求三角函数的运算的方法总结
- 格式:docx
- 大小:36.92 KB
- 文档页数:3
三角函数值的计算方法三角函数是数学中非常重要且常用的概念之一,主要用于描述角度和边长之间的关系。
在三角函数中,最常见的是正弦函数、余弦函数和正切函数,这三个函数的计算方法有以下几种。
一、利用特殊角的三角函数值:1.0度和360度的三角函数值:正弦函数:sin(0°) = 0,sin(360°) = 0余弦函数:cos(0°) = 1,cos(360°) = 1正切函数:tan(0°) = 0,tan(360°) = 02.30度和150度的三角函数值:正弦函数:sin(30°) = 1/2,sin(150°) = 1/2余弦函数:cos(30°) = √3/2,cos(150°) = -√3/2正切函数:tan(30°) = 1/√3,tan(150°) = -1/√34.60度和120度的三角函数值:正弦函数:sin(60°) = √3/2,sin(120°) = √3/2余弦函数:cos(60°) = 1/2,cos(120°) = -1/2正切函数:tan(60°) = √3,tan(120°) = -√35.90度的三角函数值:正弦函数:sin(90°) = 1余弦函数:cos(90°) = 0正切函数:tan(90°) = 无穷大二、利用角度的周期性:由于三角函数的周期为360度(或2π),所以对于大于360度的角度,可以利用三角函数的周期性进行计算。
三、借助三角函数的特征:1. 互余函数:余弦函数与正弦函数互为相反数,即sin(θ) =cos(90°-θ),而cos(θ) = sin(90°-θ)。
2. 倍角公式:sin(2θ) = 2sin(θ)cos(θ),cos(2θ) = cos^2(θ) - sin^2(θ),tan(2θ) = 2tan(θ) / (1 - tan^2(θ))。
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等【一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2!例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.>例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,《例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==|例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )>…变式练习]1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)#2、已知函数)sin(ϕω+=x A y(A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
三角函数的导数三角函数的导数公式和计算方法三角函数的导数是微积分中的重要概念之一,在求解各种函数的导数时经常会遇到三角函数。
本文将介绍三角函数的导数公式以及计算方法。
一、三角函数的导数公式三角函数中最常见的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的导数公式如下:1. 正弦函数(sin)的导数公式:sin'(x) = cos(x)2. 余弦函数(cos)的导数公式:cos'(x) = -sin(x)3. 正切函数(tan)的导数公式:tan'(x) = sec^2(x)其中,sec(x)表示正切函数的倒数,即:sec(x) = 1/cos(x)二、三角函数导数计算方法下面将介绍如何使用导数公式计算三角函数的导数。
1. 正弦函数(sin)的导数计算方法:对于任意实数x,使用sin(x)的导数公式即可计算sin(x)的导数。
2. 余弦函数(cos)的导数计算方法:对于任意实数x,使用cos(x)的导数公式即可计算cos(x)的导数。
3. 正切函数(tan)的导数计算方法:对于任意实数x,使用tan(x)的导数公式即可计算tan(x)的导数。
然而,需要注意的是,当x等于π/2、3π/2等奇数倍的π时,tan(x)的导数不存在。
三、三角函数的导数计算实例为了更好地理解三角函数的导数,下面举例说明。
1. 计算sin(x)的导数:对于sin(x),根据sin'(x) = cos(x),导数为cos(x)。
例如,当x=π/6时,sin'(π/6) = cos(π/6) = √3/2。
2. 计算cos(x)的导数:对于cos(x),根据cos'(x) = -sin(x),导数为-sin(x)。
例如,当x=π/4时,cos'(π/4) = -s in(π/4) = -1/√2。
3. 计算tan(x)的导数:对于tan(x),根据tan'(x) = sec^2(x),导数为sec^2(x)。
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
