的一个样本,2 于是于〜叽),曰,2,..“则有辛宁)〜以)• (3)若力2〜力2⑺),则E (才)二仏D (力2 )二2n才分布的可加性:若};〜/("),岭〜才(“2),且片与冬独立, 则W+E 〜力2(厲+$)y(5) 定理3:若X 〜N (O,1),Y 〜才(心且X 与Y 独立,则-r (/?)y/Y/n(6) 定理4:若X 〜才(加,Y 〜力2何,且x 与Y 独立,贝怀=兰少.〜F ("〃)Yin(7) 定理5:若Xi ,X2,・・・Xn 为总体N (“Q 2)的一个样本,则样本均值X-N(1) 定理2: P221 例 1(jU,(y2/n)若X] ,X 2,••-X”为正态总体N(//Q 2 )的一个样本,则对于样本 均值尢和样本方差严有(8) 定理6: (1 mO51 2相互独立(2) ("-1严 ~力2(”_1)(3) £(S 2) = a 2,D(S 2) = —n-\若X\,X“…X”为正态总体N(“Q 2 )的一个样本,则 定理 7: X-/A ( n吋心)若乂皿“…乂珂和也,…匕2分别为总体N (耳,于)和川(〃2&)的(10) 定理&相互独立的样本,样本均值分别为壬和习样本方差分别为S :和S ;$2 二(厲-1)S ; +(〃2 -1)S ;" q + § _ 2 设x…x 2,••-X 叭和齐必,…人分别为总体N (角,于)和"(“2 Q )的(11) 定理9:相互独立的样木,样木方差分别为S :和S ;,o2 2贝IJ 诂灼~弘厂1”一1)S 2^11 工(12) Z 分布:69(x) = /— e 2 — oovxv+ooZ 的上侧 a 分位点 Z/ P{Y>b} =「f(y)dy = a,b[]z f/Z 的下侧a 分位点Z\y :P{Y<a} = J ; f{y)dy =久或 P{ Y >4 =厂 fWy = i~^aD £z 的双侧G 分位点佥/2,Z,-a/2:P{a<Y <b} = ^ f (y )dy = l-a,aU 乙如=S ,加(9) 2 则(1 )X-y~AT (^-//2A+处)或[/ = (2)当材未知,(乂 仏)其屮(13)才⑺)分布:才⑺的上侧G分位点力;⑺):P{Y >/?} =「/(刃心=%加龙:(72)X2 S)的卜侧。