第5讲一次方程与方程组 -教案
- 格式:doc
- 大小:59.60 KB
- 文档页数:4
北师大版七年级数学上册《第五章一元一次方程5.2求解一元一次方程(第3课时)》说课稿一. 教材分析《北师大版七年级数学上册》第五章《一元一次方程》是学生学习初中数学的重要内容,而5.2节《求解一元一次方程(第3课时)》则是这一章节的重点和难点。
本节课主要让学生掌握一元一次方程的解法,并通过实际问题培养学生的解决问题的能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的运算,具备了一定的逻辑思维能力,但对于一元一次方程的解法还比较陌生。
因此,在教学过程中,我将以学生为主体,引导学生通过自主学习、合作交流的方式,掌握一元一次方程的解法。
三. 说教学目标1.知识与技能目标:使学生掌握一元一次方程的解法,能够熟练地求解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和合作精神。
四. 说教学重难点1.教学重点:一元一次方程的解法。
2.教学难点:如何引导学生理解并掌握一元一次方程的解法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发式教学的方法,引导学生主动探索、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助学生理解一元一次方程的解法。
六. 说教学过程1.导入新课:通过复习相关知识,引导学生进入新课的学习。
2.自主学习:让学生自主探究一元一次方程的解法,教师给予必要的引导和帮助。
3.合作交流:学生分组讨论,分享解题方法,互相学习,教师巡回指导。
4.讲解演示:教师讲解一元一次方程的解法,并通过实例演示解题过程。
5.练习巩固:学生独立完成练习题,检验所学知识,教师及时给予反馈。
6.总结提高:教师引导学生总结一元一次方程的解法,加深对知识的理解。
7.布置作业:布置适量作业,巩固所学知识,提高解题能力。
七. 说板书设计板书设计要清晰、简洁,突出一元一次方程的解法。
主要包括以下内容:1.一元一次方程的一般形式:ax + b = 02.解法步骤:b.合并同类项八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
专题学习:一次方程与一次方程组的综合应用【写在前面】一次方程组是在一元一次方程的基础上展开的, “消元”是解一次方程组的基本思想,即通过消元把一次方程组转化为一元一次方程来解,而代人法、加减法是消元的两种基本方法. 对于含有字母系数的二元一次方程组,我们可以进一步讨论解的特性、解的个数以及解与解和方程(组)与方程(组)的关系.基本思路是首先要进行分析,挖掘题目所隐含的条件,巧妙地列出相应的方程或方程组,再通过消元等方法转化,将方程组的解的讨论转化为一元一次方程解的讨沦.另外,一次方程组是解决许多实际问题的有力工具,它被广泛地应用于社会生活的多个领域,主要体现在:首先,用于解代数式的化简与求值问题,一些表面与方程组无关的问题,但经过分析,借助有关概念、性质、对问题的理解,我们可通过建立一次方程组来解决.其次,用于解应用题, 这不是本专题的内容,不做赘述.【知识铺垫】1.二元一次方程(组)的概念及解法;2.含参数一次方程(组).【思想方法】方程模型的构建,分类讨论,转化思想(消元),参数常数化【例题精讲】一、 不同情境下方程(组)的构建【典型例题】1. 已知-+-m n m n x y x y 1312与2是同类项,则()-n m 2013=_______。
(同类项)2. 若0)3(33252=++-+b a b a ,则a +b 的值为=_______。
(非负性)3. 已知:++-+==x y x y x y 3221456,求x 、y 的值.(连续等式的含义) 4. 已知一次式y =kx +b ,当x =20,30时,y 的值分别为68,86,求k ,b 的值.(方程到方程组) 5. 若++--+=m n m n x y 25942742是关于x 、y 的二元一次方程,求+(+)m n 20131的值.(方程的概念) 6. 若关于x 的方程m (x -1)=2001-n (x -2)有无数个解,求m 2003+n 2003的值.(无数解的理解)7. 若对任意有理数a 、b ,关于x 、y 的二元一次方程(a -b )x -(a +b )y =a +b 都有一组公共解,求此公共解.(公共解的理解)-【思路点拨】本组题目利用同类项、绝对值以及二元一次方程的概念等相关数学概念建立二元一次方程组解决问题.【注意事项】建立方程的组的关键要恰当理解题目中参变量之间的关系,即:借助于相关数学概念,找到建立方程组的联系点.二、 关于方程(组)的解(特殊解)的讨论【典型例题】1. 写出二元一次方程4x +y =10的所有非负整数解.2. 已知m 是整数,方程组{436626x y x my -=+=有整数解,求m 的值. 3. k 、b 为何值时,方程组{(31)2y kx b y k x =+=-+ ,(1)有惟一一组解;(2)无解;(3)有无穷多组解?【思路点拨】获得特殊解的根本还是求解一般解,而对于二元一次方程而言,获得一般解就是“用含有某一个未知数的代数式表示另一个未知数”,对于二元一次方程组而言,获得一般解的方法就是利用代入法或加减法进行消元,转化成一元一次方程解决,求得一般解后再进行有关特殊性的讨论.