门电路构成的单稳态触发器及典型应用分析
- 格式:docx
- 大小:353.26 KB
- 文档页数:5
门电路组成的微分型单稳态触发器单稳态触发器的特点:1. 电路中有一个稳态,一个暂稳态。
2. 在外来触发信号作用下,电路由稳态翻转到暂稳态。
3. 暂稳态是一个不能长期保持的状态,由于电路中RC 延时环节的作用,经过一段时间后,电路会自动返回到稳态。
暂稳态的持续时间取决于RC 电路的参数值。
单稳态触发器的这些特点被广泛地应用于脉冲波形的变换与延时中。
1、电路组成及工作原理微分型单稳态触发器可由与非门和或非门电路组成,图1(a)、(b)分别为由与非门和或非门构成的单稳态触发器。
与基本RC 触发器不同,构成单稳态触发器的两个规律门是由RC 耦合的,由于RC 电路为微分电路的形式,故称为微分型单稳态触发器。
下面以CMOS或非门构成的单稳态触发器为例,来说明它的工作原理。
(a) 由与非门构成的微分型单稳态触发器(b) 由或非门构成的微分型单稳态触发器图1 微分型单稳态触发器1. 没有触发信号时,电路处于一种稳态。
没有触发信号时,vⅠ为低电平。
由于门G2的输入端经电阻R 接VDD,因此vO2为低电平;G1的两个输入均为0,故输出vO1为高电平,电容两端的电压接近0V,这是电路的“稳态”。
在触发信号到来之前电路始终处于这个状态:vO1=VOH,vO2=VOL。
2. 外加触发信号,电路由稳态翻转到暂稳态。
当v1正跳变上升到Vth后,开头G1的输出vO1由高变低,经电容C 耦合,使vR为低电平,于是G2的输出vO2由低电平变为高电平。
vO2的高电平接至G1门的输入端,从而在此瞬间导致如下正反馈过程:这样G1导通,G2截止在瞬间完成。
此时,即使触发信号vⅠ撤除(vⅠ变为低电平),由于vO2的作用,vO1仍维持低电平。
然而,电路的这种状态是不能长期保持的,故称之为暂稳态。
暂稳态时,vO1=VOL,vO2=VOH。
3. 电容充电,电路由暂稳态自动返回至稳态。
在暂稳态期间,电源经电阻R和门G1的导通工作管对电容C充电,随着充电时间的增加,vC增加,使vR上升,当vR达到阈值电压Vth 时,电路发生下述正反馈过程(设此时触发器脉冲已消逝):于是G1门快速截止,G2门很快导通,最终使电路由暂稳态返回至稳态,vO1=VOH,vO2=VOL。
单稳态触发器实验报告单稳态触发器实验报告引言单稳态触发器是一种重要的电子元件,广泛应用于数字电路和计算机科学领域。
本实验旨在通过实际操作和观察,深入理解单稳态触发器的工作原理和应用。
实验目的1. 学习单稳态触发器的基本原理;2. 掌握单稳态触发器的实际应用;3. 理解单稳态触发器在数字电路中的作用。
实验器材1. 单稳态触发器芯片;2. 电路板;3. 电源;4. 示波器;5. 电阻、电容等元件。
实验步骤1. 搭建单稳态触发器电路:将单稳态触发器芯片连接到电路板上,并根据电路图连接所需的电阻、电容等元件。
2. 接通电源:将电路板连接到电源上,并调节电源的电压和电流。
3. 示波器连接:将示波器的探头连接到电路板上,以便观察电路的波形。
4. 实验观察:通过改变电路中的元件数值和连接方式,观察单稳态触发器的工作状态和输出波形的变化。
5. 记录实验数据:记录每次实验的电路参数、观察到的波形和实验结果。
实验结果与分析在实验过程中,我们通过改变电容值和电阻值,观察到了单稳态触发器的工作状态和输出波形的变化。
当电容值较小或电阻值较大时,触发器的输出波形呈现较长的稳态,即保持在高电平或低电平的时间较长。
而当电容值较大或电阻值较小时,触发器的输出波形呈现较短的稳态,即保持在高电平或低电平的时间较短。
通过实验观察和数据记录,我们发现单稳态触发器在数字电路中具有重要的应用。
例如,在计算机的存储器中,单稳态触发器可以用于控制存储单元的写入和读取操作,确保数据的正确传输和存储。
此外,在通信系统中,单稳态触发器也被广泛应用于数据的解码和编码过程中,提高数据传输的可靠性和稳定性。
