第11章 线性系统的多项式矩阵描述分解
- 格式:ppt
- 大小:326.00 KB
- 文档页数:61
矩阵的分解§9. 矩阵的分解矩阵分解是将⼀个矩阵分解为⽐较简单的或具有某种特性的若⼲矩阵的和或乘积,这是矩阵理论及其应⽤中常见的⽅法。
由于矩阵的这些特殊的分解形式,⼀⽅⾯反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另⼀⽅⾯矩阵分解⽅法与过程往往为某些有效的数值计算⽅法和理论分析提供了重要的依据,因⽽使其对分解矩阵的讨论和计算带来极⼤的⽅便,这在矩阵理论研究及其应⽤中都有⾮常重要的理论意义和应⽤价值。
这⾥我们主要研究矩阵的三⾓分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。
⼀、矩阵的三⾓分解——是矩阵的⼀种有效⽽应⽤⼴泛的分解法。
将⼀个矩阵分解为⾣矩阵(或正交矩阵)与⼀个三⾓矩阵的乘积或者三⾓矩阵与三⾓矩阵的乘积,这对讨论矩阵的特征、性质与应⽤必将带来极⼤的⽅便。
⾸先我们从满秩⽅阵的三⾓分解⼊⼿,进⽽讨论任意矩阵的三⾓分解。
定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n1,2,),=++ j i i n 则上三⾓矩阵1112122200=n nnn a a a a a R a 称为正线上三⾓复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三⾓复(实)矩阵。
定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n1,2,),=++ j i i n 则下三⾓矩阵11212212000?? ?=n n nn a a a L a a a称为正线下三⾓复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三⾓复(实)矩阵。
定理1设,?∈n n n A C 则A 可唯⼀地分解为1=A U R其中1U 是⾣矩阵,R 是正线上三⾓复矩阵;或者A 可唯⼀地分解为2=A LU其中2U 是⾣矩阵,L 是正线下三⾓复矩阵。
(完整word版)矩阵分解及其简单应用对矩阵分解及其应用矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、QR分解、满秩分解和奇异值分解。
矩阵的分解是很重要的一部分内容,在线性代数中时常用来解决各种复杂的问题,在各个不同的专业领域也有重要的作用。
秩亏网平差是测量数据处理中的一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数的估计数大大简化了求解过程和难度。
1.矩阵的三角分解如果方阵A可表示为一个下三角矩阵L和一个上三角矩阵U之积,即A=LU,则称A可作三角分解。
矩阵三角分解是以Gauss消去法为根据导出的,因此矩阵可以进行三角分解的条件也与之相同,即矩阵A的前n-1个顺序主子式都不为0,即?k≠0.所以在对矩阵A进行三角分解的着手的第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义。
矩阵的三角分解不是唯一的,但是在一定的前提下,A=LDU的分解可以是唯一的,其中D是对角矩阵。
矩阵还有其他不同的三角分解,比如Doolittle分解和Crout分解,它们用待定系数法来解求A 的三角分解,当矩阵阶数较大的时候有其各自的优点,使算法更加简单方便。
矩阵的三角分解可以用来解线性方程组Ax=b。
由于A=LU,所以Ax=b可以变换成LU x=b,即有如下方程组:{Ly=b Ux=y先由Ly=b依次递推求得y1, y2,......,y n,再由方程Ux=y依次递推求得x n,x n?1, (x1)必须指出的是,当可逆矩阵A不满足?k≠0时,应该用置换矩阵P 左乘A以便使PA的n个顺序主子式全不为零,此时有:{Ly=pb Ux=y这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。
2.矩阵的QR分解矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇异上三角矩阵。
QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。
引言数学是人类历史中发展最早,也是发展最为庞大的基础学科。
许多人说数学是万理之源,因为许多学科的研究都是以数学做为基础,有了数学的夯实基础,人类才铸就起了众多学科的高楼大厦,所以数学的研究和发展一直在不断的发展壮大。
在数学中有一支耀眼的分支,那就是矩阵。
在古今矩阵的研究发展长河中产生了许多闪耀星河的大家。
英国数学大家詹姆斯·约瑟夫·西尔维斯特,一个数学狂人,正是他的孜孜不倦的研究使得矩阵理论正式被确立并开启了矩阵发展的快速发展通道。
凯莱和西尔维斯特是非常要好的朋友,他也是一位非常伟大的数学大师,正是他们伟大的友谊,加上两人的齐心协力最后他们共同发展了行列式和矩阵的理论。
后来高斯在矩阵方面的研究取得重要的成就,尤其是高斯消去法的确立,加速了矩阵理论的完善和发展。
