SPSS相关性分析 Pearson相关与偏相关分析的实现 步骤
- 格式:doc
- 大小:452.00 KB
- 文档页数:4
第10章相关分析 (225)1 双变量相关分析 (225)1.1 双变量相关分析的数据特征 (225)1.2 皮尔逊相关系数 (225)1.3 肯德尔相关系数 (228)1.4 例题3 (230)2 偏相关关系 (232)2.1 偏相关关系 (232)2.2 例题 (232)3 距离相关分析 (234)3.1 特征 (234)3.2 主要参数 (235)3.3 例题 (235)3.4 实例介绍 (237)第10章相关分析相关分析是研究变量之间关系密切程度的一种统计方法,包括双变量相关分析、偏相关分析和距离相关分析。
1 双变量相关分析1.1 双变量相关分析的数据特征当某一个事物存在着多个变量时,而各个变量之间呈数量关系时,可以用双变量相关分析来研究,并做出统计学推断。
双变量相关分析可以输出两两变量之间的相关系数,相关系数的种类有皮尔逊相关系数、肯德尔相关系数、斯皮尔曼等级相关系数等。
1.2 皮尔逊相关系数X和Y有线性函数关系,两变量间的相关系数是+1~-1,相关系数没有单位。
1.2.1 例题133名产妇进行产前检查,测定X1-X6六项指标,试计算X1-X4的皮尔逊相关系数。
1.2.2 SPSS过程Data,analyze,correlate,打开bivariate对话框,选择x1-x4→variables,选择pearson 相关系数,two-tail,flag significant correlations,打开options对话框,means and standard deviations,exclude case pairwirs,continue,ok.two-tail,双尾检验;Flag significant correlations:用星号显示有显著性相关的相关系数;Exclude case pairwirs:剔除有缺失值的配对变量;Cross-product deviations and covarances:显示每一对变量的离均差交叉积与协方差。
SPSS相关性分析Pearson 相关与偏相关分析的实现
步骤
SPSS相关性分析Pearso n相关与偏相关分析的实现
步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框.再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就是pearson相关系数,选了偏于对比查看)。
继续--确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著.
Pearson相关系数,显著性P值为0。
416〉0.05,相关性不显著。
偏相关,显著性P值为0.001<o.o1,极显
著相关。
(显著性看 sig。
P值,
P<0。
05,“*"显著;
P〈0.01,“**"极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来.
1、分析——回归——线性.
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关和偏相关性”。
其他的可以不选。
继续—确定。
3、结果分析,分别看Sig。
显著性,和偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果是一样的.其他变量与叶绿素的偏相关关系也可以在上表看出来。
...谢阅...。
实验一相关性分析相关性分析是考察两个变量之间线性关系的一种统计分析方法。
更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。
P值是针对原假设H0:假设两变量无线性相关而言的。
一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果P值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05:如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。
越小,相关程度越低。
而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。
使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。
(1)检验人均食品支出与粮价和人均收入之间的相关关系。
a.打开spss软件,输入“回归人均食品支出”数据。
地区1|人均食出|粮食单价|人均收入|1992.7825122772.6720083968 1.01213941267 1.3733295874.7221066638.7316417621.7716118711.7216849654.70195110540.74153211644.84161212767.70172713723.63204514763.751963151072 1.21267517665.701683181234.98292519576.65169120733.84192921968 1.49203222717.80190623716.72170524627.61154225829.701987261016 1.04235926650.78176427928 1.01208728650.83195929852.72210130609.681877b.在 spss 的菜单栏中选择点击 Analyze —correlate — Bivariate,弹出一个对话窗口。