结论通过本次实验,我们深入了解了单稳态触发器的工作原理和应用。
实验结果表明,单稳态触发器的输出波形受电容和电阻的数值影响,可以根据实际需求进行调节和控制。
单稳态触发器在数字电路和计算机科学领域具有重要的作用,能够提高数据传输的可靠性和稳定性。
实验中我们还发现,单稳态触发器的稳态时间和触发时间与电容和电阻的数值相关,这为进一步的研究和应用提供了指导。
可重触发单稳态触发器原理可重触发单稳态触发器是一种常用的数字电路元件,它具有一种特殊的工作方式,能够在输入信号发生变化时产生一个固定的输出脉冲。
本文将介绍可重触发单稳态触发器的原理及其在电路设计中的应用。
可重触发单稳态触发器由RS触发器和一个延时触发器组成。
RS触发器是一种由两个互补反馈的逻辑门组成的电路,它能够存储一个比特的状态。
延时触发器是一种能够延时输入信号的电路,它通常由一个RC电路和一个比较器组成。
可重触发单稳态触发器的工作原理如下:当输入信号发生变化时,RS触发器的状态会发生改变,从而导致输出信号的变化。
延时触发器负责延时输入信号,使得输出信号在一定时间后才发生变化。
当输入信号再次发生变化时,RS触发器的状态会再次改变,但由于延时触发器的延时作用,输出信号不会立即改变,而是在延时时间后才会发生变化。
这样就实现了可重触发的功能。
可重触发单稳态触发器在数字电路设计中有着广泛的应用。
它常用于脉冲信号的处理和时序控制电路中。
在脉冲信号的处理中,可重触发单稳态触发器可以将输入的短脉冲信号转换为固定宽度的脉冲信号,从而方便后续电路的处理。
在时序控制电路中,可重触发单稳态触发器可以实现延时和定时功能,控制电路的执行时间和顺序。
除了在数字电路设计中的应用,可重触发单稳态触发器还可以用于模拟电路中。
在模拟电路中,可重触发单稳态触发器可以实现信号的延时和重构,从而提高电路的稳定性和可靠性。
总的来说,可重触发单稳态触发器是一种重要的数字电路元件,它具有可重触发的特性,能够在输入信号发生变化时产生一个固定的输出脉冲。
它在数字电路设计和模拟电路中有着广泛的应用。
通过学习和理解可重触发单稳态触发器的原理和工作方式,我们可以更好地应用它来解决实际问题,提高电路的性能和可靠性。
单稳态触发器与施密特触发器原理及应用1.单稳态触发器的原理:单稳态触发器,也称为单稳多谐振荡器,是一个能够在输入信号发生变化时,产生一个固定时间的输出脉冲的元件。
它有两个稳态,一个是触发态,另一个是稳定态。
在触发态时,输出保持一个较低的电平;在稳定态时,输出保持一个较高的电平。
当输入信号发生变化时,触发器进入触发态并产生一个固定宽度的输出脉冲,然后返回稳定态。
单稳态触发器的原理是通过RC电路的充放电过程实现的。
当输入信号变为高电平时,电容开始充电,直到电压达到了触发器的门限电压。
这时,触发器进入稳定态。
而当输入信号变为低电平时,电容开始放电,直到电压降到触发器的触发电平。
这时,触发器进入触发态并产生一个固定宽度的输出脉冲。
2.单稳态触发器的应用:-消抖器:将机械开关产生的抖动信号转换为一个稳定的输出信号。
-一次性多谐振荡器:使用单稳态触发器的稳定脉冲输出来控制多谐振荡器的频率,实现一个稳定的脉冲输出。
-电平传递:将一个短时脉冲信号转换为一个稳定的电平信号输出。
3.施密特触发器的原理:施密特触发器,又称为滞回比较器,是一种具有正反馈的比较器。
它的输入信号必须经过两个不同的阈值电平才能改变输出状态。
施密特触发器有两个稳态,一个是高稳态,另一个是低稳态。
当输入信号超过上阈值电平时,触发器从低稳态切换到高稳态;当输入信号低于下阈值电平时,触发器从高稳态切换到低稳态。
施密特触发器的原理是利用正反馈产生滞回特性。
当输入信号超过上阈值电平时,正反馈会加强这个变化,使得输出电平更快地从低电平切换到高电平。
而当输入信号降低到下阈值电平时,正反馈会加强这个变化,使得输出电平更快地从高电平切换到低电平。
4.施密特触发器的应用:施密特触发器常用于数字信号处理中的滤波和门控电路等应用。
