2019版同步优化探究文数(北师大版)练习:第三章 第五节 两角和与差及二倍角的三角函数 含解析
- 格式:doc
- 大小:93.50 KB
- 文档页数:10
第五节两角和与差及二倍角的三角函数[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).(对应学生用书第48页)[基础知识填充]1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)tan 2α=2tan α1-tan2α.[知识拓展]1.有关公式的变形和逆用(1)公式T(α±β)的变形:①tan α+tan β=tan(α+β)(1-tan αtan β);②tan α-tan β=tan(α-β)(1+tan αtan β).(2)公式C2α的变形:①sin2α=12(1-cos 2α);②cos2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( ) (4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( )[答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B .32 C .-12D .12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D .]3.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( ) A .-79 B .-29 C .29D .79A [∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169, ∴sin 2α=-79.故选A .]4.(2017·云南二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.【导学号:00090103】-2 [函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=________. π3 [由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.](对应学生用书第49页)(1)化简:sin 2α-2cos sin ⎝ ⎛⎭⎪⎫α-π4=________. (2)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .(1)22cos α [原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.](2)原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=12(1-sin 22x )2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x.[规律方法] 1.三角函数式的化简要遵循“三看”原则一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] 化简sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝⎛⎭⎪⎫α+π6-sin 2α=________. 【导学号:00090104】12 [法一:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝ ⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.法二:令α=0,则原式=14+14=12.]角度1 (1)2cos 10°-sin 20°sin 70°=( )A .12 B .32 C .3D . 2(2)sin 50°(1+3tan 10°)=________.(1)C (2)1 [(1)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3. (2)sin 50°(1+3tan 10°)=sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]角度2 给值求值(1)(2016·全国卷Ⅱ)若cos⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A .725 B .15 C .-15D .-725(2)(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A .1+358B .1+538 C .1-358D .1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.(2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A .] 角度3 给值求角(2018·长春模拟)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )【导学号:00090105】A .5π12B .π3C .π4D .π6C [∵α,β均为锐角,∴-π2<α-β<π2. 又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.(1)(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A .65 B .1 C .35D .15(2)已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R .①求f (x )的最小正周期;②求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.(1)A [法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x=110sin x +310cos x +32cos x +12sin x=35sin x +335cos x =65sin ⎝ ⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65. 故选A .法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3≤65.∴f (x )max =65. 故选A .](2)①由已知,有f (x )=1-cos 2x 2-1-cos ⎝ ⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x=34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.②因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 的函数化为y =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 的形式,可进一步研究函数的周期、单调性、最值与对称性. [变式训练2] (2017·北京高考)已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.[解] (1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6, 所以sin ⎝ ⎛⎭⎪⎫2x +π3≥sin ⎝ ⎛⎭⎪⎫-π6=-12,所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.。
课时作业 A 组——基础对点练1.设sin(π-θ)=13,则cos 2θ=( )A .±429B.79 C .-429D .-79解析:因为sin(π-θ)=sin θ=13,所以cos 2θ=1-2sin 2θ=79,故选B.答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.答案:B3.若tan α=13,tan(α+β)=12,则tan β=( )A.17 B.16 C.57D.56解析:tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.答案:A4.(2018·西安质量检测)sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:sin 45°cos 15°+cos 225°sin 165°=sin 45°cos 15°+(-cos 45°)·sin 15°=sin(45°-15°)=sin 30°=12.答案:B5.已知cos ⎝⎛⎭⎫π3-2x =-78,则sin ⎝⎛⎭⎫x +π3的值为( ) A.14 B.78 C .±14D .±78解析:因为cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +2π3=78,所以有sin 2⎝⎛⎭⎫x +π3=12⎣⎡⎦⎤1-cos ⎝⎛⎭⎫2x +2π3=12⎝⎛⎭⎫1-78=116,从而求得sin ⎝⎛⎭⎫x +π3的值为±14,故选C. 答案:C6.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .-233B .±233C .-1D .±1解析:∵cos ⎝⎛⎭⎫x -π6=-33,∴cos x +cos ⎝⎛⎭⎫x -π3=cos x +cos x cos π3+sin x sin π3=32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=3×⎝⎛⎭⎫-33=-1.答案:C7.已知2sin 2α=1+cos 2α,则tan(α+π4)的值为( )A .-3B .3C .-3或3D .-1或3解析:∵2sin 2α=1+cos 2α, ∴4sin αcos α=1+2cos 2α-1, 即2sin αcos α=cos 2α,①当cos α=0时,α=k π+π2,此时tan(α+π4)=-1,②当cos α≠0时,tan α=12,此时tan(α+π4)=tan α+tanπ41-tan αtanπ4=3,综上所述,tan(α+π4)的值为-1或3.答案:D8.