相关分析及假设检验 spss1.概念变量之间相关;但是又不能由一个或几个变量值去完全和唯一确定另一个变量值的这种关系称为相关关系..相关关系是普遍存在的;函数关系仅仅是相关关系的特例..事物之间有相关关系;不一定是因果关系;也可能仅是伴随关系;但是事物之间有因果关系;则两者必然相关..相关分析用于分析两个随机变量的关系;可以检验两个变量之间的相关度或多个变量两两之间的相关程度;也可以检验两组变量之间的相关程度偏相关分析是指在控制了其他变量的效应以后;对两个变量相关程度的分析..、2.皮尔逊积差相关系数pearson product-moment correlation coefficient变量之间的相关程度由相关系数来度量;pearson相关系数是应用最广的一种..它用于检验连续型变量之间的线性相关程度2.1前提假设1正态分布皮尔逊积差相关只适用于双元正态分布的变量;即两个变量都是正态分布; 注意只有pearson要求正态分布如果正态分布的前提不满足;两变量间的关系可能属于非线性相关2样本独立样本必须来自总体的随机样本;而且样本必须相互独立3替换极值变量中的极端值如极值、离群值对相关系数的影响较大;最好加以删除或代之以均值或中数2.2相关分析的前提假设检验一般情况下是对是否满足正态分布进行检验;对于正态分布的检验有好几种方法;总的可分为非参数检验和图形检验法1非参数检验法spss中的1-sample K-S检验;检验样本数据是否服从某种特定的分布;方法有三种a. Asymptotic only 是一种基于渐进分布的显著性水平的检验指标;通常显著性水平小于0.05则认为显著;适用于大样本..如果样本过小或分布不好;该指标的适用性会降低b.Monte Carlo 精确显著性水平的无偏估计;适用于样本过大无法使用渐进方法估计显著性水平的情况;可以不必依赖渐近方法的假设前提c.Exact 精确计算观测结果的概率值;通常小于0.05即被认为显著;表明横变量和列变量之间存在相关;同时允许用户键入每次检验的最长时间显著;可以键入1到9999999999之间的数字;但只要一次检验超过指定时间的30分钟;就应该用monte carlo假设是服从某种分布所以如果计算出的值比如Asymp. Sig 小于0.05;那么拒绝原假设;说明样本为非正态分布;否则值越大越服从某种分布单样本K-S首先计算每一阶段实际值与观察值的差异值;再计算每一阶段差异值的绝对值Z;即K-S的Z值;Z值越大;样本服从理论分布的可能性越小还有一个是2 -sample Kolmogorov—Smirnov用于检验2个样本的分布是相同的假设2图形法spss中grapha.Q-Q正态检验图图中横坐标为实际观测值;纵坐标为正态分布下的期望值;如果实际观测值取自正态分布的整体;那么图中所示的落点应该分布在趋势线的附近;并且应该表现出一定的集中趋势;即平均数附近应该聚集较多的落点;越靠近两个极端落点越少..此外还输出一种无趋势正态检验图;横坐标为观测值;纵坐标为观测值于期望值的差值..在符合正态分布的情况下;图中的落点应该分布在中央横线的附近;甚至完全落到这条横线上;而且也应表现出集中在平均数周围的趋势..如果需要正态分布;应该考虑对数据进行必要的变换b.P-P图判断方式和qq图相同c.直方图根据直方图的形状来判断是否为正态分布d.箱式图boxplot箱式图可用于表现观测数据的中位数、四分位数和两头极端值方框中的粗黑横线为中位数;方框之外的上下两条细横线成为须线;是除了离群值和极值之外的最大值和最小值..符合正态分布的情况下;箱式图应该是以中位线为轴上下对称的;并且上下须线之间的距离应该是盒距方框上下边缘的三倍左右;Binomial test 二项分布检验该过程用于检验的假设是一个来自二项分布的总体的变量具有指定事件发生的概率;该变量只能有两个值例如检验组装生产线上一种工件的废品率为1/10 即P=0.1可以抽取300 个工件;查看并记录每个工件是否是废品;使用本过程检验这个概率3.spss中相关分析过程analyze-correlate-bivariate相关分析的检验:检验的假设是总体中两个变量之间的相关系数为0.一般情况下我们给出假设成立概率p的阈值为0.05;当概率p小于0.05时;认为原假设不成立;否则接受原假设;认为两个变量之间的相关系数为0spss中进行相关分析有三种方法a.pearson 积差相关计算相关系数并作显著性检验;适用于两列变量都为正态分布的连续变量或等间距测度的变量b.kendall tau-b等级相关计算相关系数并作显著性检验;对数据分布没有严格要求;适用于检验等级变量之间的关联程度秩相关c.spearman 等级相关计算相关系数并做显著性检验;对数据分布没有严格要求;适用于等级变量或者等级变量不满足正态分布的情况..对于非等间距测度的连续变量;因为分布不明可以使用等级相关分析;也可以使用Pearson 相关分析;对于完全等级的离散变量;必须使用等级相关分析相关性当资料不服从双变量正态分布或总体分布型未知;或原始数据是用等级表示时;宜用Spearman 或Kendall相关一般情况下我们都某人数据服从正态分布;采用pearson相关系数等级相关系数等级相关系数;又称顺序相关系数;它也是描述两要素之间相关程度的一种统计指标..等级相关系数是将两要素的样本值按照数值的大小顺序排列为此;以各要素样本值的位次代替实际数据而求得的一种统计量..