具体应用包括:-模数转换器:将模拟信号转换为数字信号时,需要滤除输入信号中的噪声和抖动。
施密特触发器可以用来实现这个滤波功能。
-数字信号选择器:当多个数字信号输入时,施密特触发器可以用来实现对一些信号的优先级选择。
单稳态触发器电路图大全(555LM324晶体管时基电路)单稳态触发器电路图(一)由RC电路构成的单稳态触发器中,稳态到暂稳态需要输入触发脉冲,暂稳态的持续时间即脉冲宽度是由电路的阻容元件RC决定的,与输入信号无关。
单稳态触发器可以用于产生固定宽度的脉冲信号,主要用于定时、延时与整形、消除噪声等。
典型电路图:可产生如下图所示波形:单稳态触发器电路图(二)LM324组成的单稳态触发器见附图1。
此电路可用在一些自动控制系统中。
电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准。
静态时,电容C1充电完毕,运放A1正输入端电压U2等于电源电压V+,故A1输出高电平。
当输入电压Ui变为低电平时,二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1》U2,故运放A1输出低电平。
当输入电压变高时,二极管D1截止,电源电压R3给电容C1充电,当C1上充电电压大于U1时,既U2》U1,A1输出又变为高电平,从而结束了一次单稳触发。
显然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短。
lm324中文资料下载pdf。
图2如果将二极管D1去掉,则此电路具有加电延时功能。
刚加电时,U1》U2,运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U2》U1时,A1输出才变为高电平。
参考图2。
单稳态触发器电路图(三)下图所示为晶体管单稳态触发器电路它是由VT1,VT2两个晶体管交叉耦合组成,单稳态触发器VT1集电极与VT2基极之间由电容C1耦合,正是由于电容的耦合作用,使电路具有了单稳态的特性。
R4,R3是VT1的基极偏置电阻,R2是VT2的基极偏置电阻,R1,R5分别是两管的集电极电阻。
微分电路C2,R6和隔离二极管VD组成触发电路。
输出信号可以从两个晶体管的集电极取出,两管输出信号相反。
1、稳定状态单稳态触发器处于稳定状态时的情况如下图所示。
电源+VCC经R2为VT2提供基极偏流,VT2导通,其集电极电压为0V,VT1因无基极偏压而截至,其集电极电压为+VCC,电源+VCC经R1,VT2基极-发射极向电容C1充电,C1上的电压为左正右负,大小等于电源电压+VCC。
9.4.3 单稳态触发器的典型应用单稳态触发器广泛用于脉冲的产生、整形、定时、延时等场合。
一.脉冲的整形实际的数字系统中,脉冲的来源不同,其波形各异,例如,从传感器等检测设备上输出的脉冲信号,其波形本来就不整齐;信号在传输过程中如果受到外界干扰,会因干扰信号的叠加而变得不整齐;数字测量中,得到的脉冲信号也多种多样,等等。
而单稳态触发器能够把这种不规则的输入脉冲信号,整形为幅度和宽度都相同的矩形脉冲信号,其输出信号幅度 只由输出的高低电平决定,而脉冲宽度 只与 的大小有关,如图9.4.7所示。
图9.4.7 单稳态触发器的整形作用二.脉冲的延时数字系统中,有时需要将一个脉冲信号延迟一段时间后,再向后级电路发出滞后的脉冲信号,图9.4.8(a )所示电路,就是用不可重复触发型单稳态触发器74121实现的脉冲延时电路。
图9.4.8(b )为对应的工作波形。
图9.4.8 74121实现的脉冲延时电路(a )电路结构 (b )工作波形图9.4.8(a )所示电路中,初始脉冲信号为正向脉冲信号,两级74121均使用外接电阻,且第一级设置为上升沿触发,第二级设置为下降沿触发。
具体工作分析:根据第一级74121所外接 的大小,可得其输出脉冲 的脉冲宽度为W t C R 、m U I u 11 C R 、将作为第二级74121的下降沿触发信号输入,则当 的暂稳态1结束,回到稳态0时,触发第二级74121工作,以正向脉冲输出端作为输出端,则输出脉冲与原输入脉冲 一样,也是正向脉冲。
