场发射扫描电镜及能谱仪的使用实验报告(一)
- 格式:docx
- 大小:11.27 KB
- 文档页数:2
扫描电镜实验报告扫描电镜(Scanning Electron Microscope,SEM)是一种应用广泛的高分辨率显微镜,能够对样品进行表面形貌和微观结构的观测和分析。
本实验旨在通过扫描电镜对不同样品的表面形貌和微观结构进行观察和分析,从而加深对扫描电镜原理和应用的理解。
首先,我们准备了几种不同的样品,包括金属材料、植物组织和昆虫外骨骼等。
在实验过程中,我们首先对样品进行了表面处理,包括金属样品的金属镀膜处理、植物组织的冷冻干燥处理以及昆虫外骨骼的金属喷镀处理,以保证样品在扫描电镜下的观察效果。
接下来,我们将样品放置在扫描电镜的样品台上,并调整好合适的观察条件。
在观察过程中,我们发现扫描电镜能够清晰地显示样品的表面形貌和微观结构,包括金属样品的晶粒结构、植物组织的细胞结构以及昆虫外骨骼的纹理结构等。
通过对这些结构的观察和分析,我们不仅可以直观地了解样品的表面特征,还可以深入地研究样品的微观结构和性质。
在实验中,我们还发现扫描电镜具有较高的分辨率和深度信息,能够对样品进行三维观察和分析。
通过调整扫描电镜的工作参数,我们成功地获得了不同角度和深度的样品图像,进一步揭示了样品的微观结构和表面形貌。
这为我们深入理解样品的微观特征提供了重要的信息和依据。
总的来说,通过本次实验,我们深入了解了扫描电镜的原理和应用,掌握了样品的表面形貌和微观结构的观察方法,提高了对样品性质和特征的认识。
扫描电镜作为一种重要的分析工具,将在材料科学、生物学、医学等领域发挥重要作用,为科学研究和工程应用提供有力支持。
通过本次实验,我们不仅提高了对扫描电镜的认识,还对不同样品的表面形貌和微观结构有了更深入的理解。
扫描电镜的高分辨率和深度信息为我们提供了更多的观察和分析角度,有助于我们更全面地认识样品的特性和性能。
希望通过今后的实践和研究,能够更好地利用扫描电镜这一强大的工具,为科学研究和工程应用做出更多的贡献。
扫描电镜实验报告扫描电镜实验报告引言:扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,通过扫描样品表面并记录电子信号来观察样品的微观结构。
本实验旨在利用扫描电镜对不同样品进行观察和分析,以探索其微观特征和结构。
一、实验目的:本实验的主要目的是通过扫描电镜观察和分析样品的表面形貌和微观结构,了解扫描电镜的工作原理和应用。
二、实验步骤:1. 样品准备:选择不同类型的样品,如金属、生物组织等,并进行必要的前处理,如切片、抛光等。
2. 样品固定:将样品固定在扫描电镜样品台上,确保样品表面平整。
3. 调整参数:根据样品的性质和所需观察的特征,调整扫描电镜的加速电压、放大倍数等参数。
4. 开始观察:打开扫描电镜,将电子束聚焦在样品表面,并开始观察样品的微观结构。
5. 图像获取:通过扫描电镜的控制系统,获取样品表面的图像,并进行记录和保存。
三、实验结果:1. 金属样品观察:在扫描电镜下观察金属样品,可以清晰地看到金属表面的晶粒结构和纹理。
不同金属的晶粒形状和大小有所差异,通过观察晶粒边界和晶粒内部的细节,可以进一步分析金属的晶体结构和性质。
2. 生物样品观察:利用扫描电镜观察生物样品,可以展示生物细胞、细胞器和细胞结构的微观特征。
例如,观察植物叶片的表面细胞,可以看到细胞壁、气孔和细胞间隙的形态和排列方式。
同时,观察细菌样品可以揭示其形态、大小和表面特征,有助于对细菌种类和功能的鉴定。
3. 其他样品观察:扫描电镜还可用于观察其他类型的样品,如纤维材料、陶瓷、矿物等。
通过观察这些样品的表面形貌和微观结构,可以了解它们的组织结构、纤维排列方式以及晶体形态等特征。
四、实验分析:通过扫描电镜的观察和分析,我们可以更深入地了解样品的微观结构和表面形貌。
这些观察结果对于材料科学、生物学和医学等领域具有重要意义。
例如,在材料科学中,通过观察金属晶粒的形态和排列方式,可以优化材料的力学性能和耐腐蚀性能。
扫描电镜实验报告扫描电镜是一种高分辨率的显微镜,能够对样品进行高分辨率成像。
在本次实验中,我们使用了扫描电镜对样品进行了观察和分析。
本报告将对实验的目的、方法、结果和结论进行详细的描述和分析。
实验目的。
本次实验的主要目的是利用扫描电镜对样品进行表面形貌和微观结构的观察和分析,了解扫描电镜在材料科学和生物科学领域的应用,掌握扫描电镜的操作技巧和注意事项。
