冀教版-数学-八年级上册-分式
- 格式:doc
- 大小:51.50 KB
- 文档页数:2
冀教版数学八年级上册12.1《分式》教学设计一. 教材分析冀教版数学八年级上册12.1《分式》是学生在掌握了实数、代数式等基础知识后的进一步学习,是对实数体系的拓展和深化。
本节内容主要介绍了分式的概念、分式的基本性质、分式的运算以及分式方程的解法等。
通过本节内容的学习,使学生能够理解和掌握分式的相关知识,提高他们的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和解决问题的能力。
但部分学生对于抽象的数学概念和运算规则的理解和运用还有一定的困难,因此,在教学过程中,需要针对这部分学生进行针对性的引导和帮助。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算规则,提高运算能力。
3.掌握分式方程的解法,提高解决问题的能力。
4.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.分式的概念和基本性质的理解。
2.分式运算的规则和运算能力的培养。
3.分式方程的解法的掌握。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式的相关知识。
2.运用实例讲解,让学生直观地理解分式的概念和运算规则。
3.采用分组讨论的方式,培养学生的合作交流能力和解决问题的能力。
4.运用练习题进行巩固和拓展,提高学生的运算能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,展示分式的相关知识和实例。
2.准备练习题,进行巩固和拓展。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)利用实例引入分式的概念,让学生直观地理解分式的含义。
如:ab,其中a和b都是整数,且b≠0。
2.呈现(15分钟)讲解分式的基本性质,如:分式的分子和分母同时乘以(或除以)同一个非零整数,分式的值不变。
同时,展示分式的运算规则,如:ab +cd=ad+bc bd ,ab⋅cd=acbd等。
3.操练(15分钟)让学生分组进行分式的运算练习,教师巡回指导,及时纠正错误,帮助学生掌握分式的运算规则。
一、单元学习主题本单元是“数与代数”领域“数与式”和“方程与不等式”主题中的“分式和分式方程”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,学生将认识负数、无理数,学习它们的四则运算,还将学习代数式、方程、不等式、函数等内容.本章学生将学习分式和分式过程,了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能对简单的分式进行加、减、乘、除运算,能解可化为一元一次方程的分式方程,能根据具体问题的实际意义,检验方程解的合理性.分式和分式方程的教学要通过探索分式方程的解法,体会化归思想;通过探究增根产生的过程,培养逻辑分析能力;用列方程解决实际问题,体会模型思想,建立符号意识,感受生活数学化过程,增强学生学数学、用数学意识;通过课堂活动,培养合作意识和探究精神,形成数学思维,实现数学核心素养要求.2.本单元教学内容分析冀教版教材八年级上册第十二章“分式和分式方程”,本章包括五个小节:12.1分式;12.2分式的乘除;12.3分式的加减;12.4分式方程;12.5分式方程的应用.义务教育阶段的数学学习,学生要能:(1)获得适应未来生活和进一步发展所必需的数学基础知识、基本技能、基本思想、基本生活经验.(2)体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,在探索真实情境所蕴含的关系中,发现问题和提出问题,运用数学和其他学科的知识与方法分析问题和解决问题.(3)对数学具有好奇心和求知欲,了解数学价值,欣赏数学美,提高学习数学的兴趣,建立学好数学的信心,养成良好的学习习惯形成质疑问难、自我反思和勇于探索的科学精神.本章与分数的相关知识类似,重点在于探索分式的有关概念和运算法则,对分式的概念、分式的基本性质及分式的运算的学习,都要注意通过与分数的有关知识进行类比,让学生真正的去探索,去发现知识之间的内在联系,加深对基础知识的理解,使基本技能的训练更加扎实,对数学思想的认识更加充实,有效地积累基本活动经验.同时经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题和解决问题的能力,渗透转化的数学思想,培养学生的应用数学意识,进一步引导学生借助分式方程来解决实际问题,了解现实世界中事物的相互联系.通过分式方程的应用教学,培养学生数学应用意识、逻辑思维能力和计算能力,在活动中培养学生乐于自主探究,合作交流的学习习惯,体会数学源于实际、用于实际的学科价值与文化价值.三、单元学情分析本单元内容是冀教版教材数学八年级上册第十二章“分式和分式方程”,在小学学生已学习了“分数”,初步了解了分数的基本性质和定义,在此基础上,类比分数的基本性质,探索分式的概念和基本性质,可以加深学生的理解和应用,学生小学学习的关于分数的加、减、乘、除以及通分、约分等知识,都可以作为学习分式的基础.在学习了整式方程即“一元一次方程”“二元一次方程组”后,学生对整式方程的解法和基本思路(使方程逐步化为x=a的形式)已经比较熟悉,而分式方程的未知数在分母,解法步骤稍显复杂,但化为整式方程后的解法体现了解方程的统一性.在后续“二元一次方程”的学习中,会感受到方程求解的一般路径,这也是方程思想有益积累和传承.八年级学生独立思考和探索交流的能力有所提高,并能在探索的过程中形成自己的观点,能在交流中倾听别人的意见,丰富自己的想法观点,具有一定的思维独立性和批判性.但由于年龄特征,数学思维不够完善,方程运算能力和方程建模能力尚在发展中,需要教师引导其从感性认知向理性认知发展.四、单元学习目标1.经历用分式、分式方程表示现实情境中数量关系的过程,了解分式、最简分式、分式方程的概念,体会分式、分式方程的模型思想,进一步培养符号意识.2.经历由观察、类比、猜想获得分式的基本性质、分式乘除法则、分式加减法则的过程,发展合情推理能力与代数式恒等变形能力,积累类比的活动经验.3.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会求分式的值,会解可化为一元一次方程的分式方程,会检验分式方程的根的合理性,发展运算能力.4.能解决一些与分式、分式方程有关的实际问题,发展分析问题、解决问题的能力,增强应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识、基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和建模思想.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
分式
分析当分子等于零而分母不等于零时,分式的值为零。
解由分子a-a2=0得
a(1-a)=0,a=0或a=1。
当a=0时,分母-2+a+a2=-2≠0,
当a=1时,分母-2+a+a2=0,
分析:只有当分母不等于零时,分式才有意义。
解:由分母x2-xy-x+y≠0,得
x(x-y)-(x-y)≠0,
(x-y)(x-1)≠0,
只有当x-y和x-1均不等于零时,它们的乘积才不等于零,即x≠y且x≠1。
分析:本题分式中的分子和分母都是二次齐次式。
求这类分式的值,将两个未知数转化为一个未知数即可。
解:因为
x2-y2=0,
所以
(x-y)(x+y)=0,
两式乘积为零,则其中至少有一个因式为零,即
x-y=0或x+y=0。
由x-y=0,得x=y,由x+y=0,得x=-y。
将x=y代入原式,得
因为xy≠0,所以x,y均不为零。
所以
将x=-y代入原式,得
点评若xy=0,则x与y中至少有一个为零;若xy≠0,则x与y均不为零。
分析:本题两分式的分母都是x+1,要使它们的值相等,只须分子也相等。
解:依题意得:x=2x-1,所以x=1。
当x=1时,分母x+1=1+1=2≠0。
点评:若求出的x值使分母为零,则此题无解。