根据第二级74121所外接 的大小,可得其输出脉冲 的脉冲宽度为 对比电路的输入、输出脉冲可发现,两者虽然脉宽不同,但均为正向脉冲,且输出脉冲滞后时间就等于第一级74121的脉冲宽度,即三.脉冲的定时因为单稳态触发器能够输出一定宽度的矩形脉冲,如果利用此脉冲去控制一个后级电路,使之在有效脉冲期间工作,就等于对该电路起到了定时的作用。
图9.4.9 用555定时器构成的单稳态触发器实现的定时电路(a )电路结构 (b )工作波形=t R C 0.7W111Q 1Q 1Q u I u O ==t t R C 0.7d W111、R C 22=t R C 0.7W 222u O 采用555定时器实现单稳态触发器,脉冲定时电路的典型电路及工作波形如图9.4.9所示。
三.单稳态触发器、多谐振荡器和施密特触发器的功能简介图9.1.3给出了这三种器件的相关信号波形,以下,通过对这些信号波形的讲解,来简介这三种电路的功能特点。
图9.1.3 脉冲波形的产生与整形电路的相关信号波形(a )单稳态触发器 (b )多谐振荡器 (c )施密特触发器1. 单稳态触发器用于生成单稳态脉冲的电路,称为单稳态触发器,图9.1.3(a )为其输出电压波形。
分析图9.1.3(a )可知,单稳态触发器的输出状态波形上,存在一个稳态和一个暂稳态(简称:暂态)。
具体而言,输出信号长期保持在稳态0上,某时刻,出现输入触发信号,则输出状态从稳态0翻转到暂稳态1,并维持一段时间(脉冲宽度)后,再回到稳态0。
并且,持续时间与输入激励无关,仅由电路自身的参数决定。
2. 多谐振荡器多谐振荡器是一种自激振荡电路,无稳态电路,只要接通电源后,无需外加输入激励信号,输出端就会产生图9.1.3(b )所示的矩形脉冲信号。
由于矩形脉冲包含有丰富的谐波分量,所以习惯上将这种自激振荡电路称为多谐振荡器,常常用做时钟脉冲发生器,后级再配合一定的分频电路,可以为一个数字电路系统中,各个单元提供频率不同的时钟信号,使整个系统按合理的时序关系协调工作。
并且,多谐振荡器的输出矩形脉冲的高电平、低电平持续时间 的大小,可以通过调节电路自身的参数来方便地改变。
3. 施密特触发器施密特触发器(Schmitt Trigger )是一种常用的脉冲波形变换电路,图9.1.3(c )所示为一种施密特触发器典型的输出、输出信号对应关系。
观察图9.1.3(c ),从逻辑关系上看,所示的施密特触发器实现的是非逻辑,可称为“反相施密特触发器”,但具有与普通非门不同的特点:W t W t 21T T 、★ 输入信号上升过程中,输出状态翻转时对应的输入电平,与输入信号下降过程中,输出状态翻转时对应的输入电平 的大小不同,而普通非门的两者是相同的。
此特点通俗讲,即施密特触发器实现非逻辑,但输入信号上升沿和下降沿上,信号0、1分界点不同。
单稳态触发器(双击自动滚屏)我们知道,因为触发器有两个稳定的状态,即0和1,所以触发器也被称为双稳态电路。
与双稳态电路不同,单稳态触发器只有一个稳定的状态。
这个稳定状态要么是0,要么是1。
单稳态触发器的工作特点是:(1)在没有受到外界触发脉冲作用的情况下,单稳态触发器保持在稳态;(2)在受到外界触发脉冲作用的情况下,单稳态触发器翻转,进入“暂稳态”。
假设稳态为0,则暂稳态为1。
(3)经过一段时间,单稳态触发器从暂稳态返回稳态。
单稳态触发器在暂稳态停留的时间仅仅取决于电路本身的参数。
微分型单稳态触发器[图6.3.1]包含阻容元件构成的微分电路。
因为CMOS门电路的输入电阻很高,所以其输入端可以认为开路。
电容和电阻构成一个时间常数很小的微分电路,它能将较宽的矩形触发脉冲变成较窄的尖触发脉冲。
稳态时,等于0,等于0,等于,等于0,等于,电容两端的电压等于0。
触发脉冲到达时,大于,大于,等于0,等于0,等于,电容开始充电,电路进入暂稳态。
