无刷电机工作及控制原理(图解)
- 格式:docx
- 大小:3.33 MB
- 文档页数:23
无刷电机原理及控制一、无刷电动机的组成结构和工作原理三相永磁无刷电动机和一般的永磁有刷电动机相比,在结构上有很多相近或相似之处。
用装有永磁体的转子取代有刷电动机的定子磁极,用具有三相绕组的定子取代电枢,用技术'>逆变器和转子位置检测器组成的电子换相器取代有刷电机的机械换相器和电刷,就得到了三相永磁无刷电动机。
1.无刷电动机结构特点无刷电动机属于三相永磁同步电机的范畴,永磁同步电动机的磁场来自电动机转子上的永久磁铁。
在这里,永久磁铁的特性,在很大程度上决定电动机的特性。
目前采用的永磁材料主要有铁淦氧、铝镍钴、钕铁硼、等根据几种的磁感应强度和磁场强度成线性关系这一特点,应用最为广泛的就是钕铁硼。
它的线性关系范围最大,被称为第三代稀土永磁合金。
在转子上安置永磁铁的方式有两种:一种是将成型的永久磁铁装在转子表面,即所谓外装式;另一种是将成型的永久磁铁埋入转子里面,即所谓内装式。
根据永久磁铁安装方法不同,永久磁铁的形状可分为扇形和矩形两种。
扇形磁铁构造的转子具有电枢电感小、齿槽效应转矩小的优点,但易受电枢反应的影响。
且由于磁通不可能集中、气隙磁密度低,电极呈现凸的特性。
矩形磁铁构造的转子呈现凸极特性,电电感大、齿槽效应转矩大,但磁通可集中,形成高磁通密度,故适于大容量电机,由于电动机呈现凸极特性,可以利用磁阻转矩,此外,这种转子结构的永久磁铁,不易飞出,故可作高速电机使用。
根据确定的转子结构所对应的每相励磁通势合布不同,三相永磁同步电机可分为两种类型:正弦波形和方波形永磁同步电机,前者每相励磁磁通势分布是正弦波形,后者每相则是方波状,根据磁路结构和永磁体形状的不同而不同,对于径向励磁结构,永磁体直接面向均匀气隙如果采用稀大材料,由于采用非均匀气隙或非均匀磁场化方向长度的永磁体的径向励磁结构,气隙磁场波形可以实现正弦分布。
应该指出稀士永磁方波形电机属于永磁无刷直流电机的范畴,而稀土永磁体正弦波形电动机则一般作为三相交流永磁同步伺服电机使用。
无刷电机的驱动工作原理1.三相驱动桥下图为无刷电机的三相全桥驱动电路,使用六个N沟道的MOSFET管(Q1~Q6)做功率输出元件,工作时输出电流可达数十安。
为便于描述,该电路有以下默认约定:Q1/Q2/Q3称做驱动桥的“上臂”,Q4/Q5/Q6称做“下臂”。
图中R1/R2/R3为Q1/Q2/Q3的上拉电阻,连接到二极管和电容组成的倍压整流电路(原理请自行分析),为上臂驱动管提供两倍于电源电压(2×11V)的上拉电平,使上臂MOSFET在工作时有足够高的VGS压差,降低MOSFET大电流输出时的导通内阻,详细数据可参考MOS管DataSheet。
上臂MOS管的G极分别由Q7/Q8/Q9驱动,在工作时只起到导通换相的作用。
下臂MOS由MCU的PWM输出口直接驱动,注意所选用的MCU管脚要有推挽输出特性。
驱动桥全部选用N沟道MOSFET的好处:大电流N沟道MOS可供选择的型号众多,货源充足便于购买,使用的MOSFET类型减少,间接降低采购元件的难度。
在图1中,上臂MOS管经过Q7/Q8/Q9驱动,逻辑电平和下臂MOS 刚好相反,这样的好处是,MCU上电时I/O默认为1,上臂MOS不会导通。
只有下臂MOS导通,因此不会有电流经过驱动桥,消除了潜在电路隐患。
C8是整个电调的电源滤波电容,使用中一定要接上,否则无刷电机的反电动势叠加在电源上不能被滤除,由倍压电路整流后的电压高达30V左右,己接近MOSFET的VGS上限,可能会损坏MOSFET。
2.反电动势波形上图所示为无刷电机运转中的理想反电动势波形,红线标出来的是反电动势的过零点。
两个虚线间是60度电气角度,不要理解成电机的机械角度。
常用航模电机属于无刷三相六拍电机,每个电周期有六个状态。
星形接法中(Y形)在每一时刻电机的通电线圈只有两相,另一相线圈悬空,悬空的线圈会产生反电动势,反电动势来源于电机磁体旋转而造成本线圈切割磁力线和另两相线圈通电时的互感。
无刷电机工作原理图解————————————————————————————————作者:————————————————————————————————日期:无刷电机工作原理图解众所周知,永磁体提供的磁极磁场在电机旋转过程中固定不变的,这就是要求每个时刻定子绕组产生的电枢磁场必须与转子的磁极磁场相对应,即绕组的电流方向、导通与关断受转子位置的控制。
因此,无刷直流电机必须有转子位置信号输出给电机的控制电路,电机的控制电路根据转子位置信号来控制相应的功率开关管的导通与关断,从而控制相应绕组的电流方向、导通与关断。