【注意事项】求解是关键,讨论时要抓住特殊性,利用相关知识解决.另外,应该注意在求解过程中,面对字母系数(参数)时,应将其看作已知常数对待.三、 含字母系数的方程(组)的有关问题(一)根据方程组的解求字母系数【典型例题】已知{21x y ==是二元一次方程组{101ax by bx ay +=-=的解,求-a b 3的值.【变式训练】小刚在解方程组{1078ax by cx y +=-=时,本应解出{32x y ==-由于看错了系数c ,而得到的解为{22x y =-=,求++a b c 的值.【思路点拨】由方程组的解的概念入手,借助于解方程组,求得字母系数的值.【注意事项】解决此类问题的关键是理解方程组的解的含义以及会准确求解方程组.(二)根据方程组解的关系求字母系数.【典型例题】已知方程组{23342013x y k x y k +=-=-的解x ,y 满足方程5x -y =3,求k 的值. 【变式训练】已知方程组{23342013x y k x y k +=-=-的解x ,y 互为相反数,求k 的值.【思路点拨】正确求解含参数的方程组是关键,构造关于参数的一元一次方程是目标.【注意事项】求解含参数的方程组始终要有一个观点:即:面对参数时,应将其看作已知常数对待.(三)根据方程组的解相同求字母系数.【典型例题】若关于的方程组{237453x y x y +=-=与方程组{64ax by ax by +=-=有相同的解,求a 、b 的值. 【变式训练】1、若关于,x y 的方程组{2374x y ax by +=-=与方程组{6453ax by x y +=-=有相同的解,求a 、b 的值.2、若关于,x y 的方程组{2433x my nx my n +=+=和{21334x my mx ny m +=-=有相同的解,求m 、n 的值.【思路点拨】 首先理解两方程组同解的含义,这里有两层含义:一是相应两个方程组的公共解;二是构成这两个方程组的所有四个方程的公共解.有了上述理解,可以基于四个方程轻松组建易于求解的方程组,打开问题解决的突破口.【注意事项】易于求解的方程的组建基本原则是:参数越少越好,最好不好参数.【总结】1.上述问题实际上都是以二元一次方程组的解的含义为核心。
《二元一次方程组》辅导第二讲【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有 ,并且未知数的次数都是 ,像这样的 方程叫做二元一次方程.它的一般形式是2.二元一次方程的解定义: ,叫做二元一次方程的解.要点诠释:1.二元一次方程的每一个解,都是 ,而不是一个数值,通常表示为⎩⎨⎧ba ==y x 的形式2.一般地,二元一次方程的解有 个 ,有条件限制的解有 个。
3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)特别地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 典型例题例1.下列方程组中,不是二元一次方程组的是( ). A.⎩⎨⎧+==-13032x y y x B.⎩⎨⎧=-=+211z y x C.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y 例2.星期天,小明和七名同学共8人去郊游,途中他用30元钱去买饮料,商店只有可乐和奶茶,已知可乐3元一杯,奶茶4元一杯,如果30元钱刚好用完.如每人至少一杯饮料且奶茶至少4杯时,则可乐和奶茶各买 杯;例3.与方程3x - y=2组成方程组有无数个解的方程是- ;无解的方程是A.6x+y = 4B.x+y=3C.6x - 2y = 4D.3x - 2y=5举一反三:1.方程●x -2y=x+5是二元一次方程,●是被污染的x 的系数,请你推断●的值,属于下列情况中的( )A.不可能是-1B.不可能是-2C.不可能是1D.不可能是22.若32225a b a b x y --+-=是二元一次方程,则a = ,b = .3.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团23人准备同时租用这三种客房共8间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种 4.小明给小刚出了一道数学题:如果我将二元一次方程组中的方程 ①里y 的系数用◆遮住,②中x 的系数用◆覆盖,并且告诉你2,1.x y =⎧⎨=⎩是这个方程组的解,你能求出原来的方程组吗?要点二、二元一次方程组的解法1.解二元一次方程组的思想是2.解二元一次方程组的基本方法:巩固练习: 1.由方程组213x m y m +=⎧⎨-=⎩①② 可得出x 与y 的关系是( )2.用加减消元法解方程组②①⎩⎨⎧=+=-2329373y x y x 的最佳策略是( ) A .②﹣①×3,消去x B . ①×9﹣②×3,消去x C . ①×2+②×7,消去yD . ①×2﹣②×7,消去y 3.关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解, 则k 的值是( )A.34k =-B.34k =C.43k =D.43k =- 4.方程kx+3y=5有一组解2,1.x y =⎧⎨=⎩则k 的值是( )A.1B.-1C.0D.25.