例如x y有n对样本值;记R1代表x的位次序号;R2代表y的序号位次代表x y同一组样本的位次差的平方和;他们的等级相关系数为显著性检验类型two-tailed 双尾检验选项当事先不知道相关方向正相关还是负相关时选择此项One tailed 单尾检验选项如果事先知道相关方向可以选择此项Flag significant Correlations 复选项如果选中此项输出结果中在相关系数数值右上方使用* 表示显著水平为0.05 用** 表示其显著水平为0.01计算相关系数是;为了方便起见;通常采用如下公式:在spss中进行相关分析时;自动会输出一个显著性sig的值;值越大越显著a0.05 0.01n—2125 0.174 0.228150 0.159 0.208200 0.138 0.181300 0.113 0.148400 0.098 0.1281000 0.062 0.081表中f表示自由度为n-2;a代表不同的置信水平公式p={|r|>ra}=a 的意思是当所计算的相关系数r 的绝对值大于在a 水平下的临界值ra 时;两要素不相关即ρ=0的可能性只有a此外还有一个t双侧检验的相关系数阈值也可以用t 统计量检验t值大于查表的t时;说明相关系数显著附录3 t分布临界值tg表P{|t|≥ta}=a自由度A=0.05 A=0.05 A=0.10 自由度A=0.01 A=0.05 A=0.101 2 3 4 5 6 7 8 91011121314151617 63·6579·9255·8414·6044·0323·7073·4993·3553·2503·1693·1063·0553·0122·9772·9472·9212·89812·7064·3033·1822·7762·5012·4472·3652·3062·2622·2282·2012·1792·1002·1452·1312·1202·1106·3142·9202·3532·1322·0151·9431·8951·8601·8331·8121·7961·7821·7711·7611·7531·7461·740181920212223242526272829304060120002·8782·8612·8452·8315·8192·0872·7972·782·7792·7712·7632·7562·7502·7042·6602·6172·5762·1012·0932·0862·0802·0742·0692·0642·0602·0562·0522·0482·0452·0422·0212·0001·9801·9601·7341·7291·7251·7211·7171·7141·7111·7081·7061·7081·7011·6991·6971·6841·6711·6581·645进行t检验时用上面两个表都可以;第一个表直接比较r和表中的阈值即可;而第二个表需要进行计算t值;然后比较t和表中的t如果计算的值大于表中的值;则说明相关系数是显著的在以上几个表中;相关系数检验的自由度都是n-2等级相关的系数检验的临界值r越大越好spss中会自动对等级相关的显著性进行检验sig。
SPSS相关分析第7章相关分析相关分析是研究变量间密切程度的⼀种常⽤统计⽅法。
线性相关分析研究两个变量间线性关系的程度。
相关系数是描述这种线性关系程度和⽅向的统计量,通常⽤r表⽰。
如果⼀个变量y可以确切地⽤另⼀个变量x的线性函数表⽰,那么,两个变量间的相关系数是+1或-l。
如果变量y随着变量x的增、减⽽增、减,即变化的⽅向⼀致。
例如,在⼀定的温度范围内昆⾍发育速率与温度的关系,温度越⾼,发育速率相对也就越快。
这种相关称为正向相关,其相关系数⼤于0。
如果变量y随着变量x的增加⽽减少,变化⽅向相反。
例如,降⾬强度与⽥间害⾍种群数量的关系,随着降⾬强度的增加,时间延长,害⾍种群数量逐步下降。
这种相关关系称为负相关,其相关系数⼩于0。
相关系数r没有单位,其值在-1~+1之间。
SPSS系统中有⼀个⽤于相关分析的“Correlate”菜单项,其中包括有板有三个过程:① Bivariate 分析两个变量之间的相关关系;② Partial偏相关分析,分析在⼀个或多个变量的影响下,两个变量之间的相关关系;③ Distance 相似性分析(距离分析)。
在这⾥将结合例⼦介绍两个变量之间的相关分析和偏相关分析过程的应⽤。
7.1⼆个变量间的相关分析本节介绍两两变量间的相关分析。
包括两个连续变量间的相关和两个等级变量间的秩相关。
这两种相关使⽤同⼀个过程,通过选择不同的分析⽅法来实现。
选择哪⼀种分析⽅法要看具体的数据类型。
[例⼦7-1]调查了29⼈⾝⾼、体重和肺活量的数据见表7-1,分析这三者之间的相互关系。
表7-1 ⾝⾼、体重和肺活量的调查数据编号⾝⾼体重肺活量编号⾝⾼体重肺活量1 135.10 32.0 1.75 16 153.00 32.0 1.752 139.90 30.4 1.75 17 147.60 40.5 2.003 163.60 46.2 2.75 18 157.50 43.3 2.254 146.50 33.5 2.50 19 155.10 44.7 2.755 156.20 37.1 2.75 20 160.50 37.5 2.006 156.40 35.5 2.00 21 143.00 31.5 1.757 167.80 41.5 2.75 22 149.90 33.9 2.258 149.70 31.0 1.50 23 160.80 40.4 2.759 145.00 33.0 2.50 24 159.00 38.5 2.2510 148.50 37.2 2.25 25 158.20 37.5 2.0011 165.50 49.5 3.00 26 150.00 36.0 1.7512 135.00 27.6 1.25 27 144.50 34.7 2.2513 153.30 41.0 2.75 28 154.60 39.5 2.5014 152.00 32.0 1.75 29 156.50 32.0 1.7515 160.50 47.2 2.251037.1.1操作步骤1)准备数据⽂件在数据编辑窗⼝,定义变量名“no”为编号、“height”为⾝⾼、“weight”为体重、“vcp”为肺活量。