定子绕组若按一定的通电顺序进行切换,就可以形成一个与转子位置对应的旋转磁场,使电机按要求的旋转方向旋转。
相对磁钢的某一磁极而言,每个时刻与它对应的电枢磁场是固定的,即绕组的电流方向是固定的,这与有刷直流电机类似。
无刷直流电机运行原理图,绕组为三相星形接法,120度均布,采用三相半桥驱动方式,转子为一对极。
在图示位置,磁钢的磁极中心线与A相绕组对齐,此时的控制电路根据转子位置检测信号,使S1开关管触发导通,B相绕组通电,在B相绕组磁场的作用下,转子将顺时针旋转120独门,到达虚线转子所示的位置,磁钢的磁极中心线与B相绕组对齐,此时,控制电路根据转子位置检测信号,使S1开关管关断,使S3开关管导通,A相绕组通电,转子在A相绕组磁场的作用下,转子将顺时针旋转120度,按上述通电顺序循环导通,转子就顺时针旋转下去。
无刷直流电机采集转子位置信号,前者,电机结构简单,但电机起动困难;后者,电机结构稍复杂,但起动平稳、可靠,目前大部分的无刷直流电机均采用后者。
位置传感器的种类很多,空调用的无刷直流电机一般采用霍尔元件作为位置传感器。
电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。
电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。
驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
无刷电机工作及控制原理(图解)左手定则,这个就是电机转动受力分析得基础,简单说就就是磁场中得载流导体,会受到力得作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力得方向,我相信喜欢玩模型得人都还有一定物理基础得哈哈.让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生得电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似得经历,把电机得三相线合在一起,用手去转动电机会发现阻力非常大,这就就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生与转动方向相反得力,大家就会感觉转动有很大得阻力。
不信可以试试.三相线分开,电机可以轻松转动三相线合并,电机转动阻力非常大右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指得那一端就就是通电螺旋管得N极。
状态1当两头得线圈通上电流时,根据右手螺旋定则,会产生方向指向右得外加磁感应强度B(如粗箭头方向所示),而中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受得转动力矩最大.注意这里说得就是“力矩”最大,而不就是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩就是力与力臂得乘积。
其中一个为零,乘积就为零了.当转子转到水平位置时,虽然不再受到转动力矩得作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管得电流方向,如下图所示,转子就会继续顺时针向前转动,状态2如此不断改变两头螺线管得电流方向,内转子就会不停转起来了。
改变电流方向得这一动作,就叫做换相。
补充一句:何时换相只与转子得位置有关,而与其她任何量无直接关系。
第二部分:三相二极内转子电机一般来说,定子得三相绕组有星形联结方式与三角联结方式,而“三相星形联结得二二导通方式”最为常用,这里就用该模型来做个简单分析。
无刷电机工作及控制原理(图解)左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。
不信可以试试。
三相线分开,电机可以轻松转动三相线合并,电机转动阻力非常大右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
状态1当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩是力与力臂的乘积。
其中一个为零,乘积就为零了。
当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,状态2如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。
改变电流方向的这一动作,就叫做换相。