如果x:y=3:2,且x+3y=27,则x,y 中较小的值为( )① ② 33.2,y x y x =+=+⎧⎨⎩A. 3B. 6C.9D.12 6.满足方程52(2x -6)2+2(y+3)2+72-z =0的x+y+z 的值为( ) A.-1 B.0 C.1 D.27.用适当的方法解方程组15(2)3(25)4(34)5x y x y +=+⎧⎨--+=⎩ ⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x要点三、三元一次方程组1.定义:含有 ,并且含有未知数的项的次数都是1的 方程叫做三元一次方程;含有 ,每个方程中含未知数的项的次数都是 ,并且都是 方程,像这样的方程组叫做三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是 ,一般的,应利用 法或 法消去一个未知数,从而化 为 ,然后解这个 ,求出两个未知数,最后再求出另一个未知数.典型例题1.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.2.如果方程组231x y y z z x -=⎧⎪-=⎨⎪+=⎩,的解也是方程3x +my +2z =0的解,求m 的值.3.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xy z ≠0,求222223y x z xy x +++的值4.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.类型三、实际问题与一次方程组列一次方程组解应用题的一般步骤: 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清 ,应注意单位 .(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.典型例题例1. 2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降例2某农场有300名职工,耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植这三种农作物每公顷所需劳动力人数及投入的设备资金如下表:已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?.巩固提高一、填空题(每题3分,共15分)1、已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.32、如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )A.1B.-1C.2D.-23、足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场4、要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )A. 40,200B.80,160C.160,80D.200,405、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。
第二单元 方程(组)与不等式(组)第5讲 一次方程(组)考纲要求命题趋势1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法.3.会列方程(组)解决实际问题.一元一次方程在各省市的中考试题中体现的不突出,个别省市仅以填空题、选择题、列方程解应用题的方式出现.二元一次方程组在中考中一般以填空题、选择题考查定义与解法,以解答题考查列方程组解应用题.知识梳理一、等式及方程的有关概念 1.等式及其性质(1)用等号“=”来表示相等关系的式子,叫做等式.(2)等式的性质:等式两边加(或减)同一个数或同一个整式,所得结果仍是等式;等式两边乘(或除以)同一个数(除数不能是0),所得结果仍是等式.2.方程的有关概念(1)含有未知数的等式叫做方程.(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元方程的解,也叫它的根.(3)解方程:求方程解的过程叫做解方程. 二、一元一次方程1.只含有______未知数,并且未知数的最高次数都是____,系数不等于零的______方程叫做一元一次方程,其标准形式为__________,其解为x =______.2.解一元一次方程的一般步骤:(1)去分母;(2)________;(3)移项;(4)____________;(5)未知数的系数化为1.三、二元一次方程组的有关概念 1.二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c (a ≠0,b ≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.2.二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.四、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要方法有______消元法和__________消元法.1.