SPSS相关性分析Pearson相关与偏相关分析的实现步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但是麻烦
1、分析——相关-—偏相关。
2、选择变量,导入右侧框。
再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就是pearson相关系数,选了偏于对比查看)。
继续——确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著。
Pearson相关系数,显著性P值为0。
416〉0。
05,相关性不显著。
偏相关,显著性P值为0.001<o。
o1,极显著相关。
(显著性看sig. P值,
P〈0。
05,“*”显著;
P<0.01,“**"极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来。
1、分析——回归——线性。
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关和偏相关性”。
其他的可以不选。
继续—确定。
3、结果分析,分别看Sig。
显著性,和偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果是一样的。
其他变量与叶绿素的偏相关关系也可以在上表看出来。
SPSS作业5:相关分析(一)相关分析研究背景:能源是经济增长的战略投入要素,在经济增长初期,能源的投入能够带动经济快速增长。
理论上认为影响能源消费需求总量的因素主要有经济发展水平、产业发展、能源生产总量、人口总数等。
这里将研究能源消费需求总量X1,国内生产总值X2,工业增加值X3,建筑业增加值X4,交通运输邮电业增加值X5,人均电力消费X6,能源加工转换效率X7的关系。
绘制散点图的基本操作:(1)选择菜单Graph s―Scatter;(2)分别作简单散点图,矩阵散点图,结果如下:分析:从上可知:能源消费需求总量X1与国内生产总值X2呈强正线性相关。
分析:能源消费需求总量,工业增加值以及建筑业增加值三者之间,两两呈较强正线性相关。
分析:能源消费需求总量,国内生产总值以及能源加工转换率这三者之间,只有能源消费需求总量与国内生产总值呈较强正线性相关,而能源消费需求总量与能源加工转换率,国内生产总值与能源加工转换率之间呈弱相关。
计算相关系数的基本操作:(1)选择菜单Analyz e―Correlate―Bivariate;(2)选择所需计算的相关系数,双尾或单尾检验p值;(3)在Option按钮的Statistics选项中,选择Cros s―product deviations and covariances,结果如下:分析:由表可知,能源消费需求总量与国内生产总值的简单相关系数为0.984,与能源加工转换率间的简单相关系数为0.716。
它们的相关系数检验的概率p值都近似为0。
因此,当显著性水平a=0.05或0.01时,都应拒绝相关系数检验的零假设,认为两总体存在线性关系。
总之,能源消费需求总量将受国内生产总值,能源加工转换率的正向影响。
同样的基本操作,对能源消费需求总量,国内生产总值,人均电力消费作分析:对能源消费需求总量,国内生产总值,工业增加值做分析:对能源消费分析:能源消费需求总量与国内生产总值,人均电力消费的简单相关系数分别为0.984,0.980,对应的p值近似为0,因此都拒绝原假设,认为两总体存在线性关系。
SPSS相关性分析Pearson相关与偏相关分析的实现步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框。
再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就是pearson相关系数,选了偏于对比查看)。
继续——确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著。
Pearson相关系数,显著性P值为0.416>0.05,相关性不显著。
偏相关,显著性P值为0.001<o.o1,极显著相关。
(显著性看sig. P值,
P<0.05,“*”显著;
P<0.01,“**”极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来。
1、分析——回归——线性。
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关和偏相关性”。
其他的可以不选。
继续—确定。
3、结果分析,分别看Sig. 显著性,和偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果是一样的。
其他变量与叶绿素的偏相关关系也可以在上表看出来。