已知sin 2α=23,则cos 2(α+π4)=( )A.16 B.13 C.12D.23解析:cos(α+π4)=22cos α-22sin α,所以cos 2(α+π4)=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.答案:A9.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C.14D.78解析:cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫23π-2α=-cos ⎝⎛⎭⎫23π-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫142=-78. 答案:A10.已知sin ⎝⎛⎭⎫π6-α=15,则cos ⎝⎛⎭⎫π3-2α的值是( ) A.2325 B.15 C .-15D .-2325解析:∵sin ⎝⎛⎭⎫π6-α=15,∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α=1-2sin 2⎝⎛⎭⎫π6-α=2325. 答案:A11.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34.答案:C12.若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2 θ,∴sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12. 答案:D13.已知tan α=3,则cos 2α=________.解析:cos 2α=2cos 2α-1=2·cos 2αsin 2α+cos 2α-1=2×1tan 2α+1-1=-45.答案:-4514.(2018·长沙市模拟)已知α-β=π3,tan α-tan β=3,则cos(α+β)的值为________.解析:由tan α-tan β=sin αcos β-cos αsin βcos αcos β=sin (α-β)cos αcos β=3,解得cos αcos β=36,又cos(α-β)=cos αcos β+sin αsin β=12,所以sin αsin β=12-36,所以cos(α+β)=33-12.答案:33-1215.函数f (x )=sin ⎝⎛⎭⎫2x -π4-22sin 2x 的最小正周期是__________. 解析:∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin ⎝⎛⎭⎫2x +π4-2,∴f (x )的最小正周期T =2π2=π.答案:π16.已知sin ⎝⎛⎭⎫π3+α+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是__________. 解析:∵sin ⎝⎛⎭⎫π3+α+sin α=435, ∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45, 故sin ⎝⎛⎭⎫α+7π6=sin αcos 7π6+cos αsin 7π6 =-⎝⎛⎭⎫32sin α+12cos α=-45.答案:-45B 组——能力提升练1.(2018·洛阳市模拟)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >bD .a >c >b解析:a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°, c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°, ∴a >c >b . 答案:D2. (2018·吉林大学附中检测)若α∈(π2,π),且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-356 B .-16C .-3518D .-1718解析:∵3cos 2α=sin(π4-α),∴3(cos 2α-sin 2α)=-22(sin α-cos α),易知sin α≠cos α,故cos α+sin α=26,1+sin 2α=118,sin 2α=-1718,故选D.答案:D3.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtan β=3,则α,β的大小关系是( )A .α<π4<βB .β<π4<αC.π4<α<β D.π4<β<α 解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.答案:B4.在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4 B.π3 C.π2D.3π4解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan β·tan C =1-2,所以tan(B +C )=tan B +tan C1-tan B tan C =-1.由已知,有tan A =-tan(B +C ),则tan A =1,所以A =π4.答案:A5.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝⎛⎭⎫α+π3=( ) A.1+358B.1+538C.1-358D.1-538解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14,∵α为锐角,∴cos α=154,∴sin ⎝⎛⎭⎫α+π3=14×12+154×32=1+358,故选A.答案:A6.(2018·贵阳监测)已知sin(π6-α)=13,则cos[2(π3+α)]的值是( )A.79 B.13 C .-13D .-79解析:∵sin(π6-α)=13,∴cos(π3-2α)=cos[2(π6-α)]=1-2sin 2(π6-α)=79,∴cos[2(π3+α)]=cos(2π3+2α)=cos[π-(π3-2α)]=-cos (π3-2α)=-79.答案:D7.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45C.35D .-35解析:由sin ⎝⎛⎭⎫α-π4=7210得sin α-cos α=75, ① 由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725, ② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.答案:C8.已知sin(π6-α)=cos(π6+α),则cos 2α=( )A .1B .-1 C.12D .0解析:∵sin(π6-α)=cos(π6+α),∴12cos α-32sin α=32cos α-12sin α,即(12-32)sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2 α-sin 2α=cos 2 α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 答案:D9.已知函数f (x )=sin ⎝⎛⎭⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎡⎦⎤π12,7π12 B.⎣⎡⎦⎤-5π12,π12 C.⎣⎡⎦⎤-π3,2π3 D.⎣⎡⎦⎤-π6,5π6 解析:由题意,得f ′(x )=2cos ⎝⎛⎭⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝⎛⎭⎫2x +π12+2cos ⎝⎛⎭⎫2x +π12=22sin ⎝⎛⎭⎫2x +π12+π4=22·sin ⎝⎛⎭⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),得k π+π12≤x ≤k π+7π12(k ∈Z),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎡⎦⎤π12,7π12,故选A. 答案:A10.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )A .1B .2C .3D .4解析:cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α-3π10+π2sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cos π5cos π5-sinπ5=3sin π5sin π5=3,故选C. 答案:C11.若tan α=3,则sin ⎝⎛⎭⎫2α+π4的值为( ) A .-210B.210C.5210D.7210解析:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45,∴sin ⎝⎛⎭⎫2α+π4=22sin 2α+22cos 2α=22×⎣⎡⎦⎤35+⎝⎛⎭⎫-45=-210. 答案:A12.已知1+sin θ+cos θ1+sin θ-cos θ=12,则tan θ=( )A.43B.34 C .-34D .-43解析:因为1+sin θ+cos θ1+sin θ-cos θ=2sin θ2cos θ2+2cos 2θ22sin θ2cos θ2+2sin 2θ2=2cos θ2⎝⎛⎭⎫sin θ2+cos θ22sin θ2⎝⎛⎭⎫cos θ2+sin θ2=1tan θ2=12,所以tan θ2=2,于是tan θ=2tanθ21-tan 2θ2=-43.答案:D13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=__________. 解析:∵α∈⎝⎛⎭⎫0,π2,cos 4α-sin 4α=(sin 2α+cos 2α)·(cos 2α-sin 2α)=cos 2α=23>0, ∴2α∈⎝⎛⎭⎫0,π2,∴sin 2α=1-cos 22α=53,∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 答案:2-15614.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β=__________. 解析:由题意得tan α+ tan β=-33<0,tan α·tan β=4>0,∴tan(α+β)=tan α+tan β1-tan αtan β=3,且tan α<0,tan β<0,又α,β∈⎝⎛⎭⎫-π2,π2,故α,β∈⎝⎛⎭⎫-π2,0,∴α+β∈(-π,0),∴α+β=-2π3. 答案:-2π315.(2018·邢台摸底考试)已知tan(3π-α)=-12,tan(β-α)=-13,则tan β=________.解析:依题意得tan α=12,tan β=tan[(β-α)+α]=tan (β-α)+tan α1-tan (β-α)·tan α=17.答案:1716.已知0<θ<π,tan ⎝⎛⎭⎫θ+π4=17,那么sin θ+cos θ=________. 解析:由tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1,∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.答案:-15。