补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。
第二部分:三相二极内转子电机一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。
高效率BLDC无刷直流电机控制原理、控制设计计算方法及步骤(图文并茂详解)一、空载时间插入与补充:1、大多数BLDC电机不需要互补的PWM、空载时间插入或空载时间补偿。
2、可能会要求这些特性的BLDC应用仅为高性能BLDC伺服电动机、正弦波激励式BLDC电机、无刷AC、或PC同步电机。
3、控制算法许多不同的控制算法都被用以提供对于BLDC电机的控制。
4、典型做法是,将功率晶体管用作线性稳压器来控制电机电压。
当驱动高功率电机时,这种方法并不实用。
5、高功率电机必须采用PWM控制,并要求一个微控制器来提供起动和控制功能。
二、BLDC无刷直流电机控制原理:1、无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。
2、BLDC电机控制要求了解电机进行整流转向的转子位置和机制。
3、对于闭环速度控制,有两个附加要求,即对于转子速度或电机电流以及PWM信号进行测量,以控制电机速度以及功率。
4、BLDC电机可以根据应用要求采用边排列或中心排列PWM信号。
5、大多数应用仅要求速度变化操作,将采用6个独立的边排列PWM信号。
这就提供了最高的分辨率。
6、如果应用要求服务器定位、能耗制动或动力倒转,推荐使用补充的中心排列PWM信号。
7、为了感应转子位置,BLDC电机采用XXX效应传感器来提供绝对定位感应。
这就导致了更多线的使用和更高的成本。
无传感器BLDC控制省去了对于传感器的需要,而是采用电机的反电动势(电动势)来预测转子位置。
8、无传感器控制对于像风扇和水泵这样的低成本变速应用至关重要。
9、在采用BLDC电机时,冰箱和空调压缩机也需要无传感器控制。
三、BLDC高效率无刷直流电机控制算法方法及步骤:1、提供的三项功能:⑴、用于控制电机速度的PWM电压;⑵、用于对电机进整流换向的机制;⑶、利用反电动势或传感器来预测转子位置的方法;2、脉冲宽度调制仅用于将可变电压应用到电机绕组。
有效电压与PWM占空比成正比。
3、当得到适当的整流换向时,BLDC的扭矩速度特性与以下直流电机相同。
图文讲解无刷直流电机的工作原理电动无刷直流电机由电动机主体和驱动器组成导读:,是一种典型的机电一体化产品。
同三相异步电动机十分相似。
它的应用非常广泛,,机的定子绕组多做成三相对称星形接法在很多机电一体化设备上都有它的身影。
什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
由于无刷所以不会像变频调速下重载启动的同步电机那样在转子上另直流电动机是以自控式运行的,加启动绕组,也不会在负载突变时产生振荡和失步。
中小容量的无刷直流电动机的永磁体,稀土永磁无刷电动机的体积比材料。
因此,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)同容量三相异步电动机缩小了一个机座号。
. . .无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传无换向火花、机械噪声低等优点,广泛应用于统的接触式换向器和电刷。
它具有可靠性高、高档录音座、录像机、电子仪器及自动化办公设备中。
无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。
位置传感按转子(即检测转子磁极相对定子绕组的位位置的变化,沿着一定次序对定子绕组的电流进行换流按并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,置,定子绕组的工作电压由位置传感器输出控制的电子开。
一定的逻辑关系进行绕组电流切换)关电路提供。
位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。
转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
(例是在定子组件上安装有电磁传感器部件采用电磁式位置传感器的无刷直流电动机,谐振电路等),当永磁体转子位置发生变化时,电磁效应将如耦合变压器、接近开关、LC 使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。