用代入消元法解二元一次方程组的一般步骤(1)从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;(4)把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值. 2.用加减消元法解二元一次方程组的一般步骤(1)在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.五、列方程(组)解应用题的一般步骤审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x ,并注意单位.对于含有两个未知数的问题,需要设两个未知数.列:根据题意寻找等量关系列方程(组). 解:解方程(组).验:检验方程(组)的解是否符合题意. 答:写出答案(包括单位).六、常见的几种方程类型及等量关系 1.行程问题中的基本量之间的关系 路程=速度×时间;相遇问题:全路程=甲走的路程+乙走的路程;追及问题:若甲为快者,则被追路程=甲走的路程-乙走的路程; 流水问题:v 顺=v 静+v 水,v 逆=v 静-v 水. 2.工程问题中的基本量之间的关系工作效率=工作总量工作时间.(1)甲、乙合作的工作效率=甲的工作效率+乙的工作效率. (2)通常把工作总量看作“1”. 自主测试1.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( )A .⎩⎪⎨⎪⎧x =0,y =-12 B .⎩⎪⎨⎪⎧ x =1,y =1 C .⎩⎪⎨⎪⎧ x =1,y =0 D .⎩⎪⎨⎪⎧x =-1,y =-1 2.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解是( )A .⎩⎪⎨⎪⎧ x =-1,y =2B .⎩⎪⎨⎪⎧ x =-2,y =3C .⎩⎪⎨⎪⎧ x =2,y =1D .⎩⎪⎨⎪⎧x =2,y =-1 3.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为__________.4.受干旱气候等因素的影响,今年某些农产品的价格有些上涨,张大爷在承包的10亩地里所种植的甲、乙两种蔬菜共获利13 800元,其中甲种蔬菜每亩获利1 200元,乙种蔬菜每亩获利1 500元,则甲、乙两种蔬菜各种植了多少亩?考点一、一元一次方程的解法【例1】解方程:2x +13-10x +16=1.解:去分母,得2(2x +1)-(10x +1)=6,去括号,得4x +2-10x -1=6,移项,得4x-10x =6-2+1,合并同类项,得-6x =5,系数化为1,得x =-56.方法总结 解一元一次方程时,首先要清楚基本方法与一般步骤,明确每步的理论依据,根据其特点选用解题步骤.考点二、二元一次方程组的有关概念【例2】已知⎩⎪⎨⎪⎧ x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为( )A .4B .2C . 2D .±2解析:∵⎩⎪⎨⎪⎧ x =2,y =1是方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,∴⎩⎪⎨⎪⎧ 2m +n =8,2n -m =1,解得⎩⎪⎨⎪⎧m =3,n =2.∴2m -n =2×3-2=4=2. 答案:B方法总结 方程组的解适合方程组的每一个方程,把它代入原方程组,就会得到一个新的方程组,解新方程组即可得出待定字母系数的值.触类旁通1 已知⎩⎨⎧x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解,求(a +1)(a-1)+7的值.考点三、二元一次方程组的解法【例3】解方程组⎩⎪⎨⎪⎧ 3x -y =5,5x +2y =23.①②解:方法一:用加减消元法解方程组. ①×2得6x -2y =10,③②+③得11x =33,解得x =3.把x =3代入①得9-y =5,解得y =4.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =4.方法二:用代入消元法解方程组. 由①得y =3x -5,③把③代入②得5x +2(3x -5)=23,即11x =33,解得x =3.把x =3代入③得y =4.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =4.方法总结 解二元一次方程组的基本思路是通过消元,将二元一次方程组转化为一元一次方程.最常见的消元方法有代入消元法和加减消元法,具体应用时,要结合方程组的特点,灵活选用消元方法.如果出现未知数的系数为1或-1,宜用代入消元法解;如果出现同一未知数的系数成倍数关系或系数较为复杂,宜用加减消元法解.触类旁通2 解方程组:⎩⎪⎨⎪⎧4x -3y =11,①2x +y =13.②考点四、列方程(组)解决实际问题【例4】食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A ,B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A ,B 两种饮料共100瓶,问A ,B 两种饮料各生产了多少瓶?分析:可考虑列一元一次方程或二元一次方程组来解决.解法一:设A 饮料生产了x 瓶,则B 饮料生产了(100-x )瓶,依题意,得2x +3(100-x )=270.