课时作业A 组——基础对点练1.设sin(π-θ)=13,则cos 2θ=( )A .±429 B.79 C .-429D .-79解析:因为sin(π-θ)=sin θ=13,所以cos 2θ=1-2sin 2θ=79,故选B. 答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.答案:B3.若tan α=13,tan(α+β)=12,则tan β=( )A.17 B.16 C.57D.56解析:tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.答案:A4.(2018·西安质量检测)sin 45°cos 15°+cos 225°·sin 165°=( ) A .1 B.12 C.32D .-12解析:sin 45°cos 15°+cos 225°sin 165°=sin 45°cos 15°+(-cos 45°)·sin 15°=sin(45°-15°)=sin 30°=12.答案:B5.已知cos ⎝ ⎛⎭⎪⎫π3-2x =-78,则sin ⎝ ⎛⎭⎪⎫x +π3的值为( )A.14 B.78 C .±14D .±78解析:因为cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =cos ⎝ ⎛⎭⎪⎫2x +2π3=78,所以有sin2⎝ ⎛⎭⎪⎫x +π3=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +2π3=12⎝ ⎛⎭⎪⎫1-78=116,从而求得sin ⎝ ⎛⎭⎪⎫x +π3的值为±14,故选C.答案:C6.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .-233B .±233C .-1D .±1解析:∵cos ⎝ ⎛⎭⎪⎫x -π6=-33,∴cos x +cos ⎝⎛⎭⎪⎫x -π3=cos x +cos x cos π3+sinx sin π3=32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1. 答案:C7.已知2sin 2α=1+cos 2α,则tan(α+π4)的值为( )A .-3B .3C .-3或3D .-1或3解析:∵2sin 2α=1+cos 2α, ∴4sin αcos α=1+2cos 2α-1, 即2sin αcos α=cos 2α, ①当cos α=0时,α=k π+π2,此时tan(α+π4)=-1, ②当cos α≠0时,tan α=12,此时tan(α+π4)=tan α+tanπ41-tan αtanπ4=3,综上所述,tan(α+π4)的值为-1或3.答案:D8.已知sin 2α=23,则cos 2(α+π4)=( )A.16 B.13 C.12D.23解析:cos(α+π4)=22cos α-22sin α,所以cos 2(α+π4)=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.答案:A9.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78B .-14C.14D.78解析:cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫23π-2α=-cos ⎝ ⎛⎭⎪⎫23π-2α=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π3-α=-⎣⎢⎡⎦⎥⎤1-2×⎝ ⎛⎭⎪⎫142=-78.答案:A10.已知sin ⎝ ⎛⎭⎪⎫π6-α=15,则cos(π3-2α)的值是( )A.2325 B.15 C .-15D .-2325解析:∵sin ⎝ ⎛⎭⎪⎫π6-α=15,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=2325. 答案:A11.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34.答案:C 12.若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2 θ,∴sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12.答案:D13.已知tan α=3,则cos 2α= .解析:cos 2α=2cos 2α-1=2·cos 2αsin 2α+cos 2α-1=2×1tan 2α+1-1=-45.答案:-4514.(2018·长沙市模拟)已知α-β=π3,tan α-tan β=3,则cos(α+β)的值为 . 解析:由tan α-tan β=sin αcos β-cos αsin βcos αcos β=α-βcos αcos β=3,解得cos αcos β=36,又cos(α-β)=cos αcos β+sin αsin β=12,所以sin αsin β=12-36,所以cos(α+β)=33-12. 答案:33-1215.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是 .解析:∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin ⎝ ⎛⎭⎪⎫2x +π4-2,∴f (x )的最小正周期T =2π2=π.答案:π16.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是 .解析:∵sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45, 故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.答案:-45B 组——能力提升练1.(2018·洛阳市模拟)设a =cos 50°cos 127°+cos 40°·cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >bD .a >c >b解析:a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=si n 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°, ∴a >c >b . 答案:D2.(2018·吉林大学附中检测)若α∈(π2,π),且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( ) A .-356 B .-16C .-3518D .-1718解析:∵3cos 2α=sin(π4-α),∴3(cos 2α-sin 2α)=-22(sin α-cos α),易知sin α≠cos α,故cos α+sin α=26,1+sin 2α=118,sin 2α=-1718,故选D. 答案:D3.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtanβ=3,则α,β的大小关系是( ) A .α<π4<β B .β<π4<α C.π4<α<β D.π4<β<α 解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α. 答案:B4.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358B.1+538C.1-358D.1-538解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14,∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A.答案:A5.(2018·贵阳监测)已知sin(π6-α)=13,则cos[2(π3+α)]的值是( ) A.79 B.13 C .-13D .-79解析:∵sin(π6-α)=13,∴cos(π3-2α)=cos[2(π6-α)]=1-2sin 2(π6-α)=79,∴cos[2(π3+α)]=cos(2π3+2α)=cos[π-(π3-2α)]=-cos(π3-2α)=-79.答案:D6.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,则sin α=( )A.45 B .-45C.35D .-35解析:由sin ⎝ ⎛⎭⎪⎫α-π4=7210得sin α-cos α=75, ①由cos 2α=725得cos 2α-sin 2α=725, 所以(cos α-sin α)·(cos α+sin α)=725, ② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.答案:C 7.已知sin(π6-α)=cos(π6+α),则cos 2α=( ) A .1 B .-1 C.12D .0解析:∵sin(π6-α)=cos(π6+α),∴12cos α-32sin α=32cos α-12sin α,即(12-32)sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.答案:D8.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎢⎡⎦⎥⎤π12,7π12 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤-π3,2π3D.