For personal use only in study and research; not for commercial use直流无刷电动机工作原理与控制方法序言由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。
一个多世纪以来,电动机作为机电能量转换装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活中。
其主要类型有同步电动机、异步电动机和直流电动机三种。
由于传统的直流电动机均采用电刷以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火化、无线电干扰以及寿命短等弱点,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用范围,致使目前工农业生产上大多数均采用三相异步电动机。
针对上述传统直流电动机的弊病,早在上世纪30年代就有人开始研制以电子换向代替电刷机械换向的直流无刷电动机。
经过了几十年的努力,直至上世纪60年代初终于实现了这一愿望。
上世纪70年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为直流无刷电动机的广泛应用奠定了坚实的基础。
三相直流无刷电动机的基本组成直流无刷永磁电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。
其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。
图1所示为三相两极直流无刷电机结构,图1 三相两极直流无刷电机组成三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、C相绕组分别与功率开关管V1、V2、V3相接。
位置传感器的跟踪转子与电动机转轴相联结。
当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各项绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。
无刷直流电机的工作原理无刷直流电机的控制结构无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响:N=120.f / P。
在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。
无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。
也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。
电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。
不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。
换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。
控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。
无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。
但这只是用来做为速度控制并不能拿来做为定位控制。
(图一)无刷直流电机的控制原理要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。
无刷直流电机原理图直流电机是利用碳刷实现换向的。
由于碳刷存在摩擦�使得电刷乃至电机的寿命减短。
同时�电刷在高速运转过程中会产生火花�还会对周围的电子线路形成干扰。
为此�人们发明了一种无需碳刷的直流电机�通常也称作无刷电机�b r u s h l e s s m o t o r�。
无刷电机将绕组作为定子�而永久磁铁作为转子�如图7��结构上与有刷电机正好相反。
无刷电机采用电子线路切换绕组的通电顺序�产生旋转磁场�推动转子做旋转运动。
无刷电机由于没有碳刷�无需维护寿命长�速度调节精度高。
因此�无刷电机正在迅速取代传统的有刷电机�带变频技术的家用电器�如变频空调、变频电冰箱等�就是使用了无刷电机�目前散热风扇中几乎全部使用无刷电机。
变频电机工作原理图�a�是拆开的风扇电机的照片�风扇采用的是变频电机�这从线圈所在的位置就可以辨认出来。
图�b�是变频电机控制电路板�控制芯片将集D S P功能与驱动器于一体�简化了电路结构。
通过对控制芯片编程�可改变电机转速。