三角函数的计算一、锐角三角函数的概念与计算方法1.正弦(sine)函数:正弦函数是指在直角三角形中,锐角的对边与斜边的比值。
其计算公式为:sinθ = 对边 / 斜边。
2.余弦(cosine)函数:余弦函数是指在直角三角形中,锐角的邻边与斜边的比值。
其计算公式为:cosθ = 邻边 / 斜边。
3.正切(tangent)函数:正切函数是指在直角三角形中,锐角的对边与邻边的比值。
其计算公式为:tanθ = 对边 / 邻边。
二、钝角三角函数的概念与计算方法1.余切(cotangent)函数:余切函数是指在直角三角形中,钝角的对边与邻边的比值的倒数。
其计算公式为:cotθ = 邻边 / 对边。
2.余弦(secant)函数:余弦函数是指在直角三角形中,钝角的邻边与斜边的比值的倒数。
其计算公式为:secθ = 斜边 / 邻边。
3.正割(cosecant)函数:正割函数是指在直角三角形中,钝角的对边与斜边的比值的倒数。
其计算公式为:cscθ = 斜边 / 对边。
三、特殊角的三角函数值1.30°角的三角函数值:sin30°= 1/2,cos30° = √3/2,tan30°= 1/√3,cot30° = √3,sec30° = 2/√3,csc30° = 2。
2.45°角的三角函数值:sin45° = cos45° = tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2。
3.60°角的三角函数值:sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = 2/√3。
四、三角函数的周期性1.正弦函数的周期性:正弦函数的周期为2π,即sin(θ + 2π) = sinθ。
三角函数的积分与反函数知识点总结一、三角函数积分的基本形式1. 正弦函数积分三角函数中,正弦函数积分的基本形式为∫sin(x)dx,由基本积分公式得到∫sin(x)dx = -cos(x) + C,其中C为常数。
2. 余弦函数积分同样地,余弦函数积分的基本形式为∫cos(x)dx,通过基本积分公式可以得到∫cos(x)dx = sin(x) + C。
3. 正切函数积分正切函数的积分形式为∫tan(x)dx,可以通过换元法来求解。
令u = tan(x),则du = sec^2(x)dx,将du代入积分式中得到∫tan(x)dx = ∫du = u + C = tan(x) + C。
4. 余切函数积分余切函数的积分形式为∫cot(x)dx,同样使用换元法,令u = cot(x),则du = -csc^2(x)dx,将du代入积分式中得到∫cot(x)dx = ∫(-du) = -ln|sin(x)| + C。
二、三角函数积分的特殊形式1. 正弦函数幂积分若积分式为∫sin^n(x)dx(n为正整数),可通过递推公式进行求解。
例如,当n为奇数时,可以使用递推公式∫sin^n(x)dx = -1/n * sin^(n-1)(x) * cos(x) + (n-1)/n * ∫sin^(n-2)(x)dx来进行计算。
2. 余弦函数幂积分对于∫cos^n(x)dx(n为正整数),同样可以使用递推公式进行解答。
例如,当n为奇数时,可以使用递推公式∫cos^n(x)dx = 1/n * cos^(n-1)(x) * sin(x) + (n-1)/n * ∫cos^(n-2)(x)dx进行计算。
3. 正切函数幂积分正切函数幂积分的求解相对困难一些,一般需要进行复杂的换元操作或利用三角恒等式进行转化。
因此,对于一般形式的∫tan^n(x)dx积分,可能需要借助于专门的积分表格或数值计算方法进行求解。
三、三角函数的反函数1. 反正弦函数反正弦函数是对正弦函数的逆运算,用记号arcsin(x)表示。
高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
三角函数的求导与反函数求导的计算方法三角函数在数学中起着重要的作用,而求导是研究函数变化率的重要工具。
本文将重点介绍三角函数的求导方法以及反函数求导的计算方法。
一、三角函数的求导方法在求解三角函数的导数时,我们需要掌握以下几个常见的三角函数及其导数:1. 正弦函数sin(x)的导数为cos(x),即 d/dx(sin(x)) = cos(x)。
2. 余弦函数cos(x)的导数为-sin(x),即 d/dx(cos(x)) = -sin(x)。
3. 正切函数tan(x)的导数为sec^2(x),即 d/dx(tan(x)) = sec^2(x)。
4. 余切函数cot(x)的导数为-csc^2(x),即 d/dx(cot(x)) = -csc^2(x)。
5. 正割函数sec(x)的导数为sec(x)*tan(x),即 d/dx(sec(x)) =sec(x)*tan(x)。
6. 余割函数csc(x)的导数为-csc(x)*cot(x),即 d/dx(csc(x)) = -csc(x)*cot(x)。
通过掌握以上导数公式,我们可以轻松地计算出给定函数的导数。
二、反函数的求导计算方法反函数指的是对于函数y = f(x),如果存在另一个函数x = g(y),使得对于f(x)的定义域内的任意x,g(f(x)) = x,且对于g(y)的定义域内的任意y,f(g(y)) = y,那么g(y)就是f(x)的反函数。