实验方法。
1. 样品制备,首先,我们准备了需要观察的样品,如金属材料、生物组织等,并对样品进行表面处理和固定。
2. 扫描电镜操作,接下来,我们将样品放入扫描电镜的样品台上,并根据仪器操作手册进行电镜的开机、预热和调试,确保仪器处于正常工作状态。
3. 观察和记录,在样品放置好并仪器调试完成后,我们通过调整扫描电镜的参数,如放大倍数、对焦等,对样品进行观察,并记录观察到的表面形貌和微观结构。
实验结果。
经过扫描电镜的观察,我们得到了样品的高分辨率图像,并对样品的表面形貌和微观结构进行了分析。
我们观察到样品表面的微观结构非常复杂,有许多微小的颗粒和纹理,这些结构对样品的性能和功能具有重要影响。
通过扫描电镜的观察,我们能够更加深入地了解样品的微观特征,为进一步的研究和分析提供了重要的参考。
实验结论。
本次实验通过扫描电镜的观察和分析,我们对样品的表面形貌和微观结构有了更加深入的了解。
扫描电镜作为一种高分辨率的显微镜,能够为材料科学和生物科学领域的研究提供重要的技术支持。
通过本次实验,我们掌握了扫描电镜的操作技巧和注意事项,为今后的科研工作打下了良好的基础。
总结。
通过本次实验,我们不仅学习了扫描电镜的操作和应用,还对样品的表面形貌和微观结构有了更深入的了解。
扫描电镜在材料科学和生物科学领域具有重要的应用价值,能够为科研工作提供重要的技术支持。
希望通过本次实验,能够对大家对扫描电镜的应用有更深入的了解,为今后的科研工作提供帮助和指导。
在本次实验中,我们通过扫描电镜对样品进行了观察和分析,了解了扫描电镜在科研领域的重要应用价值。
场发射扫描电镜及能谱仪的使用实验报告本次实验是使用场发射扫描电镜及能谱仪,在该实验中,我们使用了分别大小不同的4种不同样品,来研究场发射扫描电镜的原理和能谱仪的使用方法以及样品的成分。
首先,我们使用场发射扫描电镜来观察样品的表面形态。
在观察的过程中,我们需要将样品放置在扫描电子显像样品台上,示波器显示出各类电子的轨迹和位置,样品的表面形态被非常清楚地显示在了电子显像器上。
在观察样品表面形态的过程中,我们发现样品的表面形态非常复杂,有些微观结构上的细节在肉眼里并不能看得出来,但是在电杆极电子轨道的照射下,这些细节清晰可见,非常充分地展现了物质的微观结构。
接着,我们使用场发射扫描电镜来对样品的表面进行能谱分析。
能谱仪是将能量较低的电子通过质谱仪来进行测量,通过利用不同电子在材料中相互作用时发生的产生与到达位置的变化,可以精确地测量到样品中不同元素的元素组成比例。
通过能谱仪的测量,我们得到了样品的化学元素组成和相对含量,从而进一步确认样品的型号和质
量。
在使用能谱仪进行样品分析的过程中,我们需要注意到样品表面
的污染和样品本身的含水率等因素,这些都可能导致测试结果的偏差。
总的来说,使用场发射扫描电镜和能谱仪进行样品分析是一种非
常有效的分析方法。
场发射扫描电镜不仅可以将物质的微观结构清晰
地呈现出来,还可以用来确认样品的型号,而能谱仪则可以帮助我们
进一步了解样品的元素组成和含量,这对于对样品进行研究和分析非
常有帮助。
当然,在进行分析前,我们还需要对每个样品的具体情况
进行细致的分析和考虑,并采取相应的措施来避免测试误差的发生,
保证测试结果的准确性。
场发射扫描电镜技术参数(配能谱仪)1 运行环境1. 1房间温度:15 ~ 25℃1. 2相对湿度:小于60%1. 3适用电源:单相,220V±10%,50/60Hz,4kV A,要求连续供电1. 4地线:电阻小于100Ω2设备用途微细结构材料的形貌及尺寸观察、组成的定性测量。
生物样品、环境样品、催化剂、吸附剂、陶瓷材料、金属材料、合金材料等的形貌观察、微区分析和组成定性测量。
3 技术规格3. 1 组成:主机(包括真空系统、电子光学系统、检测器),自动变压器,冷却循环水系统,能谱仪,计算机,标准工具及附件。
*3. 2 分辨率:1.0nm (15kV) 1.3nm (1kV,减速模式)3. 3 加速电压:0.5 ~ 30kV,0.1kV/步*3. 4 放大倍率:⨯20 to ⨯800, 0003. 5电子光学系统*电子枪:冷场发射电子枪最大电子束流度:不低于2nA透镜系统:3级电磁式*透镜工作多种模式:高分辨、大束流强度、磁性样品工作模式、样品低损伤模式*物镜光阑:4孔可调式(直径30、50、50、100μm)内置加热自清洁装置*3. 6 样品室和样品台:样品台驱动:3轴马达驱动移动范围:X:0~50mm;Y:0~50mm;Z:1.5~30mm;T:-5~70°;R:360°最大样品尺寸:100mm3. 7探测器:二次电子探测器:高位和低位*高位探头可选择接受二次电子像或背散射像,并有100多种混合方式。