电机的构造变频电机具有直流电机特性、却采用交流电机的结构。
也就是说�虽然外部接入的是直流电�却采用直流-交流变压变频器控制技术�电机本体完全按照交流电机的原理去工作的。
因此�变频电机也叫“自控变频同步电机”�电动机的转速n取决于控制器的所设定的频率f。
图是三相星形接法的变频电机控制电路�直流供电经M O S管组成的三相变流电路向电机的三个绕组分时供电。
每一时刻�三对绕组中仅有一对绕组中有电流通过�产生一个磁场�接着停止向这对绕组供电�而给相邻的另一对绕组供电�这样定子中的磁场轴线在空间转动了120°�转子受到磁力的作用跟随定子磁场作120°旋转。
将电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上�定子中便形成旋转磁场�于是电机连续转动。
附件7.j p g(39.97K B)2008-6-2723:41T O P 变频电机的电路组成为了对风扇电机的运行状况进行监控�需要从风扇电机向主板输出速度信号�实现风扇运行情况的监控。
永磁直流无刷电机工作原理
永磁直流无刷电机(BLDC)的工作原理基于定子线圈和转子磁铁之间的相互作用。
具体如下:
1.基本结构:在无刷直流电机中,永久磁铁通常作为转子,而线圈则作
为定子。
这与传统的有刷直流电机相反,后者通常是线圈为转子,磁铁为定子。
2.电子换相:为了产生连续的旋转运动,无刷直流电机使用电子换相来
替代传统直流电机中的碳刷和换向器。
这涉及到使用霍尔传感器或通过检测反电动势来确定转子的位置,并据此控制定子线圈的电流,以产生适当的磁场推动转子转动。
3.磁场交互:当定子线圈通入电流时,它会产生一个磁场。
由于转子是
永磁体,它也会有一个固定的磁场。
两个磁场之间的相互作用会导致转子旋转。
4.绕组通电控制:通过改变输入到定子线圈上的电流波形和频率,可以
在绕组线圈周围形成一个旋转的磁场。
这个旋转磁场会驱动转子连续转动,从而带动电机工作。
5.效率与性能:无刷直流电机的效率通常比有刷直流电机高,因为它们
减少了因摩擦和电气接触造成的损耗。
此外,它们还提供了更好的控制性能,因为可以通过改变提供给定子线圈的电流来精确控制转速和扭矩。
总结来说,永磁直流无刷电机通过电子方式控制定子线圈中的电流,以产生旋转磁场,该磁场与转子上的永磁体相互作用,从而驱动电机旋转。
这种设计使得无刷直流电机具有更高的效率和更好的控制特性,适用于多种应用,如无人机、电动汽车和家用电器等。
直流无刷电机在各个方面得到广泛的应用,处处都可以见到它们的踪影,种类也很繁多,因为本人从事的是电动车方面的行业,故在这里我们主要讲讲电动车上直流无刷电机的原理和控制它的结构图如下:(这是一个小型直流无刷电机的结构图,是本人根据实物,用WINDOWS画图板一笔一画绘制,发了不少心血,未经同意,不得转载)当然电动车上的无刷电机线圈更多,不过和下面介绍的原理是一样的。
这样做的目的是为了简化,同时也是为了使大家更易于理解。
其实无刷电机的原理很简单,概括的说就是:当给内置霍耳传感器接通电源时,这些霍耳传感器将信号输入到控制器其实这些信号间接反映了转子所处的位置控制器对这些信号经过判断之后,作出相应的输出,并给相应的线圈通电,通电产生了磁场。
因为同性相斥,异性想吸的原理,定子和转子就相对移动。
普通无刷电机的定子是线圈(上面连有霍耳传感器),于是转子(磁钢及轮子)受迫转动。
转子一转动,内置霍耳传感器的输出信号便发生改变,控制器又输出不同方向的电流而该输出产生的磁场又刚好再次和固定磁场(磁钢)同性相斥,异性相吸,结果再次迫使转子转动,接着霍耳传感器的输出信号又再次发生改变.......这样周而复使,轮子就不断转动(每次霍耳信号改变,控制器产生的电流方向要与电机所要求的一致才行,也就是相序要匹配,轮子才会朝一个方向运动)。
文笔不好,概括不全,请大家莫怪。
电机内部霍耳传感器的正电源线即红线一般接5-12v直流电。
而以5V居多。
霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈提供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。
二,无刷电机的运行原理霍耳信号传递给控制器,控制器通过电机相线(粗线,不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。
无刷电机原理及其驱动控制无刷电机(Brushless DC Motor,BLDCM)是一种无刷(刷子)直流电机,也叫永磁无刷直流电机。
相比于传统的有刷直流电机,无刷电机不需要刷子与旋转子进行接触,因此具有更高的可靠性和效率。
