三角函数计算方法及公式
- 格式:docx
- 大小:14.84 KB
- 文档页数:2
数学三角函数三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))倒数关系: 商的关系: 平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=c scα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α浅论关于三角函数的几种解题技巧佛山市光明职业技术学校黄炜本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。
2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。
2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。
2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。
2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。
2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。
2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。
三角函数所有公式大全三角函数所有公式大全两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan? A)Sin2A=2SinA?CosACos2A = Cos^2 A–Sin? A=2Cos? A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)?;cos3A = 4(cosA)? -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2__[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2__[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2__[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2__[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]?}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]?} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a?sin(a)+b?cos(a) = [√(a?+b?)]__sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a?+b?)]__cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]?;1-sin(a) = [sin(a/2)-cos(a/2)]?;其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:cos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数公式大全两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina__cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) ? tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2) cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2__[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2__[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2__[sin(a+b)+sin(a-b)] 诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a) pi=3.1415926.... cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a__sin(a)+b__cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a__sin(a)-b__cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2三角函数的周期三角函数的周期T=2π/ω。
一、两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+推导:1、应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx =α-β.过点P 作PM ⊥x 轴,垂足为M ,那么OM 即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM .过点P 作PA ⊥OP 1,垂足为A ,过点A 作AB ⊥x 轴,垂足为B ,再过点P 作PC ⊥AB ,垂足为C ,那么cos β=OA ,sin β=AP ,并且∠PAC =∠P 1Ox =α,于是OM =OB +BM =OB +CP =OA cos α+AP sin α=cos βcos α+sin βsin α.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.2、设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.或者:sin(a+b)=cos[(π/2)-(a+b)]=cos[(π/2-a)-b]=cos(π/2-a)cosb-sin(π/2-a)sinb=sinacosb-cosasinb(就是利用π/2的诱导公式)3、tan(a+b)=sin(a+b)/cos(a+b)=(sinacosb+cosasinb)/(cosacosb-sinasinb) 分子分母同除以cosacosb 得(tana+tanb)/【1-tanatanb 】 二、倍角公式tan2A =Atan 12tanA2Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A1、公式sin2α=2sinα·cosα推导过程sin2α=sin(α+α)=sinα·cosα+cosα·sinα=2sinα·cosα2、公式余弦二倍角公式有三组表示形式,三组形式等价: cos2α=2cos²α-1 cos2α=1-2sin²α cos2α=cos²α-sin²α推导过程cos2α=cos(α+α)=cosα·cosα-sinα·sinα=cos²α-sin²α=2(cos²α)-1 =1-2(sin²α)3、正切二倍角公式tan2α=2tanα/[1-tan²α] 推导过程:tan2α=sin2α/cos2α=2sinα·cosα/cos²α-sin²α=[2sinα·cosα/cos²α]/[cos²α-sin²α/cos²α]=2tanα/[1-tan²α]三、半角公式(正负由所在的象限决定)(正负由所在的象限决定)(正负由所在的象限决定)推导过程:……①sin由等式①,整理得: 将 代入α,整理得:开方,得cos在等式①两边加上1,整理得:将代入 ,整理得:开方,得tansina=cos (π/2-a )注:四、三倍角公式(常用)四、五、六、七、八、九、十、N 倍角公式(不常用)sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)推导: sin3a =sin(2a+a)=sin2acosa+cos2asina =2sina(1-sin ²a)+(1-2sin ²a)sina =3sina-4sin ³a cos3a =cos(2a+a)=cos2acosa-sin2asina=(2cos ²a-1)cosa-2(1-cos ²a)cosa =4cos ³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tan A^6+9*tanA^8)十倍角公式sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^ 4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n,1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
;三角函数基本运算公式推导三角函数基本运算有加减乘除和幂乘和开以及几何关系,以下主要介绍运算公式推导。
(1)加减乘除加减无非是函数相加减,即三角函数相加减,有sin(a±b)=sin a cos b±cos a sin b;cos(a±b)=cos a cos b∓sin a sin b。
乘法有sin(ab)=sin a cos b-cos a sin b;cos(ab)=cos a cos b+sin a sin b。
除法有sin(a/b)=sin a/cos b+cos a×tan b;cos(a/b)=cosa/cos b-sin a×tan b。
(2)幂乘开幂乘有cos^2a+sin^2a=1; sin2a=2sina×cosa; cos2a=cos^2a-sin^2a; sin3a=3sin a-4sin^3a; cos3a=3cos a-4cos^3a;sin2xcos2x=sin^2x×cos^2x-1/2; cos2xsin2x=-1/2+sin^2x×cos^2x; sin2x=2sinxcosx; cos2x=cos^2x-sin^2x。
开方有sin a=+-√(1-cos 2a)/2; cos a=+-√(1+cos 2a)/2。
(3)几何关系有sin(A+B)=sinAcosB+cosAsinB;cos(A+B)=cosAcosB-sinAsinB;sin(A-B)=sinAcosB-cosAsinB;cos(A-B)=cosAcosB+sinAsinB。
另外还有sinAcosB=1/2(sin(A+B)+sin(A-B));cosAcosB=1/2(cos(A+B)+cos(A-B))。
总之,上述公式均能够满足三角函数运算的需求,我们可以根据它们计算三角函数基本运算,只要坚持推导及方法即可轻松解决问题。
三角函数的计算三角函数是数学中一类重要的函数,它们广泛应用于物理、工程、计算机科学等领域。
在本文中,将介绍如何计算三角函数、三角函数的实际应用以及一些常见的计算误差和解决方法。