*可控信号混合:允许操作者控制图像信号。
操作者可以选择纯的二次电子像或者纯的背散射电子像或者两者信号的任意比例混合像*3. 8 扫描模式:TV扫描(扫描速度不低于0.033桢/秒),慢扫描,用于观察和记录。
图像捕捉:慢扫描成像和快扫描积分成像扫描速度:快扫描等于或优于25桢/秒慢扫描全屏模式下1、4、20、40、80桢/秒,可选3. 9 操作/显示:PC/A T兼容,Windows 操作系统3. 10 图像储存:640×480,1280×960,2560×1920像素图像文件格式:BMP,JPEG,TIFF3. 11 数据记录:胶卷号,加速电压,微米标尺,放大倍率,日期,时间,工作距离*3. 12电子图像移动:±12μm (WD=8mm)3. 13真空系统:真空度:10-7Pa (电子枪);10-4Pa (样品室)真空泵:分子泵1台,机械泵1台,离子泵2台保护:断电、漏电、真空保护带有冷阱以减小样品污染3. 14 能谱仪*配置电制冷能谱仪有效晶体活区面积:≥30mm23.14.1硅漂移(SDD)型SEM探测器3.14.2内含珀耳帖(Peltier)无液氮制冷系统3.14.3对Mn-Ka在100,000CPS计数率下测量的分辨率优于128eV3.14.4SUTW 超薄窗口,传感器: 30mm²3.14.5可以定量分析包括B5以上的所有元素3.14.6可处理输入计数率>1,000kCPS ,输出计数率>350kCPS3.14.7包括前置放大器,放大器和电缆3.15离子溅射仪,电镜同品牌,带喷碳附件3.15.1溅射电压:0.4KV(直流电)*3.15.2溅射电流:0-40mA*3.15.3压力控制范围:7-20Pa3.15.4镀膜速率:15nm/min (Pt靶)(溅射条件:溅射腔压力:7Pa;溅射电流:40mA;溅射距离:20mm)*3.15.5最大样品直径:60mm3.15.6最大样品高度:20mm*3.15.7机械泵抽气速率:135升/分钟4 标准附件及工具按标准配置,由厂家提供二年以上备品备件、专用工具和消耗品1套。
扫描电镜实验报告篇一:扫描电镜实验报告扫描电镜实验报告班级:材化11学号:姓名:李彦杰日期: XX 05 16一、实验目的1. 了解扫描电镜的构造及工作原理;2. 扫描电镜的样品制备;3. 利用二次电子像对纤维纵向形貌进行观察;4. 了解背散射电子像的应用。
二、实验仪器扫描电子显微镜(热发射扫描型号JSM-5610LV)、真空镀金装置。
扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。
扫描电镜由下列五部分组成,主要作用简介如下:1.电子光学系统。
其由电子枪、电磁透镜、光阑、样品室等部件组成。
为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。
常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。
前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。
电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。
扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。
为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。
样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。
2. 扫描系统。
扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。
3. 信号检测、放大系统。
样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。
不同的物理信号要用不同类型的检测系统。
它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。