在求解反函数的导数时,有一个重要的定理可以应用,即反函数的导数等于原函数的导数的倒数。
即如果y = f(x)和x = g(y)是互为反函数,且f'(x) ≠ 0,则有:d/dy(g(y)) = 1 / (d/dx(f(x)))通过这个定理,我们可以利用三角函数的导数公式来计算反函数的导数。
三、示例分析为了更好地理解三角函数的求导与反函数求导的计算方法,我们来分别计算几个具体的例子。
例1:求解sin(x)的导数。
初中数学如何求解三角函数的最大值和最小值
要求解三角函数的最大值和最小值,我们可以使用代数方法或图像法。
下面将分别介绍这两种方法:
1. 代数方法:
代数方法是通过代数运算来求解三角函数的最大值和最小值。
具体步骤如下:
-确定函数的定义域:首先,我们需要确定求解最大值和最小值的函数的定义域。
这可以通过观察函数图像或根据函数的周期性来确定。
-求导数:对三角函数进行求导,得到导函数。
-解导函数的方程:将导函数等于零,得到一个方程,求解这个方程可以得到驻点(导数为0的点)。
-计算函数值:将驻点和定义域的边界代入原函数,计算函数在这些点的值。
-比较函数值:比较函数值,找到最大值和最小值。
2. 图像法:
图像法是通过观察三角函数的图像来求解最大值和最小值。
具体步骤如下:
-绘制函数图像:使用数学绘图工具或在线图形绘制工具绘制三角函数的图像。
这样可以直观地观察函数的最大值和最小值。
-观察特点:观察图像,找到函数的极值点(最大值和最小值)。
这些点通常出现在函数的波峰和波谷处。
-确定最大值和最小值:根据函数的周期性和对称性,我们可以确定所有的最大值和最小值。
总结:
通过代数方法或图像法,我们可以求解三角函数的最大值和最小值。
代数方法适用于通过求导数和解方程来求解最大值和最小值,而图像法适用于通过观察图像来确定最大值和最小值。
在实际应用中,根据具体情况选择合适的方法,或结合两种方法进行求解,可以更准确地找到三角函数的最大值和最小值。
三角函数的运算法则及公式三角函数是数学中一类重要的函数,主要包括正弦函数、余弦函数、正切函数等。
三角函数的运算法则和公式主要涉及到加减、乘除等运算,以及相互之间的关系。
接下来将详细介绍三角函数的运算法则及公式。
1.正弦函数与余弦函数的基本关系:sin^2(x) + cos^2(x) = 1这是三角函数中最基本也是最重要的关系式,称为三角恒等式。
它表明对于任意实数x,正弦函数的平方加上余弦函数的平方等于12.正弦函数与余弦函数的关系:tan(x) = sin(x) / cos(x)cosec(x) = 1 / sin(x)sec(x) = 1 / cos(x)cot(x) = cos(x) / sin(x)这些关系式可以用来将正弦函数和余弦函数互相表示。
3.正弦函数与余弦函数的加减法:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)这些公式表明两个角的正弦函数(或余弦函数)的和差等于各自的正弦函数(或余弦函数)乘积之和差。
4.正弦函数与余弦函数的倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)这些公式用于计算角的两倍角的正弦函数和余弦函数。
5.正切函数的加减法:tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))这个公式表明两个角的正切函数的和差等于各自的正切函数之和(差)除以1减去(加上)两个角的正切函数之积。
6.正切函数的倍角公式:tan(2A) = (2tan(A)) / (1 - tan^2(A))这个公式表明角的两倍角的正切函数等于两倍角的正切函数除以1减去角的正切函数的平方。
三角函数的运算法则及公式三角函数是数学中常见的一类函数,它们具有一些特殊的运算法则和公式,可以在解决各种实际问题中发挥重要作用。
本文将介绍三角函数的运算法则及公式,并通过实例来说明它们的应用。
一、三角函数的运算法则1. 和差化积法则:对于任意两个角A和B,有以下公式成立:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以将三角函数的和差化为乘积或差的形式,简化计算过程。
2. 二倍角公式:对于任意角A,有以下公式成立:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)这些公式可以将三角函数的二倍角转化为单角的形式,便于求解和计算。
3. 三倍角公式:对于任意角A,有以下公式成立:sin3A = 3sinA - 4sin^3Acos3A = 4cos^3A - 3cosAtan3A = (3tanA - tan^3A) / (1 - 3tan^2A)这些公式可以将三角函数的三倍角转化为单角的形式,用于解决一些特殊情况下的问题。
二、三角函数的常用公式1. 正弦定理:对于任意三角形ABC,有以下公式成立:a/sinA = b/sinB = c/sinC = 2R其中,a、b、c分别为三角形ABC的边长,A、B、C分别为对应的角,R为三角形的外接圆半径。