而在我国,矩阵的概念古已有之。
从最早的数学大家刘徽开始我们古代数学大家都已或多或少的研究了矩阵。
尤其在数学大家刘徽写的《九章算术》中,它最早提出了矩阵的类似定义。
而且是将矩阵的类似定义用在了解决遍乘直除问题里了。
这已经开始孕育出了最早的矩阵形式。
随着时间转移,矩阵的理论不断的完善,在对于那些大型矩阵的计算中如果用基本方法显得过于繁重,于是发展出了矩阵的分解,随着对矩阵分解的不断研究完善,矩阵分解方法和理论也日趋成熟矩阵经常被当做是数学工具,因为在数学问题中要经常用上矩阵的知识。
矩阵是一个表格,要掌握其运算法则,作为表格的运算与数的运算既有联系又有差别,在所有矩阵的运算方法中,矩阵的分解是他们中一种最重要并且也是应用最广泛。
矩阵分解主要是对高斯消去法的延续和拓展。
在一些大型的矩阵计算中,其计算量大,化简繁杂,使得计算非常复杂。
如果运用矩阵的分解,将那些大型矩阵分解成简单的矩阵的乘积形式,则可大大降低计算的难度以及计算量。
这就是矩阵分解的主要目的。
而且对于矩阵的秩的问题,特征值的问题,行列式的问题等等,通过矩阵的分解后都可以清楚明晰的反应出来。
第十一章 线性时不变系统的多项式矩阵描述多项式矩阵描述方法是20世纪60年代中期由英国学者(H. H. Rosonbrock)提出来的。
首先多项式矩阵描述是对系统描述方法的一个丰富;其次多项式矩阵描述是对线性时不变系统更为普遍的一种描述;再者多项式矩阵描述为将来研究广义系统奠定了基础。
11.1 多项式矩阵描述多项式矩阵描述(Polynomial Matrix Descriptions ,PMD )是除了线性系统的三种原有的描述方式:状态空间描述、传递函数矩阵描述和矩阵分式描述以外,一种新的描述方法。
例如:下图所示的系统:我们取两个回路电流12, i i 作为描述系统的变量;以最右边的电感两端的电压作为系统的输出ui i dt didti d 369211212=-++ 0436222221=+++-i dt didt i d i (11.1)2()2di y t dt= 引入微分算子:222()()(), ()dx t d x t dx t d x t dt dt将式(11.1)表示如下: 21221212(961)()()3()()(634)()0()0()2()0()d d i t i t du t i t d d i t y t i t di t u t ++-=-+++==++ (11.2)将上式写成矩阵形式:[][]212212()39611()()01634()()020()()i t d d d u t i t d d i t y t d u t i t ⎡⎤++-⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦⎣⎦⎡⎤=+⎢⎥⎣⎦ (11.3)一般地我们有:()()()()P d t Q d u t ζ=()()()()()y t R d t W d u t ζ=+ (11.4)(),(),()()P Q R W ⋅⋅⋅⋅和分别为, , , m m m p q m q p ⨯⨯⨯⨯的微分算子多项式矩阵。
8.5 线性系统非奇异线性变换及系统的规范分解为了便于揭示系统的固有特性,经常需要对系统进行非奇异线性变换,例如,将A 矩阵对角化、约当化;将系统化为可控标准型、可观测标准型也需要进行线性变换。
为了便于分析与设计,需要对动态方程进行规范分解,往往也涉及线性变换。
如何变换?经过变换后,系统的固有特性是否会引起改变呢?这些问题必须加以研究解决。
8.5.t t 1 线性系统的非奇异线性变换及其性质1.非奇异线性变换设系统动态方程为 ⎧⎨⎩()()()()()()t t t t =+=+&x Ax Bu y Cx Du (8-134)令 =x P x (8-135) 式中,非奇异矩阵P (,有时以det 0≠P 1−P 形式出现)将状态变换为状态x x 。
设变换后的动态方程为⎧⎨⎩()()()())()t t t t =+=+&t t xAx Bu y Cx Du (8-136) 则有1−=x P x 1−=A P AP 1−=B P B =C CP =D D (8-137)上述过程就是对系统进行非奇异线性变换。
线性变换的目的在于使A 矩阵或系统规范化,以便于揭示系统特性,简化分析、计算与设计,在系统建模,可控性、可观测性、稳定性分析,系统综合设计方面特别有用。
非奇异线性变换不会改变系统的固有性质,所以是等价变换。
待计算出所需结果之后,再引入反变换1−=x P x ,将新系统变回原来的状态空间中去,获得最终结果。
2.非奇异线性变换的性质系统经过非奇异线性变换,系统的特征值、传递矩阵、可控性、可观测性等重要性质均保持不变性。
下面进行证明。
(1)变换后系统传递矩阵不变 证明 列出变换后系统传递矩阵G 为 111()s −−−=−+G CP I P AP P B D 1111()s −−−−=−CP P IP P AP P B D +++G 111[()]s −−−=−CP P I A P P B D 111()s −−−=−CPP I A PP B D1()s −=−+=I C A B D表明变换前后的系统传递矩阵相同。