无刷电机的工作原理可以简单地分为两部分,即电机的驱动控制与电机的工作原理。
首先,我们来看无刷电机的工作原理。
无刷电机通常由定子和转子两部分组成。
定子上布置有多个驱动线圈,驱动线圈通过外部电流或者输入电压激励而产生磁场。
转子上则安装有磁铁,磁铁的磁场与驱动线圈的磁场相互作用,产生电磁力从而驱动转子旋转。
接下来,我们来看无刷电机的驱动控制。
无刷电机的驱动控制需要实时地检测电机的旋转位置,并控制电子换相器的工作。
通常,无刷电机的驱动控制包含三个主要的阶段:传感器检测、电子换相和电流控制。
传感器检测阶段用来检测电机的旋转位置,传感器通常包括霍尔传感器、光电传感器等。
传感器检测的结果通过反馈信号传递给电子换相器,从而实现电子换相器的动态控制。
电子换相阶段根据传感器检测的结果,动态地改变驱动线圈的激励顺序。
电子换相器通常由逻辑门和功率晶体管等元件组成,它们能够根据电机的旋转位置实时地反转电流的方向,从而改变驱动线圈的激励顺序。
电流控制阶段用于控制电机的转矩和速度。
一般来说,可以使用电流控制器或者PID控制器来实现电流的精确控制,以达到所需的转矩和速度。
无刷电机的驱动控制可以通过硬件实现,也可以通过软件实现。
硬件实现通常使用专用的电子换相器和控制器,而软件实现则利用微控制器或者数字信号处理器等处理器来实现电子换相器和控制算法。
总结起来,无刷电机通过电子换相器和控制算法来实现电机的驱动控制。
电机的工作原理是通过转子上的磁铁和定子上的驱动线圈相互作用来产生电磁力,从而驱动电机的旋转。
无刷电机相比于传统的有刷电机具有更高的可靠性和效率,因此在工业领域和消费电子产品中得到广泛应用。
无刷直流电机运行原理与基本控制方法无刷直流电机(Brushless DC Motor,简称BLDC)是一种新型的电机,它与传统的有刷直流电机相比具有无刷、长寿命、低噪音、高效率等优点,因此在众多电动设备中得到广泛应用。
下面将介绍无刷直流电机的运行原理以及基本控制方法。
无刷直流电机由转子和定子组成。
定子上通常安装有三个正弦波分布的绕组,转子上安装有多个永磁体。
当电源施加在定子绕组上时,绕组内产生三相交流磁场,永磁体受到定子磁场的作用而旋转。
无刷电机实际上是一种由电脉冲驱动的电机,控制器通过给定的电流波形控制磁场的大小和方向,从而控制电机的转速和方向。
1.开环控制:开环控制是指在控制电机转速时仅根据给定转速信号来控制电机的工作状态,不考虑电机实际转速,也不进行反馈控制。
开环控制简单、成本低,但对于负载变化、电压波动等因素敏感,稳定性较差。
开环控制主要有直接转速控制和扭矩控制两种方式。
(1)直接转速控制:通过控制输入电压或电流的大小来控制电机的转速。
比如,PWM控制器可以根据所设定的占空比控制电流的大小,从而影响电机的转速。
(2)扭矩控制:通过控制输入电流的大小来控制电机的输出扭矩。
可以使用电流传感器来测量电机的电流,并通过调整电流大小来控制扭矩输出。
2.闭环控制:闭环控制是在开环控制的基础上加入反馈控制,以提高电机的稳定性和动态性能。
闭环控制可以根据电机实际转速与设定转速之间的误差来调整控制信号,从而使电机的运行更加精确。
通常使用位置传感器、速度传感器或反电动势等反馈信号来进行闭环控制。
闭环控制的主要方式包括位置环控制、速度环控制和电流环控制。
(1)位置环控制:通过位置传感器检测电机的位置,并将该信息与设定位置进行比较,然后根据误差信号进行控制。
位置环控制可以实现较高的精度,但对传感器的要求较高。
(2)速度环控制:通过速度传感器检测电机的转速,并将该信息与设定转速进行比较,然后根据误差信号进行控制。
无刷电机工作及控制原理(图解)
左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。
不信可以试试。
三相线分开,电机可以轻松转动
三相线合并,电机转动阻力非常大
右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
状态1
当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩是力与力臂的乘积。
其中一个为零,乘积就为零了。
当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,
状态2
如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。
改变电流方向的这一动作,就叫做换相。
补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。