正弦定理可以用于求解三角形的边长或角度,推导其他相关公式。
2. 余弦定理:对于任意三角形ABC,有以下公式成立:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理可以用于求解三角形的边长或角度,特别适用于已知两边和夹角的情况。
浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
三角函数的级数展开与运算三角函数是数学中重要的函数之一,它在数学、物理、工程等领域中都有广泛的应用。
在本文中,我们将重点探讨三角函数的级数展开与运算,分析其原理和应用。
1. 三角函数的级数展开三角函数的级数展开是将三角函数表达式通过泰勒级数展开为无穷和的形式。
泰勒级数是一种用多项式无限和逼近函数的方法,在三角函数的计算中尤为重要。
1.1 正弦函数的级数展开正弦函数的级数展开形式为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...级数展开的每一项都是x的幂次,通过不断增加阶乘数的分母,可以使得级数更加精确地逼近正弦函数的值。
1.2 余弦函数的级数展开余弦函数的级数展开形式为:cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...与正弦函数的级数展开类似,余弦函数的展开也是通过逐渐增加阶乘数的分母,来逼近余弦函数的值。
2. 三角函数的运算2.1 三角函数的加法公式三角函数的加法公式是将两个三角函数表达式进行运算,得到一个新的三角函数表达式的公式。
正弦函数的加法公式为:sin(x+y) = sin(x)cos(y) + cos(x)sin(y)余弦函数的加法公式为:cos(x+y) = cos(x)cos(y) - sin(x)sin(y)2.2 三角函数的乘法公式三角函数的乘法公式是将两个三角函数表达式进行运算,得到一个新的三角函数表达式的公式。
正弦函数的乘法公式为:sin(x)sin(y) = (cos(x-y) - cos(x+y))/2余弦函数的乘法公式为:cos(x)cos(y) = (cos(x-y) + cos(x+y))/22.3 三角函数的指数运算三角函数的指数运算是将三角函数带入指数函数中,得到一个新的数学表达式。
正弦函数的指数运算为:e^sin(x) = (e^(ix) - e^(-ix))/2i余弦函数的指数运算为:e^cos(x) = (e^(ix) + e^(-ix))/2通过三角函数的指数运算,我们可以将三角函数和指数函数进行转化和结合,从而应用于更广泛的数学问题。
高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。
三角函数的题型和方法令狐采学一、思想方法1、三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
即倍角公式降次与半角公式升次。
(4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。
asinθ+bcosθ=22ba+sin(θ+ϕ),这里辅助角ϕ所在象限由a、b的符号确定,ϕ角的值由tanϕ=ab确定。
(6)万能代换法。
巧用万能公式可将三角函数化成tan2θ的有理式。
2、证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4、解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思维与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如ααββαββαα22122)()(⨯=⨯=+-=-+=.也要注意题目中所给的各角之间的关系。
三角函数的计算方法三角函数是数学中的一个重要分支,广泛应用于几何、物理、工程等领域。
计算三角函数的方法有很多种,下面详细介绍一下主要的几种方法。
1.数学定义法:正弦函数 sin(x) = y/r余弦函数 cos(x) = x/r正切函数 tan(x) = y/x其中,x是角度,y是横坐标值,r是半径。
2.利用三角恒等式:三角函数有许多重要的恒等式,利用这些恒等式可以将三角函数的计算转化为其他函数的计算,从而简化计算过程。
一些常用的三角函数恒等式有:- 三角函数的基本关系:sin^2(x) + cos^2(x) = 1- 三角函数的互余关系:sin(x) = cos(π/2 - x)- 三角函数的和差公式:sin(x ± y) = sin(x)cos(y) ±cos(x)sin(y)3. Taylor级数展开法:Taylor级数是在特定点附近用多项式来逼近一个函数的方法,可以将一个函数表示为无穷多项式的形式。
对于三角函数,可以使用Taylor级数展开来进行计算。
例如,正弦函数的Taylor级数展开为:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...4.公式推导法:有些三角函数的计算可以通过推导得到相应的数学公式。