解得x =30,100-x =70.解法二:设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意,得⎩⎪⎨⎪⎧x +y =100,2x +3y =270,解得⎩⎪⎨⎪⎧x =30,y =70. 答:A 饮料生产了30瓶,B 饮料生产了70瓶.方法总结 对于含多个未知数的实际问题,利用列方程组来解,一般要比列一元一次方程解容易.列二元一次方程组,首先要对具体的问题进行具体分析,从中抽取两个等量关系,再根据相应的等量关系列出方程组,注意所求的解要符合实际问题.1.(2012重庆)关于x 的方程2x +a -9=0的解是x =2,则a 的值为( ) A .2 B .3 C .4 D .52.(2012山东临沂)关于x ,y 的方程组⎩⎪⎨⎪⎧ 3x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =1,y =1,则|m -n |的值是( )A .5B .3C .2D .13.(2012浙江杭州)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1.给出下列结论:①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解;②当a =-2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解;④若x ≤1,则1≤y ≤4.其中正确的是( ) A .①② B .②③ C .②③④ D .①③④4.(2012甘肃兰州)兰州市某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x 米,则可列方程为( )A .x (x -10)=200B .2x +2(x -10)=200C .2x +2(x +10)=200D .x (x +10)=2005.(2012广东湛江)请写出一个二元一次方程组__________,使它的解是⎩⎪⎨⎪⎧x =2,y =-1.6.(2012湖南长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个;(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元、7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元.1.已知3是关于x 的方程2x -a =1的解,则a 的值是( ) A .-5 B .5 C .7 D .22.方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是( )A .⎩⎪⎨⎪⎧ x =1,y =2B .⎩⎪⎨⎪⎧x =3,y =1C .⎩⎪⎨⎪⎧ x =0,y =-2D .⎩⎪⎨⎪⎧x =2,y =0 3.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A .⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B .⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C .⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D .⎩⎪⎨⎪⎧16x +12y =30,x +y =400 4.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C .43 D .-435.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为__________.6.方程|4x -8|+x -y -m =0,当y >0时,m 的取值范围是__________.7.已知⎩⎪⎨⎪⎧ x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为__________.8.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__________.9.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元钱买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.参考答案导学必备知识 自主测试1.B 把A 项代入方程左边=0-2×⎝⎛⎭⎫-12=右边,把B 项代入方程左边=1-2×1=-1≠右边,把C 项代入方程左边=1-2×0=右边,把D 项代入方程左边=-1-2×(-1)=右边.2.D 解方程组⎩⎪⎨⎪⎧x +y =1,①2x -y =5,②①+②得3x =6,故x =2,把x =2代入①得y =-1,故⎩⎪⎨⎪⎧x =2,y =-1. 3.-1 因为把x =2代入方程,得4+3m -1=0,解得m =-1.4.解:设甲、乙两种蔬菜种植面积分别为x ,y 亩,依题意,得⎩⎪⎨⎪⎧x +y =10,1 200x +1 500y =13 800,解得⎩⎪⎨⎪⎧x =4,y =6.答:甲、乙两种蔬菜各种植了4亩、6亩. 探究考点方法触类旁通1.