⎣⎢⎡⎦⎥⎤-π6,5π6解析:由题意,得f ′(x )=2cos ⎝⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22·sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),得k π+π12≤x ≤k π+7π12(k ∈Z),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.答案:A9.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .4解析:cos ⎝⎛⎭⎪⎫α-3π10sin ⎝⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α-3π10+π2sin ⎝⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sinπ5sin αcos αcos π5-sinπ5=2·sin π5cos π5cos π5+sinπ52·sin π5cosπ5cos π5-sinπ5=3sinπ5sinπ5=3,故选C.答案:C10.若tan α=3,则sin ⎝ ⎛⎭⎪⎫2α+π4的值为( )A .-210B.210C.5210D.7210解析:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45,∴sin ⎝ ⎛⎭⎪⎫2α+π4=22sin 2α+22cos 2α=22×⎣⎢⎡⎦⎥⎤35+⎝ ⎛⎭⎪⎫-45=-210.答案:A11.已知1+sin θ+cos θ1+sin θ-cos θ=12,则tan θ=( ) A.43B.34 C .-34 D .-43解析:因为1+sin θ+cos θ1+sin θ-cos θ=2sin θ2cos θ2+2cos 2θ22sin θ2cos θ2+2sin 2θ2=2cos θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22sin θ2⎝⎛⎭⎪⎫cos θ2+sin θ2=1tan θ2 =12, 所以tan θ2=2,于是tan θ=2tan θ21-tan 2 θ2=-43. 答案:D12.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2, 则cos ⎝⎛⎭⎪⎫2α+π3= . 解析:∵α∈⎝⎛⎭⎪⎫0,π2,cos 4α-sin 4α=(sin 2α+cos 2α)·(cos 2α-sin 2α)=cos 2α=23>0, ∴2α∈⎝⎛⎭⎪⎫0,π2,∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156.答案:2-15613.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β= .解析:由题意得tan α+ tan β=-33<0,tan α·tan β=4>0,∴tan(α+β)=tan α+tan β1-tan αtan β=3,且tan α<0,tan β<0,又α,β∈⎝ ⎛⎭⎪⎫-π2,π2,故α,β∈⎝ ⎛⎭⎪⎫-π2,0,∴α+β∈(-π,0),∴α+β=-2π3. 答案:-2π314.(2018·邢台摸底考试)已知tan(3π-α)=-12,tan(β-α)=-13,则tan β= .解析:依题意得tan α=12,tan β=tan[(β-α)+α]=β-α+tan α1-β-αα=17. 答案:1715.已知0<θ<π,tan ⎝⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ= . 解析:由tan ⎝⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ, ∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1, ∵0<θ<π,∴sin θ=35,∴cos θ=-45, ∴sin θ+cos θ=-15.1答案:-5。
课时分层训练(二十二) 两角和与差及二倍角的三角函数(对应学生用书第241页)A 组 基础达标一、选择题1.(2018·石家庄一模)设sin ()π-θ=13,则cos 2θ=( )A .±429 B.79 C .-79D .-429B [因为sin(π-θ)=sin θ=13,所以cos 2θ=1-2sin 2θ=79,故选B.] 2.sin 45°cos 15°+cos 225°sin 165°=( )【导学号:79140123】A .1B .12C .32D .-12B [sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.]3.(2018·山西大学附中)下列函数中,以π2为最小正周期的偶函数是( )A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin 22x -cos 22xC .y =sin 2x +cos 2xD .y =sin 2x cos 2xB [对于A ,y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 是奇函数,不符合题意;对于B ,y=sin 2 2x -cos 2 2x =-cos 4x 是偶函数,且T =2π4=π2,符合题意;对于C ,y =sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4既不是奇函数也不是偶函数,不符合题意;对于D ,y =sin 2x cos 2x =12sin 4x 是奇函数,不符合题意,故选B.] 4.sin 2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( )A .-15 B .15 C .-75D .75D [2cos ⎝ ⎛⎭⎪⎫π4-α=2⎝ ⎛⎭⎪⎫22cos α+22sin α=sin α+cos α,又因为(sin α+cosα)2=1+2sin αcos α=1+sin 2α=4925,0<α<π2,所以sin α+cos α=75,故选D.]5.已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79 B .13 C .-13D .-79D [因为sin ⎝ ⎛⎭⎪⎫π6-α=13, 所以cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2 sin 2⎝ ⎛⎭⎪⎫π6-α=79,所以cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79.] 二、填空题6.(2018·长沙模拟)已知点P (3cos θ,sin θ)在直线l :x +3y =1上,则sin 2θ=________.-89 [由题意可得3cos θ+3sin θ=1,则cos θ+sin θ=13,两边平方得1+sin 2θ=19,则sin 2θ=-89.]7.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=________.-1 [cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1.]8.已知sin(α-45°)=-210,0°<α<90°,则cos α=________.【导学号:79140124】45 [因为0°<α<90°,所以-45°<α-45°<45°,所以cos(α-45°)=1-sin 2(α-45°)=7210, 所以cos α=cos[(α-45°)+45°]=cos(α-45°)cos 45°-sin(α-45°)sin 45° =45.] 三、解答题9.(2017·广东六校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π12,x ∈R .(1)求f ⎝ ⎛⎭⎪⎫-π4的值;(2)若cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫2θ-π3的值.[解] (1)f ⎝ ⎛⎭⎪⎫-π4=sin ⎝ ⎛⎭⎪⎫-π4+π12=sin ⎝ ⎛⎭⎪⎫-π6=-12.(2)f ⎝ ⎛⎭⎪⎫2θ-π3=sin ⎝ ⎛⎭⎪⎫2θ-π3+π12 =sin ⎝ ⎛⎭⎪⎫2θ-π4=22(sin 2θ-cos 2θ).因为cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425, cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝ ⎛⎭⎪⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝ ⎛⎭⎪⎫2425-725=17250.10.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12.又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35, 得cos(α-β)=45.所以cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.B 组 能力提升11.若cos 2θ+cos θ=0,则sin 2θ+sin θ=( )A .0B .±3C .0或 3D .0或±3D [由cos 2θ+cos θ=0得2cos 2θ-1+cos θ=0,所以cos θ=-1或12.当cosθ=-1时,有sin θ=0;当cos θ=12时,有sin θ=±32.于是sin 2θ+sin θ=sin θ(2cos θ+1)=0或3或-3.]12.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,则sin α=( )A.45 B .-45 C.35D .-35C [由sin ⎝ ⎛⎭⎪⎫α-π4=7210得sin α-cos α=75,①由cos 2α=725得cos 2α-sin 2α=725, 所以(cos α-sin α)·(cos α+sin α)=725,② 由①②可得cos α+sin α=-15,③ 由①③可得sin α=35.]13.计算sin 250°1+sin 10°=________.12 [sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.] 14.(2017·合肥质检)已知cos ⎝ ⎛⎭⎪⎫π6+αcos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin 2α的值; (2)求tan α-1tan α的值.【导学号:79140125】[解] (1)cos ⎝ ⎛⎭⎪⎫π6+αcos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+αsin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3 =sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π,又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