第二部分:三相二极内转子电机
一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。
上图显示了定子绕组的联结方式(转子未画出假想是个二极磁铁),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。
整个电机就引出三根线A, B, C。
当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB注意这是有顺序的。
下面我看第一阶段:AB相通电
当AB相通电,则A极线圈产生的磁感线方向如红色箭头所示,B极产生的磁感线方向如图蓝色箭头所示,那么产生的合力方向即为绿色箭头所示,那么假设其中有一个二极磁铁,则根据“中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致”则N极方向会与绿色箭头所示方向重合。
至于C,暂时没他什么事。
第二阶段:AC相通电
第三阶段:BC相通电
第三阶段:BA相通电
为了节省篇幅,我们就不一一描述CACB的模型,大家可以自己类推一下。
以下为中间磁铁(转子)的状态图:
每个过程转子旋转60度
六个过程即完成了完整的转动,其中6次换相
我们再来看一个复杂点的,图(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图(b)。
从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。
一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸对齐。
其运动的原则是:转子的N极与通电绕组的S极有对齐的运动趋势,而转子的S极与通电绕组的N极有对齐的运动趋势。
即为S与N相互吸引,注意跟之前的分析方法有一定的区别。
第一阶段:AB相通电
第二阶段:AC相通电
第三阶段:BC相通电
第四阶段:BA通电
第五阶段:CA通电
第六阶段:CB通电
以上为六个不同的通电状态,其中经历了五个转动过程。
每个过程为20度。
看完了内转子无刷直流电机的结构,我们来看外转子的。
其区别就在于,外转子电机将原来处于中心位置的磁钢做成一片片,贴到了外壳上,电机运行时,
是整个外壳在转,而中间的线圈定子不动。
外转子无刷直流电机较内转子来说,转子的转动惯量要大很多(因为转子的主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV值在几百到几千之间。
也是航模主要运用的无刷电机
顺便啰嗦一下吧。
无刷电机KV值定义为:转速/V,意思为输入电压每增加1伏特,无刷电机空转转速增加的转速值。
比如说,标称值为1000KV的外转子无刷电机,在11伏的电压条件下,最大空载转速即为:11000rpm(rpm的含义是:转/分钟)。
同系列同外形尺寸的无刷电机,根据绕线匝数的多少,会表现出不同的KV特性。
绕线匝数多的,KV值低,最高输出电流小,扭力大;绕线匝数少的,KV值高,最高输出电流大,扭力小。
我先前测试过穿越机2204电机的极限电流,单电机能彪上25A,而2212系列电机15A都上不了。
分析方法也和内转子电机类似,大家可以自己分析一下,根据右手螺旋定理判断线圈的N/S极,转子永磁体的N极与定子绕组的S极有对齐(吸引)的趋势,转子永磁体的S极与定子绕组的N极有对齐(吸引)的趋势,从而驱动电机转动。
经典无刷电机2212 1000kv电机结构分析。
图为DJI 2312S电机和XXD 2212电机的(解剖图)
图为xxd2212线圈拆解图
图为12绕组14极(即7对极),电机绕组绕发图
后面画出了6种两相通电的情形,可以看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB->AC->BC->BA->CA->CB的顺序进行通电换相。
当然,如果你想让电机反转的话,电子方法是按倒过来的次序通电;物理方法直接对调任意两根线,假设A和B对调,那么顺序就是
BA->BC->AC->AB->CB->CA,大家有没有发现这里顺序就完全倒过来了。
AB相通电
AC相通电
BC相通电
BA相通电
CA相通电
CB相通电
要说明一下的是,由于每根引出线同时接入两个绕组,所以电流是分两路走的。
这里为使问题尽量简单化,下面几个图中只画出了主要一路的电流方向,还有一路电流未画出,另一路电流的具体情况放在后面进行分析,涉及到电路检测换相位置。
END
本文来源网络。
我们注重分享,版权归原作者。