当电容两端的电压上升到时,即上升到时,等于0,电路退出暂稳态,电路的输出恢复到稳态。
显然,输出脉冲宽度等于暂稳态持续时间。
电路退出暂稳态时,已经回到0(这是电容和电阻构成的微分电路决定的),所以等于,等于,电容通过输入端的保护电路迅速放电。
当下降到时,电路内部也恢复到稳态。
图6.3.1 微分型单稳态触发器图6.3.5 积分型单稳态触发器积分型单稳态触发器[图6.3.5]包含阻容元件构成的积分电路。
稳态时,等于0,、和等于。
触发脉冲到达时,等于,等于,仍等于,等于,电容开始通过电阻放电,电路进入暂稳态。
当电容两端的电压下降到时,即下降到时,等于,电路退出暂稳态,电容的放电过程要持续到触发脉冲消失。
回到后,又变成,电容转为充电。
当上升到后,电路内部也恢复到稳态。
图6.3.8 集成单稳态触发器74121的逻辑图在普通微分型单稳态触发器的基础上增加一个输入控制电路和一个输出缓冲电路就可以构成集成单稳态触发器[图6.3.8]。
二、单稳态电路单稳态电路只有一个稳定状态。
在外界触发脉冲的作用下,电路从稳态翻转到暂态,在暂态维持一段时间之后,又返回稳态,并在输出端产生一个矩形脉冲。
1、单稳态的电路组成它是由CC7555定时电路构成,电路图为:如图(1)所示它的工作特点:电路只有一个稳定状态;当外界触发脉冲来后,电路从稳态翻转到暂态,并在暂态停留一段时间,而且在输出端产生一个宽度为T W的矩形脉冲。
它的应用:在数字系统中,单稳态电路常用于整形。
即:把不规则的波形转换成宽度、幅度相同的波形。
例1.怎样改变输出脉冲的宽度(即延迟时间)呢?答:有三种方法1.改变电阻R;2.改变电容C;3.改变控制电压端的接法。
例2.如图(1)所示:改变控制电压端(引脚5)的电压值,可改变( ) 答案为:D A.输出电压的高低电平 B.输出电压的周期C.对输出波形无影响D.输出电压的脉冲的宽度第21章单稳态触发器内容提要:单稳态触发器是一种重要的时序数字电路,本章介绍单稳态触发器的电路构成、工作原理、特性和典型应用。
21.1 单稳态触发器21.1.1 概述单稳态触发器也是一种重要的时序逻辑电路,它和双稳态触发器不同,只有一个稳定状态,另一个是暂稳态,经过一段延迟时间后,将自动返回稳定状态。
这个延迟时间一般称为暂稳态时间,是由电路中有关的电阻电容时间常数确定的。
单稳态触发器进入暂稳态要靠触发脉冲的触发才行,有的单稳态触发器是由触发脉冲的上升沿触发翻转的;有的单稳态触发器是靠触发脉冲的下降沿触发翻转的。
在触发方式是单稳态触发器和双稳态触发器的异同见图21-1-1。
双稳输出单稳输出触发触发暂稳时间图21-1-1 单稳态和双稳态触发器触发方式的异同21.1.2 集成单稳态触发器21.1.2.1 集成单稳态触发器简介产品集成单稳态触发器的型号有许多,如74121、74LS122、74LS123、CC4098、CC4538、CC14528、CC14538等,现以74LS122为例加以说明。
单稳态触发器工作过程单稳态触发器是数字电路中常见的一种触发器,也被称为单稳态多谐振荡器。
它在应用中具有重要的作用,可以用于信号的延时、脉冲的整形、频率的分频等。
本文将详细介绍单稳态触发器的工作过程及其应用。
一、单稳态触发器的基本概念单稳态触发器是一种具有两个稳定状态的触发器,其中一个稳定状态为触发状态(也称为非稳态),另一个稳定状态为稳态。
在触发状态下,当输入信号满足特定条件时,触发器会自动切换到稳态,并在一定时间后恢复到触发状态。
这种触发器的工作过程可以用一个简单的模型来描述。
二、单稳态触发器的工作原理单稳态触发器通常由两个互补的非门和一个RC电路组成。
当输入信号触发器为高电平时,称为触发状态;当输入信号为低电平时,称为稳态。
在触发状态下,输出信号为高电平;在稳态下,输出信号为低电平。
当触发状态下输入信号发生改变时,触发器会进入稳态,并在一定时间后返回触发状态。
三、单稳态触发器的工作过程单稳态触发器的工作过程可以分为触发过程和稳态过程两个阶段。