解:把x =2,y =3代入方程得23=3+a ,解得a = 3. ∴(a +1)(a -1)+7=a 2-1+7=a 2+6=(3)2+6=9. 触类旁通2.解:②×2得4x +2y =26,③ ③-①得5y =15,解得y =3,把y =3代入②得2x +3=13,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =3.品鉴经典考题1.D ∵方程2x +a -9=0的解是x =2, ∴2×2+a -9=0,解得a =5.故选D.2.D 把⎩⎪⎨⎪⎧ x =1,y =1代入原方程组得⎩⎪⎨⎪⎧3-1=m ,1+m =n ,∴⎩⎪⎨⎪⎧m =2,n =3,则|m -n |=1. 3.C 解方程组⎩⎪⎨⎪⎧ x +3y =4-a ,x -y =3a ,得⎩⎪⎨⎪⎧x =1+2a ,y =1-a .∵-3≤a ≤1,∴-5≤x ≤3,0≤y ≤4,①⎩⎪⎨⎪⎧x =5,y =-1不符合-5≤x ≤3,0≤y ≤4,结论错误; ②当a =-2时,x =1+2a =-3,y =1-a =3,x ,y 的值互为相反数,结论正确; ③当a =1时,x +y =2+a =3,4-a =3,方程x +y =4-a 两边相等,结论正确;④当x ≤1时,1+2a ≤1,解得a ≤0,y =1-a ≥1,已知0≤y ≤4,故当x ≤1时,1≤y ≤4,结论正确.故选C.4.D 设宽为x 米,则长为(x +10)米,根据长×宽=矩形面积,列方程为x (x +10)=200.5.⎩⎪⎨⎪⎧x +y =1,x -y =3(答案不唯一) 6.(1)解法一:设湖南省签订的境外投资合作项目有x 个,则湖南省签订的省外境内投资合作项目有(348-x )个,由题意得2x -(348-x )=51,解得x =133,∴348-x =348-133=215.答:境外投资合作项目有133个,省外境内投资合作项目有215个.解法二:设湖南省签订的境外投资合作项目有x 个,省外境内投资合作项目有y 个,由题意得⎩⎪⎨⎪⎧ x +y =348,2x -y =51,解得⎩⎪⎨⎪⎧x =133,y =215. 答:境外投资合作项目有133个,省外境内投资合作项目有215个. (2)解:133×6+215×7.5=798+1 612.5=2 410.5(亿元).答:在这次“中博会”中,东道主湖南省共引进资金2 410.5亿元. 研习预测试题1.B 把x =3代入方程,得6-a =1,所以a =5.2.D 两方程相加,得3x =6,x =2,把x =2代入x -y =2,得y =0,所以⎩⎪⎨⎪⎧x =2,y =0.3.B 购买甲种奖品x 件,每件16元,共花了16x 元,购买乙种奖品y 件,每件12元,共花了12y 元.相等关系为:甲奖品件数+乙奖品件数=30件,甲花的钱+乙花的钱=400元.4.B 解方程组⎩⎪⎨⎪⎧ x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k ,代入2x +3y =6,得到14k -6k =6,所以k =34.5.8x +38=50 相等关系为8个莲蓬的价格+找回的38元=50元.6.m <2 由题意,得⎩⎪⎨⎪⎧4x -8=0,x -y -m =0,解得y =2-m ,∵y >0,∴2-m >0,∴m <2.7.-1 因为把⎩⎪⎨⎪⎧ x =2,y =1代入方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3.所以a -b =-1.8.k >29.解:(1)设每支钢笔x 元,每本笔记本y 元.依题意得⎩⎪⎨⎪⎧ x +3y =18,2x +5y =31,解得⎩⎪⎨⎪⎧x =3,y =5.答:每支钢笔3元,每本笔记本5元. (2)设买a 支钢笔,则买笔记本(48-a )本.依题意得⎩⎪⎨⎪⎧3a +5(48-a )≤200,48-a ≥a .解得20≤a ≤24.所以,一共有5种方案,即购买钢笔、笔记本的数量分别为:20,28;21,27;22,26;23,25;24,24.。
专题2.1 一次方程及方程组(知识讲解)【基本考点要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式。
2.方程的概念(1)含有未知数的等式叫做方程。
(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根)。
(3)求方程的解的过程,叫做解方程。
3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程。
(2)一元一次方程的一般形式:0(0)ax b a +=≠。
(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来)。
特别说明:解一元一次方程的一般步骤(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法; (3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组 特别说明:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 特别说明:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0 3. 二元一次方程组的解法(1) 代入消元法 (2) 加减消元法 特别说明:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解。