例如,正弦函数和余弦函数的和差求积公式、倍角公式和半角公式等。
这些公式可以提供更加便捷的计算方式。
5.数表和查表法:6.计算器和软件:现代科技的发展使得计算器和数学软件成为计算三角函数的常用工具。
计算器和软件中已经内置了三角函数的计算功能,只需输入角度或弧度即可得到相应的三角函数值。
总结起来,计算三角函数的方法有很多种,可以通过数学定义、三角恒等式、Taylor级数展开、公式推导、数表查表以及计算器和软件等方式进行。
根据不同的实际需求和精度要求,可以选择合适的方法进行计算。
第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
三角函数的运算三角函数是数学中经典的函数之一,主要指正弦、余弦和正切三种函数。
这些函数在数学、物理、工程、计算机科学等领域中得到了广泛应用。
1.周期性:正弦和余弦函数的周期为2π;正切函数的周期为π。
2.奇偶性:正弦函数为奇函数,余弦函数为偶函数,正切函数为奇函数。
3.定义域和值域:正弦和余弦函数的定义域为实数集,值域为[-1,1];正切函数的定义域为实数集,值域为整个实数集。
1.加减运算:对于相同的三角函数,可以直接相加或相减;对于不同的三角函数,需要根据三角恒等式将其转化为相同的三角函数进行运算。
例如,sin(某+y)=sin某cosy+cos某siny;cos(某-y)=cos某cosy+sin某siny。
2. 乘积运算:sin某cos某=1/2sin2某;sin某siny=1/2(cos(某-y)-cos(某+y));cos某cosy=1/2(cos(某-y)+cos(某+y))。
3.合成运算:将一个三角函数表示为另一个三角函数的复合函数的形式,称之为三角函数的合成运算。
例如,sin2某=2sin某cos某;cos2某=cos^2某-sin^2某=2cos^2某-1=1-2sin^2某。
4. 反三角函数运算:三角函数的反函数称为反三角函数,通常用arcsin、arccos、arctan等符号表示。
例如,arcsin(某)=y,则sin(y)=某,arcsin函数的定义域和值域为[-1,1]和[-π/2,π/2]。
5.其他运算:诸如幂函数、指数函数、对数函数、积分、微分等运算都可以应用于三角函数的运算中,从而得到更加复杂的三角函数形式。
总之,三角函数是数学中非常基础而重要的函数之一、了解和掌握三角函数的基本性质和运算方法,对于掌握高等数学、物理、工程、计算机科学等学科领域的相关问题非常有帮助。
求三角函数的运算的方法总结在数学中,三角函数是一个重要的概念。
它们在几何学、物理学和
工程学等领域中有广泛的应用。
本文将总结三角函数的运算方法,包
括加减法、乘法、除法和逆函数等。
一、三角函数的加减法
1. 余弦函数的加减法:
根据余弦函数的定义可知,cos(A ± B) = cosAcosB - sinAsinB。
这一公式可以用于计算任意两个角度的余弦函数之和或之差。
2. 正弦函数的加减法:
根据正弦函数的定义可知,sin(A ± B) = sinAcosB ± cosAsinB。
这一公式可以用于计算任意两个角度的正弦函数之和或之差。
3. 切线函数的加减法:
根据切线的定义可知,tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。
这一公式可以用于计算任意两个角度的切线函数之和或之差。
二、三角函数的乘法和除法
1. 余弦函数的乘法和除法:
根据余弦函数的定义可知,cosAcosB = (1/2)[cos(A + B) + cos(A - B)]。
这一公式可以用于计算余弦函数的乘积。
同样地,我们可以得到cosA/sinA = cotA,cosA/cosB = secA。
2. 正弦函数的乘法和除法:
根据正弦函数的定义可知,sinAsinB = (1/2)[cos(A - B) - cos(A + B)]。
这一公式可以用于计算正弦函数的乘积。
同样地,我们可以得到sinA/cosA = tanA,sinA/sinB = cscA。
三、三角函数的逆函数
1. 余弦函数的逆函数:
余弦函数的逆函数为反余弦函数,记作arccos(x) 或 acos(x)。
反余弦函数的定义域为[-1, 1],值域为[0, π]。
2. 正弦函数的逆函数:
正弦函数的逆函数为反正弦函数,记作arcsin(x) 或 asin(x)。
反正弦函数的定义域为[-1, 1],值域为[-π/2, π/2]。
3. 切线函数的逆函数:
切线函数的逆函数为反切函数,记作arctan(x) 或 atan(x)。
反切函数的定义域为实数集R,值域为(-π/2, π/2)。
四、三角函数的其他运算方法
除了上述常见的加减法、乘除法和逆函数,三角函数还有一些其他
的运算方法,如复合函数、幂函数等。
这些方法在高级数学中有更为
广泛的应用。
总结:
本文总结了三角函数的运算方法,包括加减法、乘法、除法和逆函
数等。
在进行三角函数的运算时,我们可以利用上述公式来计算,以
便更方便地解决相关问题。
三角函数在数学中的应用十分广泛,深入
理解和熟练掌握其运算方法对于数学学习和实际应用都具有重要意义。