4. 真空系统。
镜筒和样品室处于高真空下,它由机械泵和分子涡轮泵来实现。
扫描电镜分析实验报告一、实验目的本次扫描电镜分析实验的主要目的是通过使用扫描电子显微镜(SEM)对样品的微观形貌、结构和成分进行观察和分析,以获取有关样品的详细信息,为进一步的研究和应用提供依据。
二、实验原理扫描电子显微镜是一种利用电子束扫描样品表面,产生二次电子、背散射电子等信号,通过检测这些信号来成像和分析样品的仪器。
其工作原理基于电子与物质的相互作用。
当电子束照射到样品表面时,会与样品中的原子发生相互作用,产生多种信号。
二次电子是由样品表面原子的价电子被激发出来形成的,其能量较低,主要反映样品表面的形貌特征。
背散射电子是被样品原子散射回来的入射电子,其能量较高,与样品的成分和原子序数有关。
通过收集和检测这些电子信号,并将其转换为图像,我们可以获得样品表面的微观结构、形貌和成分分布等信息。
三、实验设备与材料1、扫描电子显微镜(型号:_____)2、样品制备设备:切割工具、研磨设备、抛光机等3、样品:_____(具体样品名称)四、实验步骤1、样品制备对样品进行切割,获得合适大小的块状或片状试样。
使用研磨设备对试样进行粗磨和细磨,以去除表面的划痕和损伤。
进行抛光处理,使样品表面光滑平整,以提高成像质量。
对样品进行清洗和干燥,去除表面的杂质和污染物。
2、样品安装将制备好的样品安装在扫描电镜的样品台上,使用导电胶或其他固定方式确保样品稳定。
3、仪器调试打开扫描电镜主机和相关附属设备,如真空泵、电源等。
进行真空抽气,使镜筒内达到所需的真空度。
调整电子枪的加速电压、束流等参数,以及物镜光阑的大小和位置。
4、图像采集选择合适的放大倍数和扫描模式,对样品进行扫描。
观察和调整图像的亮度、对比度等参数,以获得清晰、准确的图像。
对感兴趣的区域进行多次扫描和图像采集,以获取足够的信息。
5、数据分析使用扫描电镜自带的分析软件或其他图像处理软件,对采集到的图像进行分析和测量。
例如,测量颗粒的大小、形状、分布,观察表面的微观结构和缺陷等。
能谱仪实验报告能谱仪实验报告一、实验目的1.了解能谱仪的构造、工作原理和基本参数。
2.掌握Geiger-Muller计数器的基本工作原理。
3.利用能谱仪研究放射性样品的辐射性质和核能级结构。
4.掌握能谱的测量方法和测量数据的处理方法。
二、实验原理1.能谱仪的构造(1)光电倍增管光电倍增管由光电阴极、几个极靴、若干个百叶窗和若干个二次倍增极等组成。
光电阴极:将光子能量转化为电子能量。
极靴:增强电子输出。
百叶窗:阻挡光电子。
二次倍增极:将收集到的电子倍增。
(2)能量分析器能量分析器由若干个圆筒形电极等构成,其中一个圆筒形电极充当入口狭缝,一个圆筒形电极充当出口狭缝,其余几个圆筒形电极连接不同高压。
(3)单道分析器单道分析器由一个多路开关和一个计数器构成,将接收到的信号输入到计数器中。
2.工作原理当入射射线穿过入口狭缝后,在强电场的作用下,它们会将电离气体分子电离,产生电离电子,电离电子在电场的作用下形成一个电流,电流和粒子的能量有关,经过放大、多次测量和重复,得到一个精确的能量谱。
3.基本参数(1)能量分辨本领:能谱仪分辨测量出的辐射能量中的能级能量峰值与峰值之间的分辨能力,常用能量分辨本领来评价能谱仪的性能。
(2)计数效率:表示利用能谱仪在一定时间内所测得的有效计数数与实际产生的辐射剂量之比,在能谱测量中计数效率是一个非常重要的参数。
(3)峰位:表示能量分辨本领,也是能谱中不同能量发射峰的位置。
(4)全能位置:获得有效计数的最高能量。
(5)平均扫描时间:截取一个完整的能谱所需的时间,其值应该比能谱内容时间小很多。
三、实验装置与实验步骤1.实验装置能谱仪主要由光电倍增管、能量分析器、单道分析器、高压电源、样品架等组成。
实验装置如下图所示:2.实验步骤(1)实验前的准备确认仪器连接正确,并调整得到最佳工作状态。
将样品架固定到能谱仪的样品台上。
扫描电镜实验报告一、背景介绍扫描电镜(Scanning Electron Microscope,SEM)是一种常用于观察材料表面形貌的高分辨率显微镜。
与光学显微镜不同,SEM使用电子束来对样品进行扫描,从而获得样品表面的高清晰度图像。
本文将对扫描电镜实验进行详细描述和分析。
二、实验目的本次实验的目的是研究和观察不同样品的表面形貌及其微观结构。
通过使用扫描电镜,我们可以进一步了解材料的性质和特征,并为后续的研究工作提供有力的支持。
