直线与直线平行与垂直的条件
- 格式:doc
- 大小:267.98 KB
- 文档页数:3
两条直线平行与垂直的判定题型总结及习题测试含答案两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2, 34求实数a 的值.变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等;121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-错解又③如果两直线的斜率之积为-1,则它们垂直;④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB与直线y=0垂直,则m的值为( )A.2B.1C.0D.-13.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a 的值等于____.10. l 1过点A(m,1),B(-3,4),l 2过点C(0,2),D(1,1),且l 1∥l 2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是 A 锐角不为450的直角三角形 B 顶角不为900的等腰三角形 C 等腰直角三角形 D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45 二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。
几何中的平行与垂直关系在几何学中,平行和垂直是两个重要的关系。
平行指的是两条直线或两个平面永远不相交,而垂直则表示两条直线或两个平面相交且交角为90度。
这两种关系在现实生活和数学应用中起着重要的作用。
本文将详细介绍几何中的平行与垂直关系。
1. 平行关系平行关系是几何学中最基本的关系之一。
两条直线平行的定义是:它们永远不相交,无论延长多少。
平行关系可以用符号“||”来表示。
例如,在平面上有AB和CD两条直线,如果AB || CD,则表示AB与CD平行。
在平行关系中,有几个重要的性质:1.1 平行线的性质1.1.1 平行线与转角定理当一对平行线被一条截线切割时,其内部和外部对应的转角相等。
这被称为平行线与转角定理。
例如,在平面上有两条平行线AB和CD,线段EF截断了这两条平行线,那么∠AEF = ∠DEF。
1.1.2 平行线的传递性如果AB || CD,CD || EF,则必有AB || EF。
这是平行线的传递性定理。
传递性在证明中经常使用,有助于推导其他平行线的性质。
1.2 平行线判定在几何学中,有几种方法可以判定平行线:1.2.1 同位角相等法如果两条直线被一条截线切割,并且同位角相等,那么这两条直线是平行的。
例如,如果∠ABC = ∠DEF,并且线段AD与BC相交,则AD || BC。
1.2.2 内错角相等法如果两条直线被一条截线切割,并且内错角相等,那么这两条直线是平行的。
例如,如果∠ABC = ∠DFE,并且线段DE与BC相交,则DE || BC。
2. 垂直关系垂直关系是几何学中另一个重要的关系。
两条直线或两个平面垂直的定义是:它们相交且相交角为90度。
垂直关系可以用符号“⊥”来表示。
例如,在平面上有AB和CD两条直线,如果AB ⊥ CD,则表示AB与CD垂直。
在垂直关系中有几个重要的性质:2.1 垂直线的性质2.1.1 垂直线与转角定理当一对垂直线被一条截线切割时,其内部和外部对应的转角互补。
平行与垂直知识点总结平行与垂直是几何学中的重要概念,涉及到直线在空间中的位置关系。
在几何学中,我们经常需要理解和利用平行与垂直的概念,这些概念对于解决几何问题、建筑设计、地图绘制等方面都具有重要的作用。
因此,了解平行与垂直的知识点对于我们的数学学习和日常生活都具有重要的意义。
本文将从平行和垂直的定义、性质、判定以及相关定理等方面对平行与垂直进行总结,希望能够对读者有所帮助。
一、平行线的定义在平面几何中,两条直线称为平行线,如果它们在同一平面上,且不相交。
这意味着,平行线在同一平面上不会相交,其间的距离始终保持相等。
1.1 平行线的符号表示:在数学中,我们通常用符号“ ||”来表示两条线段是平行的。
1.2 平行线的特征:1)平行线永远不会相交。
2)平行线的斜率相同。
3)平行线之间的夹角相等。
二、垂直线的定义与平行线相对应的概念是垂直线。
两条直线称为垂直线,如果它们在同一平面上,并且它们的交角为 90 度。
2.1 垂直线的符号表示:在数学中,我们通常用符号“⊥”来表示两条线段是垂直的。
2.2 垂直线的特征:1)垂直线可以相交,但相交的角度为 90 度。
2)垂直线的斜率相乘等于 -1。
3)垂直线之间的夹角为 90 度。
三、平行和垂直线的判定在几何学中,我们常常需要判定两条直线是否平行或垂直,下面来总结一些判定准则。
3.1 判定两条直线是否平行的几种方法:a)斜率判定法:当两条直线的斜率相等时,它们是平行线。
b)观察判定法:在图形上观察两条线段的倾斜情况,如果它们很明显地呈现出平行的形态,则可以判断它们是平行线。
c)角度判定法:两条平行线之间的夹角相等,可以通过观察夹角的大小来判断两条直线是否平行。
3.2 判定两条直线是否垂直的方法:a)斜率判定法:当两条直线的斜率相乘等于 -1 时,它们是垂直线。
b)观察判定法:在图形上观察两条直线的交角,如果它们的交角为 90 度,则可以判断它们是垂直线。
c)角度判定法:两条垂直线之间的夹角为 90 度,可以通过观察夹角的大小来判断两条直线是否垂直。
两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2,求实数a的值. 3 4变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2B.1C.0D.-1121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-Q 错解又3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于____.10. l1过点A(m,1),B(-3,4),l2过点C(0,2),D(1,1),且l1∥l2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是A 锐角不为450的直角三角形B 顶角不为900的等腰三角形C 等腰直角三角形D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。