二倍角例题讲解两角和与差的三角函数和由它们推出的倍角公式是平面三角学的重要内容,这部份内容是同角三角函数关系及诱导公式的进展,是三角变换的基础.它揭露了复角三角函数与单角三角函数间的彼此关系和内在联系.是研究复角三角函数的性质和应用三角函数知识解决有关问题的有力工具.三角变换涉及范围很广,包括求值、化简、恒等证明、三角形形状的判定、三角不等式的证明,三角数列求和、三角方程求解等等.虽然门类繁多,但从大体思想看,三角变换主要有以下几方面内容:1.化多种三角函数为单一的三角函数.2.化复角三角函数为单角的三角函数.3.化次数较高的三角函数为次数较低的三角函数.抓住这些大体点就可以够专门好地理解“倍角公式”在三角函数教学中的地位.使咱们在教学的各个环节中,对学生进行成心识地启发诱导.在教知识,教方式的同时,进展学生的逻辑思维能力.倍角公式:αααcos sin 22sin ⋅=,ααα22sin cos 2cos -==1cos 22-α=α2sin 21-,ααα2tan 1tan 22tan -=, 揭露了三角变换中单角的三角函数与倍角的三角函数之间的关系.咱们明白,把一个三角函数式等价地变成需要的形式,这就是三角变换.三角变换中利用倍角公式,能够对函数的结构作适本地调整.例.已知:πθ<<0,求证:θθcot 12cot +≥.分析:求证的式中有单角,有半角,咱们能够从“变角”入手.2cot 212cot 12cot )cot 1(2cot 2θθθθθ---=+-=2cot 2)12(cot 2θθ-. πθ<<0 ,∴220πθ<<,02cot >θ,0)12(cot 2≥-θ. ∴0)cot 1(2cot ≥+-θθ,即θθcot 12cot +≥.这里注意倍角公式的利用.咱们在解决三角问题时.“已知”与“求证”“求解”之间存在着“不同”.这些“不同”无非是角的不同,函数名称的不同和运算结构的不同.一般来讲,角的不同主要靠几个三角变换的公式(包括倍角公式)来消除,函数名称的不同主要靠同角的三角函数关系来消除,运算结构的不同则要通过代数变换来消除.因此,化“多”角为同角,化“复”角为单角,化同角“异名”为同角“同名”就是咱们在解三角函数问题的中常常遵循的一条原则.而倍角公式正是咱们实施转化思想的一个桥梁.它从βα+S ,βα+C 而来,又可推出222,,αααT C S .因此在教师的教学中,要分析利用倍角公式解题的规律和方式.。
课时作业 A 组——基础对点练1.设sin(π-θ)=13,则cos 2θ=( ) A .±429 B.79 C .-429D .-79解析:因为sin(π-θ)=sin θ=13,所以cos 2θ=1-2sin 2θ=79,故选B. 答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12 B.12 C.32D .-32解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. 答案:B3.若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16 C.57D.56 解析:tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17. 答案:A4.(2018·西安质量检测)sin 45°cos 15°+cos 225°·sin 165°=( ) A .1 B.12 C.32D .-12解析:sin 45°cos 15°+cos 225°sin 165°=sin 45°cos 15°+(-cos 45°)·sin 15°=sin(45°-15°)=sin 30°=12. 答案:B5.已知cos ⎝ ⎛⎭⎪⎫π3-2x =-78,则sin ⎝ ⎛⎭⎪⎫x +π3的值为( )A.14 B.78 C .±14D .±78解析:因为cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =cos ⎝ ⎛⎭⎪⎫2x +2π3=78,所以有sin 2⎝ ⎛⎭⎪⎫x +π3=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +2π3=12⎝ ⎛⎭⎪⎫1-78=116,从而求得sin ⎝ ⎛⎭⎪⎫x +π3的值为±14,故选C.答案:C6.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( ) A .-233 B .±233 C .-1D .±1解析:∵cos ⎝ ⎛⎭⎪⎫x -π6=-33,∴cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +cos x cos π3+sin x sin π3=32cos x+32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1.答案:C7.已知2sin 2α=1+cos 2α,则tan(α+π4)的值为( ) A .-3 B .3 C .-3或3D .-1或3解析:∵2sin 2α=1+cos 2α, ∴4sin αcos α=1+2cos 2α-1, 即2sin αcos α=cos 2α,①当cos α=0时,α=k π+π2,此时tan(α+π4)=-1,②当cos α≠0时,tan α=12,此时tan(α+π4)=tan α+tan π41-tan αtan π4=3,综上所述,tan(α+π4)的值为-1或3. 答案:D8.已知sin 2α=23,则cos 2(α+π4)=( ) A.16 B.13 C.12D.23 解析:cos(α+π4)=22cos α-22sin α,所以cos 2(α+π4)=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16. 答案:A9.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78 B .-14 C.14D.78解析:cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫23π-2α=-cos ⎝ ⎛⎭⎪⎫23π-2α=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π3-α=-⎣⎢⎡⎦⎥⎤1-2×⎝ ⎛⎭⎪⎫142=-78.答案:A10.已知sin ⎝ ⎛⎭⎪⎫π6-α=15,则cos(π3-2α)的值是( ) A.2325 B.15 C .-15D .-2325解析:∵sin ⎝ ⎛⎭⎪⎫π6-α=15,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=2325. 答案:A11.已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43 解析:两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34. 答案:C12.若tan θ+1tan θ=4,则sin 2θ=( ) A.15 B.14 C.13D.12解析:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2 θ,∴sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12.答案:D13.已知tan α=3,则cos 2α= .解析:cos 2α=2cos 2α-1=2·cos 2αsin 2α+cos 2α-1=2×1tan 2α+1-1=-45. 答案:-4514.(2018·长沙市模拟)已知α-β=π3,tan α-tan β=3,则cos(α+β)的值为 .解析:由tan α-tan β=sin αcos β-cos αsin βcos αcos β=sin (α-β)cos αcos β=3,解得cos αcos β=36,又cos(α-β)=cos αcos β+sin αsin β=12,所以sin αsin β=12-36,所以cos(α+β)=33-12. 答案:33-1215.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是 .解析:∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin ⎝ ⎛⎭⎪⎫2x +π4-2,∴f (x )的最小正周期T =2π2=π. 答案:π16.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是 .解析:∵sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.答案:-45B 组——能力提升练1.(2018·洛阳市模拟)设a =cos 50°cos 127°+cos 40°·cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°, c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°, ∴a >c >b . 答案:D2.(2018·吉林大学附中检测)若α∈(π2,π),且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( ) A .-356B .-16C .-3518D .