1. 触发过程当输入信号从低电平变为高电平时,触发器进入触发状态。
在这个阶段,输出信号保持高电平,RC电路开始充电。
触发器的稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。
2. 稳态过程当RC电路充电到一定程度后,触发器会自动从触发状态切换到稳态。
在稳态下,输出信号保持低电平,RC电路继续充电直到充满。
稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。
四、单稳态触发器的应用单稳态触发器在数字电路中有广泛的应用。
以下是一些常见的应用场景:1. 脉冲整形:单稳态触发器可以将输入信号的突变部分整形为规整的脉冲信号,用于数字电路的输入或输出。
2. 信号延时:通过调整RC电路的参数,可以实现对输入信号的延时。
这在某些特定的应用中非常有用,例如在数据传输中,可以利用单稳态触发器对信号进行同步。
3. 频率分频:通过将单稳态触发器与计数器等组合使用,可以实现对输入信号频率的分频,用于时钟信号的处理。
门电路构成的单稳态触发器及典型应用分析
单稳态触发器有一个稳定状态和一个暂稳态。
当外加触发信号时,单稳态触发器从稳定状态转换到暂稳态,在暂稳态维持一段时间后,由于电路中所包含的电容元件的充放电作用,电路自动返回到稳定状态,因此这种电路称为“单稳”。
暂稳态维持的时间取决于电路本身的参数,而与外触发信号的宽度无关。
根据单稳态触发器的这些特点,数字系统常用它构成整形、脉冲展宽、延时和定时(产生一定宽度的方波)等电路。
【项目任务】
一、门电路构成的单稳态触发器 1.电路结构
由门电路和RC 元件组成的单稳态触发器电路形式较多。
一个电阻和一个电容元件可以组成积分电路或者微分电路,因此,由门电路和RC 元件可组成积分型单稳态触发器和微分型单稳态触发器。
图9.10所示电路就是微分型单稳态触发器的电路形式之一。
电路中电阻R 的值小于门电路的关门电阻值,即R<R OFF 。
图9.10 微分型单稳态触发器
2.工作原理定性分析
分析单稳态触发器的工作原理,就是分析如何在外触发信号的作用下,电路由稳态进入暂稳态,然后又如何在电容充放电的作用下,自动返回到稳定状态。
(1)在图9.10所示电路中,输入信号u I 在稳态下为高电平。
考虑到R<R OFF ,所以稳态时u I2为低电平,则u o 为高电平。
与非门G 1的两个输入端均为高电平,所以,u o1为低电平,电容C 两端的电压近似为0V 。
只要输入信号保持高电平不变,电路就维持在u o1为低电平,u o 为高电平这一稳定状态。
(2)假设在t 1时刻,输入端有一负脉冲信号出现,即外加触发信号开始作用,则与非门G 1的输出u o1变为高电平。
由于电容C 两端的电压不能突变,故u I2随u o1跳变为高电平,
u o
u o 跳变为低电平。
该低电平反馈到G 1的输入端,使u o1仍维持在高电平。
电路处于u o1为高电平、u o 为低电平的暂稳状态。
在暂稳态期间,经电容C 和电阻R 到地形成充电回路,电容C 开始充电,随着充电过程的进行,u I2逐渐下降。
当接近门电路的阈值电压U TH 时(设此时触发脉冲已消失),出现下述正反馈过程。
此正反馈的结果,使电路自动返回到u o1为低电平,u o 为高电平的稳定状态。
电容开始放电,为下一次触发作准备。
其工作波形如图9.11所示。
该图中,t W 为暂稳状态的维持时间,通过定量计算(在此略)可知其大小与R 、C 的大小成正比。
需要说明的是,上述工作波形是在假定输入触发信号的脉冲宽度小于t W 的条件下得到的。
如果这个条件不满足,电路就无法正常工作。
对于宽脉冲触发的输入信号,只要在其输入电路前增加一个简单的RC 微分电路,来实现宽脉冲到窄脉冲的变换即可。
图9.11 微分型单稳态触发器的工作波形
二、集成单稳态触发器
由门电路和RC 元件构成的单稳态触发器电路简单,但输出脉宽的稳定性差,调节范围小,且触发方式单一。