三、实验步骤1. 样品制备:将待观察的样品进行必要的处理,例如切割、研磨、涂覆导电剂等,以保证样品的表面光滑且导电性良好。
2. 装备样品:将处理完成的样品放置在SEM样品台上,固定好并调整角度,确保样品表面垂直于电子束的入射方向。
3. 调整参数:根据不同样品的特性和需求,调整加速电压、放大倍数、探头电流等参数,以获得最佳的图像质量。
4. 扫描观察:打开SEM仪器,开始对样品进行扫描观察。
电子束在样品表面扫描时,与样品表面相互作用,产生二次电子信号,这些信号被探测器接收并转换成图像。
四、实验结果与分析在本次实验中,我们观察了不同样品的表面结构,并获得了一系列高分辨率的SEM图像。
以一块常见的金属材料——铝为例,通过SEM观察,我们可以清晰地看到铝表面的微观结构。
观察结果显示,铝表面呈现出许多沟槽和凸起的特征,这些特征是铝晶粒的显著标记。
SEM图像还揭示了铝表面的晶粒大小和分布情况,有助于我们进一步研究金属的力学性质和形变行为。
同样,我们还观察了纳米颗粒的表面形貌。
SEM图像显示,纳米颗粒具有较大的表面积和丰富的形态结构,这使得纳米颗粒在催化剂、材料科学等领域有着广泛的应用价值。
通过SEM观察,我们可以研究纳米颗粒的大小分布、形状特征以及粒子间的相互作用,为相关研究提供了重要的依据。
五、实验的意义与应用前景扫描电镜作为一种重要的表征工具,在材料科学、生物学、纳米技术等领域具有广泛的应用和重要意义。
扫描电镜能谱分析实验报告实验报告篇一:扫描电镜能谱分析实验能谱分析对于确定样品的结构与组成有着重要意义。
本实验通过探究硅片中磷原子的能级结构,得出结论。
具体实验方案如下: 1.扫描电镜分析:采用SPZ100型旋转扫描电子能谱仪,按国家标准,完成了对Z型和P型样品的能量分析。
2.测试分析:采用德国克劳斯特K40光谱仪测试待测样品,得出其成分分析值为:样品组成为:Si85%~91%、 Al2O31.5~3%、 Sn1.0~2.3%、 Fe0.6~0.7%、 S0.2~0.3%、 Cl0.4~0.8%、 Cu0.02~0.1%。
扫描电镜主要由真空系统、电子学系统和信号处理及图像采集系统组成。
与光学显微镜相比,电子显微镜具有极大的优越性,这是因为电子束具有极高的速度,可在瞬间获得数百万的信息,放大倍率一般在1万倍左右。
它是一种多功能的高分辨显微镜。
自从上世纪90年代以来,随着电子显微镜技术的发展,扫描电镜作为现代显微分析领域中研究生命科学和材料科学等方面的有力工具,已广泛应用于各个领域,而且,扫描电镜能谱分析技术也已被应用到众多领域。
例如:样品制备的表征,多元素同时分析,信号提取和图像重建,表面形貌和孔洞分析等。
对于石墨材料的扫描电镜能谱分析的目的主要是: 1、进行表面扫描电镜( SEM)和反射电镜( RIM)表面组成的表征; 2、确定石墨材料中的杂质类型及含量; 3、观察石墨层中二维或三维缺陷及结构缺陷; 4、确定石墨中裂纹的存在位置和走向。
扫描电镜(SEM)是当前应用最为广泛的表面结构研究手段之一。
扫描电镜能谱分析技术包括X射线光电子能谱和俄歇电子能谱,其中俄歇电子能谱又称“无损定量分析”。
俄歇电子能谱实际上是一种能量分析方法,它只分析特定能量的电子。
在原子吸收测量中,测量电子的能量范围约在0.1~0.45ev,此时单能态分辨能力较差,因此,采用双能级分析(即俄歇电子能谱),能够更好地对样品进行表征。
《材料研究方法》课程演示实验报告冯恩科091623一、扫描电子显微镜1 实验的名称:场发射扫描电子显微镜(FESEM)。
2 仪器的型号:FEI—QUANTA 200F3 实验材料及样品形式:添加了缓凝剂的水泥,并水化三天,固体块状。
4 研究材料表观特性:研究样品表面微观形貌。
5 实验条件:保护气体:水蒸气;束斑:4.0;加压电压:20kV;气压:70Pa。
6 制样方法:先将导电胶或双面胶纸粘结在样品基座上,再用镊子将块状样品放置在胶带上面黏牢,最后镀上一层导电膜,然后就可以放入扫描室内进行观察。
7 所观察到的实验现象:上图为实验当天拍下来的两幅扫描图。
在实验中随着放大倍率不断提高,通过与扫描电子显微镜想连接的计算机进行聚焦后我们可以观察到,屏幕上出现一些棒状的物体(缓凝剂)、并且分布均匀,通过对这些凹凸和颜色的分析,可以确定表面物质组成和结构。