一、三角函数的计算公式三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan),它们的计算公式如下:1. 正弦函数(sin)的计算公式:sin(x) = 对边 / 斜边2. 余弦函数(cos)的计算公式:cos(x) = 临边 / 斜边3. 正切函数(tan)的计算公式:tan(x) = 对边 / 临边其中,x 为角度,对边为与该角度相对的边长,临边为与该角度相邻的边长,斜边为三角形的斜边长。
二、三角函数的计算方法1. 计算已知角度的三角函数值:可以通过计算公式直接计算已知角度的三角函数值。
例如,若要计算角度为 30°的正弦值,则可以使用 sin(30°) = 对边 / 斜边的计算公式得到结果。
2. 使用计算器:大多数计算器或科学计算器都内置了三角函数的计算功能,可以直接输入角度值并选择对应的三角函数,计算器将给出准确的结果。
3. 利用三角函数表:三角函数表中记录了一些角度的三角函数值,可以通过查表的方式寻找所需的数值。
然而,表格中的数值通常是有限的,不够精确,且需要手动查找,因此不如使用计算器方便快捷。
三、三角函数的实际应用三角函数的应用广泛,其中一些常见的应用包括:1. 几何学:三角函数在几何学中是不可或缺的工具,可以用于计算各种角度和边长的关系,帮助解决各种几何问题。
2. 物理学:三角函数在物理学中有着广泛的应用,例如在力学中,可以利用三角函数计算物体在斜面上的受力分解和运动情况;在波动学中,可以利用三角函数描述周期性运动。
3. 工程学:在建筑、土木工程等领域,三角函数可用于计算建筑物的倾斜角度、吊杆或斜杆的长度等问题,为实际工程提供数值计算支持。
四、计算误差与解决方法尽管三角函数的计算公式和计算器能够提供较高的精度,但在实际计算中,由于计算机表示数字的精度有限,可能会产生误差。
三角函数的导数三角函数的导数公式和计算方法三角函数的导数是微积分中的重要概念之一,在求解各种函数的导数时经常会遇到三角函数。
本文将介绍三角函数的导数公式以及计算方法。
一、三角函数的导数公式三角函数中最常见的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的导数公式如下:1. 正弦函数(sin)的导数公式:sin'(x) = cos(x)2. 余弦函数(cos)的导数公式:cos'(x) = -sin(x)3. 正切函数(tan)的导数公式:tan'(x) = sec^2(x)其中,sec(x)表示正切函数的倒数,即:sec(x) = 1/cos(x)二、三角函数导数计算方法下面将介绍如何使用导数公式计算三角函数的导数。
1. 正弦函数(sin)的导数计算方法:对于任意实数x,使用sin(x)的导数公式即可计算sin(x)的导数。
2. 余弦函数(cos)的导数计算方法:对于任意实数x,使用cos(x)的导数公式即可计算cos(x)的导数。
3. 正切函数(tan)的导数计算方法:对于任意实数x,使用tan(x)的导数公式即可计算tan(x)的导数。
然而,需要注意的是,当x等于π/2、3π/2等奇数倍的π时,tan(x)的导数不存在。
三、三角函数的导数计算实例为了更好地理解三角函数的导数,下面举例说明。
1. 计算sin(x)的导数:对于sin(x),根据sin'(x) = cos(x),导数为cos(x)。
例如,当x=π/6时,sin'(π/6) = cos(π/6) = √3/2。
2. 计算cos(x)的导数:对于cos(x),根据cos'(x) = -sin(x),导数为-sin(x)。
例如,当x=π/4时,cos'(π/4) = -s in(π/4) = -1/√2。
3. 计算tan(x)的导数:对于tan(x),根据tan'(x) = sec^2(x),导数为sec^2(x)。
三角函数的计算一、锐角三角函数的概念与计算方法1.正弦(sine)函数:正弦函数是指在直角三角形中,锐角的对边与斜边的比值。
其计算公式为:sinθ = 对边 / 斜边。
2.余弦(cosine)函数:余弦函数是指在直角三角形中,锐角的邻边与斜边的比值。
其计算公式为:cosθ = 邻边 / 斜边。
3.正切(tangent)函数:正切函数是指在直角三角形中,锐角的对边与邻边的比值。
其计算公式为:tanθ = 对边 / 邻边。
二、钝角三角函数的概念与计算方法1.余切(cotangent)函数:余切函数是指在直角三角形中,钝角的对边与邻边的比值的倒数。
其计算公式为:cotθ = 邻边 / 对边。
2.余弦(secant)函数:余弦函数是指在直角三角形中,钝角的邻边与斜边的比值的倒数。
其计算公式为:secθ = 斜边 / 邻边。
3.正割(cosecant)函数:正割函数是指在直角三角形中,钝角的对边与斜边的比值的倒数。
其计算公式为:cscθ = 斜边 / 对边。
三、特殊角的三角函数值1.30°角的三角函数值:sin30°= 1/2,cos30° = √3/2,tan30°= 1/√3,cot30° = √3,sec30° = 2/√3,csc30° = 2。
2.45°角的三角函数值:sin45° = cos45° = tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2。
3.60°角的三角函数值:sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = 2/√3。
四、三角函数的周期性1.正弦函数的周期性:正弦函数的周期为2π,即sin(θ + 2π) = sinθ。
三角函数运算公式归纳整理三角函数是数学中重要的概念,它们在几何学、物理学和工程学等领域中起着非常重要的作用。
在进行三角函数运算时,我们可以利用一系列公式来简化计算过程,提高效率。