因此在数字系统中,广泛使用集成单稳态触发器。
单片集成单稳态触发器只需要外接RC 元件就可方便使用,而且有多种不同的触发方式和输出方式。
目前使用的集成单稳态触发器有不可重复触发和可重复触发之分,不可重复触发的单稳
U
u t
t
t
u
态触发器一旦被触发进入暂稳态之后,即使再有触发脉冲作用,电路的工作过程也不受其影响,直到该暂稳态结束后,它才接受下一个触发而再次进入暂稳态。
可重复触发单稳态触发器在暂稳态期间,如有触发脉冲作用,电路会被重新触发,使暂稳态继续延迟一个t W 时间。
两种单稳态触发器的工作波形如图9.12所示。
(a )不可重复触发的单稳态触发器工作波形
(b )可重复触发的单稳态触发器工作波形 图9.12 两种单稳态触发器的工作波形
集成单稳态触发器中,74121、74LS121、74221、74LS221等是不可重复触发的单稳态触发器。
74122、74123、74LS123等是可重复触发的单稳态触发器。
下面以不可重复触发的单稳态触发器74LS121为例加以介绍。
(a) 引脚图 (b) 逻辑符号图10-13 单稳态触
发器74LS121
1Q 2NC 3A 14A 25B 6Q 7GND 74LS12114U CC 13NC 12NC
11R ext /C ext 10C ext 9R int 8
NC
(a )
A 1A 2B
int ext ext ext
(b )
u I
u
u I
u
74LS121单稳态触发器的引脚图和逻辑符号如图10-11(a )、(b )所示,外接电阻R ext 的取值范围为2k Ω~40k Ω,外接电容C ext 取值为10pF~1000μF 。
C ext 接在10、11脚之间,R ext 接在11和电源U CC (14脚)之间,此时9脚开路。
当需要电阻较小时,可以直接使用阻值约为2k Ω的内部电阻R int ,此时将R int 接U CC ,即9、14脚相接。
它的输出脉宽为:
0.7W t RC (9.2)
式(9.2)中的R 可以是R ext ,也可以是芯片的内部电阻R int 。
其功能表如表10-1所示。
74LS121的主要功能如下:
(1)电路在输入信号A 1、A 2、B 的所有静态组合下均处于稳态Q =0,Q =1
(2)有两种
边沿触发方式。
输入A 1或A 2是下降沿触发,输入B 是上升沿触发。
从功能表可见,当A 1、A 2或B 中的任一端输入相应的触发脉冲,则在Q 端可以输出一个正向定时脉冲,Q 端输出一个负向脉冲。
表10-1 74LS121功能表
三、单稳态触发器的应用 1.脉冲整形
图10-14 脉冲整形波形
脉冲信号在传输过程中,常会因干扰导致波形的变化。
由于74LS121内部采用了施密特触发(下节介绍)输入结构,故对于边沿较差的输入信号也能输出一个宽度和幅度恒定的矩形脉冲。
利用这一特点,可将宽度和幅度不规则的脉冲整形为规则的脉冲,如图10-14所示。
2.定时控制
u t
u t
利用单稳态触发器能够输出一定宽度t W的矩形脉冲这一特性,去控制某一系统,使其在t W时间内动作(或不动作),从而起到定时控制的作用。
如图10-15所示,在定时时间t W 内,D端输出脉冲信号,而在其他时间,D端不输出脉冲信号。
(a) 逻辑图 (b) 工作波形图9.15脉冲定时控制
3.脉冲延时
脉冲延时一般包括两种情况,一是边沿延时,如图10-16(a)所示,输出脉冲信号的下降沿相对于输入脉冲信号的下降沿延时了t W ;二是脉冲信号整体延时一段时间,如图10-16
(b)所示。
第一种情况利用一个单稳态触发器即可实现,第二种情况可采用两个单稳态触发器来实现。
其中,第一个单稳态触发器采用上升沿触发,其输出脉冲宽度等于所要求的延时时间;第二个单稳态触发器采用下降沿触发,并使其输出脉冲宽度等于第一个单稳态触发器输入脉冲的宽度即可。
(a) 下降沿延时t W (b) 脉冲延时t D
图9.16脉冲延时
u
t
u
u I
u
u
t
t
t
A
B
C
D
A
D。