-1718解析:∵3cos 2α=sin(π4-α),∴3(cos 2α-sin 2α)=-22(sin α-cos α),易知sin α≠cos α,故cos α+sin α=26,1+sin 2α=118,sin 2α=-1718,故选D.答案:D3.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtan β=3,则α,β的大小关系是( ) A .α<π4<β B .β<π4<α C.π4<α<βD.π4<β<α解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α. 答案:B4.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358B.1+538 C.1-358D.1-538 解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14,∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A. 答案:A5.(2018·贵阳监测)已知sin(π6-α)=13,则cos[2(π3+α)]的值是( ) A.79 B.13 C .-13D .-79解析:∵sin(π6-α)=13,∴cos(π3-2α)=cos[2(π6-α)]=1-2sin 2(π6-α)=79,∴cos[2(π3+α)]=cos(2π3+2α)=cos[π-(π3-2α)]=-cos(π3-2α)=-79. 答案:D6.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,则sin α=( )A.45 B .-45 C.35D .-35解析:由sin ⎝ ⎛⎭⎪⎫α-π4=7210得sin α-cos α=75, ①由cos 2α=725得cos 2α-sin 2α=725, 所以(cos α-sin α)·(cos α+sin α)=725, ② 由①②可得cos α+sin α=-15,③ 由①③可得sin α=35. 答案:C7.已知sin(π6-α)=cos(π6+α),则cos 2α=( ) A .1 B .-1 C.12D .0解析:∵sin(π6-α)=cos(π6+α),∴12cos α-32sin α=32cos α-12sin α,即(12-32)sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2 α-sin 2α=cos 2 α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 答案:D8.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎢⎡⎦⎥⎤π12,7π12 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤-π3,2π3 D.⎣⎢⎡⎦⎥⎤-π6,5π6 解析:由题意,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22·sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),得k π+π12≤x ≤k π+7π12(k ∈Z),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A. 答案:A9.若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( ) A .1 B .2 C .3D .4解析:cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α-3π10+π2sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sin π5cos π5cos π5+sin π52·sin π5cos π5cos π5-sin π5=3sin π5sin π5=3,故选C.答案:C10.若tan α=3,则sin ⎝ ⎛⎭⎪⎫2α+π4的值为( ) A .-210 B.210 C.5210D.7210 解析:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45, ∴sin ⎝ ⎛⎭⎪⎫2α+π4=22sin 2α+22cos 2α=22×⎣⎢⎡⎦⎥⎤35+⎝⎛⎭⎪⎫-45=-210. 答案:A11.已知1+sin θ+cos θ1+sin θ-cos θ=12,则tan θ=( )A.43B.34 C .-34D .-43解析:因为1+sin θ+cos θ1+sin θ-cos θ=2sin θ2cos θ2+2cos 2θ22sin θ2cos θ2+2sin 2θ2=2cos θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22sin θ2⎝ ⎛⎭⎪⎫cos θ2+sin θ2=1tan θ2=12,所以tan θ2=2,于是tan θ=2tan θ21-tan 2 θ2=-43. 答案:D12.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2, 则cos ⎝ ⎛⎭⎪⎫2α+π3= . 解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,cos 4α-sin 4α=(sin 2α+cos 2α)·(cos 2α-sin 2α)=cos 2α=23>0, ∴2α∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2α=1-cos 22α=53, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 答案:2-15613.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β= .解析:由题意得tan α+ tan β=-33<0,tan α·tan β=4>0,∴tan(α+β)=tan α+tan β1-tan αtan β=3,且tan α<0,tan β<0,又α,β∈⎝ ⎛⎭⎪⎫-π2,π2,故α,β∈⎝ ⎛⎭⎪⎫-π2,0,∴α+β∈(-π,0),∴α+β=-2π3.答案:-2π314.(2018·邢台摸底考试)已知tan(3π-α)=-12,tan(β-α)=-13,则tan β= . 解析:依题意得tan α=12,tan β=tan[(β-α)+α]=tan (β-α)+tan α1-tan (β-α)·tan α=17. 答案:1715.已知0<θ<π,tan ⎝ ⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ= . 解析:由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ, ∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1,∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.答案:-15。
课时作业 A 组——基础对点练1.设sin(π-θ)=13,则cos 2θ=( ) A .±429 B.79 C .-429D .-79解析:因为sin(π-θ)=sin θ=13,所以cos 2θ=1-2sin 2θ=79,故选B. 答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12 B.12 C.32D .-32解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. 答案:B3.若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16 C.57D.56 解析:tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17. 答案:A4.(2018·西安质量检测)sin 45°cos 15°+cos 225°·sin 165°=( )A .1 B.12 C.32D .-12解析:sin 45°cos 15°+cos 225°sin 165°=sin 45°cos 15°+(-cos 45°)·sin 15°=sin(45°-15°)=sin 30°=12. 答案:B5.已知cos ⎝ ⎛⎭⎪⎫π3-2x =-78,则sin ⎝ ⎛⎭⎪⎫x +π3的值为( )A.14 B.78 C .±14D .±78解析:因为cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =cos ⎝ ⎛⎭⎪⎫2x +2π3=78,所以有sin 2⎝ ⎛⎭⎪⎫x +π3=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +2π3=12⎝ ⎛⎭⎪⎫1-78=116,从而求得sin ⎝ ⎛⎭⎪⎫x +π3的值为±14,故选C. 答案:C6.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .-233 B .±233 C .-1D .±1解析:∵cos ⎝ ⎛⎭⎪⎫x -π6=-33,∴cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +cos x cos π3+sin x sin π3=32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1.答案:C7.已知2sin 2α=1+cos 2α,则tan(α+π4)的值为( ) A .-3 B .3 C .-3或3D .-1或3解析:∵2sin 2α=1+cos 2α, ∴4sin αcos α=1+2cos 2α-1,即2sin αcos α=cos 2α,①当cos α=0时,α=k π+π2,此时tan(α+π4)=-1,②当cos α≠0时,tan α=12,此时tan(α+π4)=tan α+tan π41-tan αtan π4=3,综上所述,tan(α+π4)的值为-1或3. 答案:D8.