8 观后感:在观看实验之前,对扫描电子显微镜的理解和认识并不深刻,尽管知道它的一些原理和功能,但是它具体使用的方法是什么,如何利用这件宝贝看到自己想看的东西却完全不懂,通过这次实地地观摩和与老师的交流,终于明白一二。
老师给我们介绍了一些制样时需要注意的问题:通常要选取具有代表性的样品或样品区域,处理断面时应尽量选择新鲜自然形成的断面,避免人工手段对样品断面结构、物质造成变化而失真。
在处理样品时应防止电荷的积累,避免由此导致的表面过亮而使形貌特点难以观测。
粉末样品的颗粒应小而均匀,防止对观测产生不利影响。
在进行实验观察时,首先要弄清楚我们所要得到的信息,然后选择有代表性的区域,小心仔细地调节,由大到小,一步一步聚焦放大,直到看到想要看的区域为止。
二、红外光谱1 实验的名称:傅里叶变换<FTIR>红外光谱分析仪2 仪器的型号:EQUINOX 55配套OPUS软件。
生产厂家:德国BRUKER公司分辨率:< 0.5 1/cm波数精度:优于0.01 1/cm信噪比:>3600:1光谱范围:7500—370 1/cm功能及应用范围:主要应用于有机、无机材料的分子组成和结构检测主要附件:单反射ATR附件、漫反射附件、红外显微镜3 实验材料及样品形式:添加了3%高分子材料的水泥基,灰色粉末状。
扫描电镜实验报告3页一、实验目的:1.了解扫描电镜的工作原理和使用方法;2.学习制备样品的技术和方法;3.观察样品的形态、结构和微观结构;4.掌握扫描电镜的操作技巧和使用规范。
二、实验原理:扫描电镜是一种可以获得高分辨率图像的显微镜。
其主要原理是利用所谓的零接触方式,在真空中进行样品的扫描和成像。
扫描电镜的基本工作原理:样品表面受到高能电子束的轰击后,可以形成反射电子。
扫描电镜将这些反射电子采集并放大,然后用它们来形成高分辨率的图像。
扫描电镜分为常规扫描电镜(SEM)和透射电子显微镜(TEM)。
常规扫描电镜主要是在样品表面上进行扫描,而透射电子显微镜主要是在样品内部进行扫描。
扫描电镜可以观察到不同形态和大小的物体,并且可以观察到纳米级的结构。
三、实验步骤:1.制作样品:(1)样品准备:准备好需要观察的样品。
不同的样品需要不同的制备方法。
(2)切样品:将样品切成适当的大小和形状。
(3)去除表面粗糙:使用砂纸或者打磨机去除表面粗糙。
(4)去除表面杂质:使用超声波清洗仪去除表面杂质。
(5)制备导电层:使用金属喷涂或者碳喷涂制备导电层。
2.观察样品:(1)将样品放入扫描电镜的样品架上。
(2)调整扫描电镜的工作参数,如电压、电流、探针电流、扫描速度等。
(4)记录和保存观察结果。
四、实验结果:我们观察了一些不同的样品,如铜片、虫体、花粉等。
下面列出了观察结果。
(1)铜片:铜片的表面非常光滑,并且有许多颗粒状的凸起。
在高倍观察时,可以看到这些颗粒状的凸起是由许多小的颗粒组成的。
(2)虫体:虫体的表面有许多微小的颗粒状结构,这些颗粒状结构是由蛋白质和其他有机物质组成的。
这些颗粒状结构可以用扫描电镜清晰地观察到,从而更好地了解其微观结构。
(3)花粉:花粉表面非常光滑,并且具有不同的形态和大小。
不同的花粉具有不同的表面结构和形态,这些结构和形态可以用扫描电镜清晰地观察到。
本次实验我们使用扫描电镜观察了不同的样品,如铜片、虫体、花粉等。
扫描电镜实验报告
本次实验我们使用了扫描电镜来观察各种微观结构。
扫描电镜是一种高分辨率的显微镜,可以观察到小至0.01微米的结构。
首先,我们观察了一些有机物样品。
我们先将其放入扫描电镜中,并用电子束来激发样品表面的电子。
随后,样品表面的电子会被电子束所控制,造成电子的放出。
这些漫反射的电子就会被探测器拾取,最终转化成二维图像。
通过实验,我们所得到的图像结果十分有趣,有的组织结构长得像秋天的银杏叶,有的则如竹子一般,细长有弧度等。
我们可以清楚地看到它们的外形和细节。
接下来,我们观察了一些无机物样品,如一些金属纳米颗粒、各种晶体颗粒和非晶态颗粒等等。
我们不仅在超微结构方面能够看到一些非常细微的特征,如晶界(grain boundaries)、晶缺陷(lattice vacancies)、位错(dislocations)等等,我们还能观察到传统光学显微镜无法看到的微观特征,如金属内部结构的形态、非晶态的颗粒等等。
同时,我们还使用扫描电镜观察了一些细胞和细胞器的结构。
我们清楚地看到了生物组织中的微观结构,如细胞膜、微绒毛、高尔基体等等。
我们不仅仅看到了它们的外形,而且还能够通过结构上的细微变化来了解细胞的生理和病理状态。