初三年级数学新授课教案
备课人 时间:______年_____月_____日 课时序
第5讲 一次方程(组)及其应用
中招命题趋势:
预计今年考查以一元一次方程(组)实际应用为主,且与不等式、函数等知识的结合可能性较大。
中考考点
考点1:一次方程(组)及应用
1、一元一次方程:只含有 一个未知数,并且未知数的次数是一次,这样的 方程叫做一元一次方程。
2、二元一次方程:方程中含有两个未知数,并且含有未知数的项的次数是一次 ,像这样的方程叫做二元一次方程。
3、二元一次方程组:含有相同未知数的两个 二元一次方程 (或者一个二元一次方程和一个一元一次方程)联立起来的一组方程叫做二元一次方程组。
4、解应用题的一般步骤为:
(1):审(找 等量关系 ) (2): 设未知数
(3):列 方程 (4): 解方程
(5):检(即 检验是否为方程的根, ) (6): 答
例1、已知关于x 的方程092=-+a x 的解是2=x ,则a 的值为__5__。
例2、已知方程组 的解能使等式734=-y x 成立, 则m 的值是_8_。
例3、某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨。
现计划用15天完成加工任务,该公司安排几天精加工?几天粗加工?
解:设安排x 天精加工,则可列方程为 ()14015166=-+x x 。
若安排x 天精加工,y 天粗加工,则可列方程组为 。
例4、某班共有学生49人,一天该班某男生因事请假,当天该班的男生人 数恰好为女生的一半, 求该班男生人数为多少人,女生人数为多少人? 解:若设该班男生人数为x 人,女生人数为y 人。
则可列方程组为 。
⎩⎨⎧=+-=-4
37125y x m y x ⎩⎨⎧=+=+14016
615y x y x ⎪⎩⎪⎨⎧=-=+y x y x 21149
考点2: 分式方程及应用
分式方程:分母中含有_未知数_的方程叫做分式方程。
例5、分式方程 的解是_无解__。
例6炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工恰好同时完工,甲队比乙队每天多安装2台,
设乙队每天安装x 台,则可列方程为 。
二、过关检测
1、小平要在一幅长90cm ,宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整幅挂图面积的54﹪,设金色纸边的宽度为xcm ,则可列方程为( B )
A.(90+x )(40+x) ×54﹪= 90×40
B.(90+2x )(40+2x) ×54﹪=90×40
C.(90+x )(40+2x) × 54﹪=90×40
D.(90+2x )(40+x) × 54﹪=90×40
2、一件衣服标价132元,若以9折降价出售,仍可获利10﹪,则这件衣服的进价是( D )
A.106
B.105
C.118
D.108
3、某商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件盈利25﹪,另一件亏损25﹪,则这家商店在这次买卖中 ( B )
A.盈7.2元
B.亏18元
C.盈9元
D.亏9.2元
4、解方程:(1) (2)
5、某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成。
(1) 求乙工程队单独完成这项工程所需的天数
(2)求两队合作完成这项工程所需的天数。
{834
35=+=-y x y x 132=-+x x x 3911332-=-+x x x x x 60266=+
6、汶川大地震后,灾区急需大量帐篷,某服装厂原有4条成衣生产线和5条童装生产线,为支援灾区,工厂决定转产,计划用3天时间赶制1000顶帐篷,若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶。
(1)每条成衣生产线和童装生产线平均每天生产帐篷多少顶?
(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?
7、(2014海南)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买者两种水果共30千克,共花了708元,请问李叔叔够买这两种水果各多少千克?
8、(河南2017)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元;购买3个A种魔方和4个B种魔方所需款数相同.
(1)求两种魔方的单价;
(2)结合社员们的要求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如右图所示,请根据以上信息,说明选择哪种活动购买魔方更实惠.
四、课后反思
_______________________________________________________ _______________________________________________________ _______________________________________________________。