已知sin 2α=23,则cos 2(α+π4)=( ) A.16 B.13 C.12D.23 解析:cos(α+π4)=22cos α-22sin α,所以cos 2(α+π4)=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16. 答案:A9.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78 B .-14 C.14D.78解析:cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫23π-2α=-cos ⎝ ⎛⎭⎪⎫23π-2α=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π3-α=-⎣⎢⎡⎦⎥⎤1-2×⎝ ⎛⎭⎪⎫142=-78. 答案:A10.已知sin ⎝ ⎛⎭⎪⎫π6-α=15,则cos(π3-2α)的值是( )A.2325B.15 C .-15D .-2325解析:∵sin ⎝ ⎛⎭⎪⎫π6-α=15,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=2325. 答案:A11.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34. 答案:C12.若tan θ+1tan θ=4,则sin 2θ=( ) A.15 B.14 C.13D.12解析:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2 θ, ∴sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12. 答案:D13.已知tan α=3,则cos 2α= .解析:cos 2α=2cos 2 α-1=2·cos 2αsin 2α+cos 2α-1=2×1tan 2α+1-1=-45. 答案:-4514.(2018·长沙市模拟)已知α-β=π3,tan α-tan β=3,则cos(α+β)的值为 .解析:由tan α-tan β=sin αcos β-cos αsin βcos αcos β=sin (α-β)cos αcos β=3,解得cos αcos β=36,又cos(α-β)=cos αcos β+sin αsin β=12,所以sin αsin β=12-36,所以cos(α+β)=33-12. 答案:33-1215.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是 .解析:∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin ⎝ ⎛⎭⎪⎫2x +π4-2,∴f (x )的最小正周期T =2π2=π. 答案:π16.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是 . 解析:∵sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,∴sin π3cos α+cos π3sin α+sin α=435, ∴32sin α+32cos α=435, 即32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45. 答案:-45B 组——能力提升练1.(2018·洛阳市模拟)设a =cos 50°cos 127°+cos 40°·cos 37°,b =22(sin 56°-cos56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°, c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°, ∴a >c >b . 答案:D2.(2018·吉林大学附中检测)若α∈(π2,π),且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( ) A .-356B .-16C .-3518D .-1718解析:∵3cos 2α=sin(π4-α),∴3(cos 2α-sin 2α)=-22(sin α-cos α),易知sin α≠cos α,故cos α+sin α=26,1+sin 2α=118,sin 2α=-1718,故选D. 答案:D3.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtan β=3,则α,β的大小关系是( ) A .α<π4<β B .β<π4<α C.π4<α<βD.π4<β<α解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α. 答案:B4.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358 B.1+538 C.1-358D.1-538解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14,∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A. 答案:A5.(2018·贵阳监测)已知sin(π6-α)=13,则cos[2(π3+α)]的值是( ) A.79 B.13 C .-13D .-79解析:∵sin(π6-α)=13,∴cos(π3-2α)=cos[2(π6-α)]=1-2sin 2(π6-α)=79,∴cos[2(π3+α)]=cos(2π3+2α)=cos[π-(π3-2α)]=-cos(π3-2α)=-79. 答案:D6.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,则sin α=( )A.45 B .-45 C.35D .-35解析:由sin ⎝ ⎛⎭⎪⎫α-π4=7210得sin α-cos α=75, ①由cos 2α=725得cos 2α-sin 2α=725, 所以(cos α-sin α)·(cos α+sin α)=725, ② 由①②可得cos α+sin α=-15,③ 由①③可得sin α=35. 答案:C7.已知sin(π6-α)=cos(π6+α),则cos 2α=( ) A .1 B .-1 C.12D .0解析:∵sin(π6-α)=cos(π6+α),∴12cos α-32sin α=32cos α-12sin α,即(12-32)sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2 α-sin 2α=cos 2 α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 答案:D8.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎢⎡⎦⎥⎤π12,7π12 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤-π3,2π3 D.⎣⎢⎡⎦⎥⎤-π6,5π6 解析:由题意,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22·sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),得k π+π12≤x ≤k π+7π12(k ∈Z),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.答案:A9.若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( ) A .1 B .2 C .3D .4解析:cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α-3π10+π2sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sin π5cos π5cos π5+sin π52·sin π5cos π5cos π5-sin π5=3sin π5sin π5=3,故选C.答案:C10.若tan α=3,则sin ⎝ ⎛⎭⎪⎫2α+π4的值为( )A .-210 B.210 C.5210D.7210解析:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45, ∴sin ⎝ ⎛⎭⎪⎫2α+π4=22sin 2α+22cos 2α=22×⎣⎢⎡⎦⎥⎤35+⎝⎛⎭⎪⎫-45=-210. 答案:A11.已知1+sin θ+cos θ1+sin θ-cos θ=12,则tan θ=( )A.43B.34 C .-34 D .-43解析:因为1+sin θ+cos θ1+sin θ-cos θ=2sin θ2cos θ2+2cos 2θ22sin θ2cos θ2+2sin 2θ2=2cos θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22sin θ2⎝ ⎛⎭⎪⎫cos θ2+sin θ2=1tan θ2=12,所以tan θ2=2,于是tan θ=2tan θ21-tan 2θ2=-43.答案:D12.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2, 则cos ⎝ ⎛⎭⎪⎫2α+π3= .解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,cos 4α-sin 4α=(sin 2α+cos 2α)·(cos 2α-sin 2α)=cos 2α=23>0,∴2α∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2α=1-cos 22α=53, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156.答案:2-15613.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β= .11 解析:由题意得tan α+ tan β=-33<0,tan α·tan β=4>0,∴tan(α+β)=tan α+tan β1-tan αtan β=3,且tan α<0,tan β<0,又α,β∈⎝ ⎛⎭⎪⎫-π2,π2,故α,β∈⎝ ⎛⎭⎪⎫-π2,0,∴α+β∈(-π,0),∴α+β=-2π3.答案:-2π314.(2018·邢台摸底考试)已知tan(3π-α)=-12,tan(β-α)=-13,则tan β= .解析:依题意得tan α=12,tan β=tan[(β-α)+α]=tan (β-α)+tan α1-tan (β-α)·tan α=17. 答案:1715.已知0<θ<π,tan ⎝ ⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ= . 解析:由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1,∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.答案:-15。