最后,我们在实验中使用了一些特殊技术来进一步增强图像的细节,如图像增强、三维图像重建等等。
总的来说,本次扫描电镜实验让我们更加深入地了解了微观结构以及它们的性质和形态。
这样的结果对于探究材料科学、生物学、病理学等领域都有很大的意义。
同时,这也让我们更加深入了解了扫描电镜这种高级显微镜,它成为了化学科学和工程领域的重要工具之一。
【关键字】实验扫描电镜实验报告篇一:扫描电镜实验报告扫描电镜实验报告班级:材化11学号:姓名:李彦杰日期:XX 05 16一、实验目的1. 了解扫描电镜的构造及工作原理;2. 扫描电镜的样品制备;3. 利用二次电子像对纤维纵向形貌进行观察;4. 了解背散射电子像的应用。
二、实验仪器扫描电子显微镜(热发射扫描型号JSM-5610LV)、真空镀金装置。
扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频缩小和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。
扫描电镜由下列五部分组成,主要作用简介如下:1.电子光学系统。
其由电子枪、电磁透镜、光阑、样品室等部件组成。
为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。
常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。
前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。
电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。
扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。
为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。
样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。
2. 扫描系统。
扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。
3. 信号检测、缩小系统。
样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。
不同的物理信号要用不同类型的检测系统。
它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。
4. 真空系统。
扫描电镜实验报告扫描电镜实验报告姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.17⼀、实验⽬的:1、了解扫描电镜的基本原理、仪器结构及特点2、了解扫描电镜的应⽤⼆、实验原理:扫描电镜是利⽤细聚焦的电⼦束,在样品表⾯逐点扫描,⽤探测器⼿机在电⼦束作⽤下,样品中产⽣的电⼦信号,把信号转换成图像的仪器。
在扫描显微镜中,由电⼦枪发射并经过聚焦的电⼦束在样品表⾯扫描,激发样品产⽣各种物理信号,包括背散射电⼦、⼆次电⼦、吸收电⼦、透射电⼦、特征X射线等,其强度随样品表⾯特征⽽变。
于是样品表⾯不同的特征,按顺序、成⽐例地被转换成视频信号。
然后检测其中某种物理信号,并经过视频放⼤和信号处理,⽤来同步地调制阴极线管(CRT)的电⼦束强度。
原则上说,⾼能电⼦与固体样品互相作⽤产⽣的各种物理信号,经检测放⼤后皆可作为调制信号,在CRT荧光屏上获得反映样品表⾯各种特征的扫描图像。
三、仪器结构:扫描电镜主要有真空系统、电⼦束系统以及成像系统三部分构成。
1、真空系统:真空系统主要包括真空泵和真空柱两部分。
(1)真空柱是⼀个密封的柱形容器。
(2)真空泵⽤来在真空柱内产⽣真空。
由机械泵、油扩散泵以及涡轮分⼦泵三⼤类,机械泵加油扩散泵的组合可以满⾜配置钨枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧枪的扫描电镜,则需要机械泵加涡轮分⼦泵的组合。
成象系统和电⼦束系统均内置在真空柱中。
真空柱底端是密封室,⽤于放置样品。
之所以要⽤真空,主要基于以下两点原因:⼀、电⼦束系统中的灯丝在普通⼤⽓中会迅速氧化⽽失效,所以除了在使⽤扫描电镜时需要⽤真空以外,平时还需要以纯氮⽓或惰性⽓体充满整个真空柱。