在本文中,我将对常用的三角函数运算公式进行归纳整理。
1. 正弦函数(sin):(1) 基本关系式:sin^2θ + cos^2θ = 1 (θ为任意角度)(2)正弦的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ(3)正弦的倍角公式:sin2θ = 2sinθcosθ(4)正弦的半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)(5)正弦的积化和差公式:sinαsinβ = (cos(α - β) - cos(α + β)) / 22. 余弦函数(cos):(1) 基本关系式:sin^2θ + cos^2θ = 1 (θ为任意角度)(2)余弦的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ(3)余弦的倍角公式:cos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ(4)余弦的半角公式:cos(θ/2) = ±√((1 + cosθ) / 2)(5)余弦的积化和差公式:cosαcosβ = (cos(α + β) + cos(α - β)) / 23. 正切函数(tan):(1) 基本关系式:tanθ = sinθ / cosθ(2)正切的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ) (3)正切的倍角公式:tan2θ = (2tanθ) / (1 - tan^2θ)4. 余切函数(cot):(1) 基本关系式:cotθ = 1 / tanθ = cosθ / sinθ(2)余切的和差公式:cot(α ± β) = (cotαcotβ ∓ 1) / (cotβ ± cotα) (3)余切的倍角公式:cot2θ = (cot^2θ - 1) / (2cotθ)5. 正割函数(sec):(1) 基本关系式:secθ = 1 / cosθ(2)正割的和差公式:sec(α ± β) = (secαsecβ ± tanαtanβ) / (secβ ± secα) (3)正割的倍角公式:se c2θ = (2sec^2θ - 1) / (sec^2θ)6. 余割函数(csc):(1) 基本关系式:cscθ = 1 / sinθ(2)余割的和差公式:csc(α ± β) = (cscαcscβ ∓ cotαcotβ) / (cscβ ± cscα) (3)余割的倍角公式:csc2θ = (2csc^2θ - 1) / (csc^2θ)以上是常见的三角函数运算公式的归纳整理,可以帮助我们在进行三角函数的计算时快速、准确地得到结果。
高中数学公式大全三角函数的导数公式与极限计算高中数学公式大全:三角函数的导数公式与极限计算在高中数学中,三角函数是非常重要的概念之一。
掌握三角函数的导数公式和极限计算方法,对于解决各种相关问题具有重要意义。
本文将为您介绍三角函数的导数公式以及极限计算方法。
一、三角函数的导数公式1.1 正弦函数的导数公式正弦函数的导数公式为:f'(x) = cos(x)1.2 余弦函数的导数公式余弦函数的导数公式为:f'(x) = -sin(x)1.3 正切函数的导数公式正切函数的导数公式为:f'(x) = sec^2(x)1.4 余切函数的导数公式余切函数的导数公式为:f'(x) = -csc^2(x)1.5 正割函数的导数公式正割函数的导数公式为:f'(x) = sec(x) * tan(x)1.6 余割函数的导数公式余割函数的导数公式为:f'(x) = -csc(x) * cot(x)二、三角函数的极限计算方法2.1 正弦函数的极限计算当x趋向于0时,正弦函数的极限计算公式为:lim(sin(x)/x) = 12.2 余弦函数的极限计算当x趋向于0时,余弦函数的极限计算公式为:lim((cos(x)-1)/x) = 02.3 正切函数的极限计算当x趋向于0时,正切函数的极限计算公式为:lim(tan(x)/x) = 12.4 余切函数的极限计算当x趋向于0时,余切函数的极限计算公式为:lim(cot(x)-1/x) = 02.5 正割函数的极限计算当x趋向于0时,正割函数的极限计算公式为:lim((sec(x)-1)/x) = 02.6 余割函数的极限计算当x趋向于0时,余割函数的极限计算公式为:lim((csc(x)-1)/x) = 0综上所述,通过掌握三角函数的导数公式和极限计算方法,我们可以快速求解各种与三角函数相关的数学问题。
希望本文对您的学习有所帮助。
三角函数计算方法及公式
三角函数在初中数学中是重要的知识点,接下来给大家分享一下三角函数的计算公式及计算方法,供参考。
三角函数计算方法
(1)正弦
SinA=对边A/斜边C
对边A=斜边C*SinA
对边A=邻边B*TanA
(2)余弦
CosA=邻边B/斜边C
邻边B=斜边C*CosA
邻边B=对边A/TanA
(3)正切
TanA=对边A/邻边B
斜边C=对边A/SinA
斜边C=邻边B/CosA
三角函数计算公式
两角和与差计算公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cossinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
积化和差计算公式
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
和差化积计算公式
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)。