第五节两角和与差及二倍角的三角函数[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;(3)t an(α±β)=t an α±t an β1∓t an αt an β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)t an 2α=2t an α1-t an2α.3.有关公式的变形和逆用(1)公式T(α±β)的变形:①t an α+t an β=t an(α+β)(1-t an_αt an_β);②t an α-t an β=t an(α-β)(1+t an_αt an_β).(2)公式C2α的变形:①sin2α=12(1-cos 2α);②cos2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.辅助角公式a sin α+b cos αα+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( )(3)公式t an(α+β)=t an α+t an β1-t an αt an β可以变形为t an α+t an β=t an(α+β)(1-t an αt an β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.(2016·全国卷Ⅲ)若t an θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15D .45D [∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-t an 2θ1+t an 2θ.又∵t an θ=-13,∴cos 2θ=1-191+19=45.] 4.(2017·云南二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.【导学号:57962165】-2 [函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3t an α)(1+3t an β)=4,则α+β=________.【导学号:57962166】π3 [由(1+3t an α)(1+3t an β)=4,可得t an α+t an β1-t an αt an β=3,即t an(α+β)= 3. 又α+β∈(0,π),∴α+β=π3.](1)化简:sin ⎝ ⎛⎭⎪⎫α-π4=________. (2)化简:2cos 4x -2cos 2x +122t an ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .(1)22cos α [原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.](2)原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=12(1-sin 22x )2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x .[规律方法] 1.三角函数式的化简要遵循“三看”原则(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.(3)三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] 化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β=________. 12 [法一:原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12(4cos 2α·cos 2β-2cos 2α-2cos 2β+1) =sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β=12.](1)2cos 10°-sin 20°sin 70°=( )A.12 B .32 C.3 D . 2 (2)sin 50°(1+3t an 10°)=________. (1)C (2)1 [(1)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3. (2)sin 50°(1+3t an 10°)=sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]☞角度2 给值求值(1)(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725 B .15 C .-15D .-725(2)(2016·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )【导学号:57962167】A.1+358 B .1+538 C.1-358 D .1-538 (1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.(2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A.]☞角度3 给值求角(2014·全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且t an α=1+sin βcos β,则( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2B [法一:由t an α=1+sin βcos β得sin αcos α=1+sin βcos β, 即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝ ⎛⎭⎪⎫0,π2,由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:t an α=1+sin βcos β=1+cos ⎝ ⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=co t ⎝ ⎛⎭⎪⎫π4-β2=t an ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π4-β2 =t an ⎝ ⎛⎭⎪⎫π4+β2,∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z ,∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,故选B.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.已知函数f (x )=sin 2x -sin 2⎝ ⎭⎪⎫x -6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝ ⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x=34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.5分(2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.12分 [规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中t an φ=b a ,可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (1)(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π(2)(2014·全国卷Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. (1)B (2)1 [(1)法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝ ⎛⎭⎪⎫32sin x +12cos x ⎝ ⎛⎭⎪⎫32cos x -12sin x=4sin ⎝ ⎛⎭⎪⎫x +π6cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =2π2=π.法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =2π2=π.故选B.(2)f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ). ∴f (x )ma x =1.][思想与方法]三角恒等变换的三种变换角度(1)变角:设法沟通所求角与已知角之间的关系.常用的拆角、拼角方法是:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)变名:尽可能减少函数名称,其方法是“弦切互化”,“升幂与降幂”“1”的代换等.(3)变式:对式子变形要尽可能有理化、整式化、降低次数等. [易错与防范]1.三角函数是定义域到值域的多对一的映射,时刻关注角的范围是防止增解的有效措施.求角的某一三角函数值时,应选择在该范围内是单调函数,若已知正切函数值,则选正切函数;否则,若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.2.计算形如y =sin(ωx +φ),x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的范围和x 的范围混淆.。