⼆、为了增⼤电⼦的平均⾃由程,从⽽使得⽤于成象的电⼦更多。
2、电⼦束系统:电⼦束系统由电⼦枪和电磁透镜两部分组成,主要⽤于产⽣⼀束能量分布极窄的、电⼦能量确定的电⼦束⽤以扫描成象。
(1)电⼦枪:⽤于产⽣电⼦。
扫描电镜及能谱分析实验报告书班级:9131161502学号:913116150208姓名:安志恒南京理工大学材料科学与工程学院2016.5. 30一、实验目的1. 了解扫描电子显微镜的基本结构和工作原理2. 了解扫描电镜的一般操作过程3. 了解扫描电镜的图像衬度和图像分析方法二、扫描电子显微镜的基本结构和工作原理1. 基本结构镜筒:包括电子枪、聚光镜、物镜及扫描系统电子信号收集与处理系统电子信号的显示与记录系统真空系统及电源系统实验仪器为美国FEI 公司生产的场发射环境扫描电子显微镜(FEI Quanta 250 FEG),能高效地收集电子显微图像、衍射花样、元素分布等有用信息,并能直接进行纳米尺度的观察和研究,实现对金属或纳米材料在原子尺度上微结构和缺陷的表征。
主要技术指标:高真空模式二次电子(SE)像分辨率:30 kV 时优于1.0 nm;高低真空模式背散射电子(BSE)像:30 kV 时优于2.5 nm;加速电压:0.2 kV-30 kV;放大倍数:14 倍-100 万倍;电子枪:Schottky 场发射电子枪,最大束流200 nA;探测器:二次电子、背散射电子、红外CCD 相机;能谱仪:分析型SDD 硅漂移电制冷探测器,元素分析范围Be(4)~Pu(94);EBSD 电子背散射衍射分析仪。
扫描电子显微镜的结构主要由电子光学系统;信号检测处理、图像显示和记录系统以及真空系统三大系统组成。
其中,电子光学系统是扫描电子显微镜的主要组成部分。
FEI Quanta 250 FEG 扫描电子显微镜的主要组成部分如图1 所示,包括电子枪、两级聚光镜、扫描控制单元、物镜、样品室以及各类探测器等组成。
2. 工作原理电子枪产生束流细小稳定、角度分散性小的电子束,作为照明光源。
电子束首先进入由数级电磁透镜组成的聚光镜聚焦后形成纳米束斑照射于样品表面。
入射样品的电子与样品表面原子发生交互作用产生各种信号,如二次电子、背散射电子和特征X射线。
场发射扫描电镜及能谱仪的使用实验报告(一)
场发射扫描电镜及能谱仪使用实验报告
实验目的
1.了解场发射扫描电镜及能谱仪的基本原理和使用方法;
2.熟悉场发射扫描电镜及能谱仪的操作流程;
3.掌握利用场发射扫描电镜及能谱仪对样品进行表征的技能。
实验器材
1.场发射扫描电镜及能谱仪;
2.样品;
3.电脑。
实验步骤
一、准备工作
1.打开电脑,登录操作系统;
2.打开场发射扫描电镜及能谱仪的相关软件;
3.将样品放置在台面上,并对其进行定位和调整。
二、场发射扫描电镜成像
1.点击场发射扫描电镜软件界面上的“成像”按钮;
2.调整样品位置和姿态,确保取得清晰的图像;
3.根据需要进行调整,如放大、缩小、改变灰度等。
三、能谱仪分析
1.点击能谱仪软件界面上的“能谱分析”按钮;
2.设置分析参数,如电子束的加速电压、电子束的工作距离、收集
角度等;
3.等待采集数据,得到样品的能谱图;
4.根据能谱图进行分析和判断,如分析样品的成分元素和结构等。
四、关闭仪器
1.关闭软件界面;
2.关闭仪器的主电源;
3.给样品台面等部件进行清洁。
实验结果
通过场发射扫描电镜及能谱仪的使用,我们成功得到了样品的形态、结构特征以及成分等信息。
实验结果表明,场发射扫描电镜及能谱仪是非常重要的材料表征手段,对于材料的表征、研究和开发具有非常重要的作用和意义。
实验总结
1.场发射扫描电镜及能谱仪的操作流程相对简单,但在实验操作时
需要非常注意;
2.实验中需要格外注意操作的安全性和环境的卫生;
3.实验结果的可靠性需要通过多次实验进行验证;
4.实验工作需要团队合作,大家需要相互配合协作,以确保取得预
期的实验结果。
实验注意事项
1.实验者需要对仪器有一定的了解,以免操作不当造成设备损坏或
人身伤害;
2.实验时需要保持实验场地的卫生,避免样品受到污染;
3.实验数量不能过多,要保证每次实验充分利用设备和样品;
4.实验时需认真遵守实验室安全操作规程,不得离开实验室;
5.实验结束后,需仔细清洁实验场地和仪器。
结语
本次实验我们通过场发射扫描电镜及能谱仪的使用,加深了对材料表征的认识,并掌握了样品表征的技能。
这不仅有助于我们更好地研究和开发材料,也为我们今后的学习和工作打下了坚实的基础。