薄壁U形金属阻尼器剪切刚度计算分析
- 格式:pdf
- 大小:548.34 KB
- 文档页数:4
金属位移型阻尼器耗能和有效刚度的计算 阻尼器耗能及阻尼比计算公式由《建筑抗震设计规范》GB50011-2010中12.3.4条:
/(4)
a cj s j W W ξπ=∑
式中:—消能减震结构的附加有效阻尼比
—第个消能部件在结构预期层间位移下往复循环一周所消耗的能量,即滞回曲线的面积;
—设置消能部件的结构在预期位移下的总应变能。
单个阻尼器的耗能面积根据平行四边形法则求出,具体计算公式如下(《消能减震技术规程》3.3.5条):
max max max 4()
()cj dy d dy d dy W F u F u u u =∆-∆∆>∆
式中W Cj —单个阻尼器耗能 F dy —阻尼器屈服力 △u y —阻尼器屈服位移 F max —阻尼器实际出力 u dmax —阻尼器实际位移
图2.2金属位移型阻尼器耗能面积计算图
总应变能,其中F i —质点i 的水平地震作用标准值;μi —质点i 对应于水平地震作用标准值的位移。
a ξcj W j j μ∆s
W 1/2s i i W F μ=∑()
用于消能部件有效刚度计算的阻尼器有效刚度计算公式为:
max max /eff d K F u =∆。
阻尼器的阻尼和刚度计算
阻尼器是一种用于减震和减振的装置,主要通过消耗振动能量来减小结构物的振幅和振动。
阻尼器的阻尼和刚度计算是设计阻尼器时需要考虑的重要问题。
一、阻尼计算
阻尼器的阻尼计算需要考虑结构物的质量、刚度和自然频率等因素。
一般来说,阻尼器的阻尼系数越大,阻尼效果越好。
阻尼系数的计算可以采用以下公式:
D = c * M
其中,D表示阻尼系数,c表示阻尼器的阻尼比,M表示结构物的质量。
阻尼比是指阻尼器的阻尼力与结构物动力学响应的比值,通常取值在0.1~0.5之间。
二、刚度计算
阻尼器的刚度计算需要考虑结构物的刚度和自然频率等因素。
一般来说,阻尼器的刚度越小,阻尼效果越好。
刚度的计算可以采用以下公式:
K = (2 * π* f)^2 * M
其中,K表示阻尼器的刚度,f表示结构物的自然频率,M表示结构物的质量。
自然频率是指结构物在没有外力作用下自由振动的频率,通常在设计时需要控制在一定范围内。
总之,阻尼器的阻尼和刚度计算需要综合考虑结构物的质量、刚度和自然频率等因素,以达到减震和减振的目的。
金属阻尼器在剪力墙结构消能减震设计中的应用摘要:消能减震对于结构抗震来说是至关重要的,消能减震技术在目前的大型结构抗震、抗风等领域中得到了广泛的应用。
本文将探讨金属阻尼器在剪力墙结构消能减震设计中的应用,通过结合工程实例,简述了建筑消能减震的设计原理及消能器分类,对其采用消能减震阻尼器进行消能减震设计,经结果可知,该设计达到了预期的减震目的,符合相关要求。
关键词:剪力墙结构,消能减震,金属阻尼器,设计;难点引言地震又称地动、地振动,是一种突发性的破坏性极强的自然灾害,它不仅会直接破坏建筑物及构筑物,同时也会造成泥石流等次生灾害的发生,造成极大的人员伤亡和经济财产损失。
因此消能减震技术日益得到广大的建筑结构设计人员的关注。
消能减震是结构地震控制的一个行之有效的重要手段,其改变了结构的动力特性,从而使结构在地震(或风)作用下的动力反应得到了有效地控制。
基于此,下文将论述金属阻尼器在本工程剪力墙结构消能减震设计中的应用,并讲述其施工难点,可为有关工程提供借鉴作用。
1 建筑消能减震设计原理建筑消能减震技术经过多年应用已成为成熟技术。
建筑消能减震设计按照国家规范GB50011—2010建筑抗震设计规范及相应的行业标准进行。
消能减震设计指的是在房屋结构中适当设置消能器,通过消能器的相对变形和相对速度提供附加阻尼,以消耗输入结构的地震能量,达到预期防震减震要求。
其实现方法是在结构中某些相对变形较大的部位安装消能装置或者将某些非承重构件设计成消能构件,通过消能装置和消能构件大量消耗地震输入能量,达到减震目的。
结构中合理布置消能器以达到预定减震效果。
2 消能器分类建筑消能部件可由消能器及斜撑、墙体、梁等支承构件组成。
消能器分为速度相关型、位移相关型和其他类型。
(1)速度相关型。
消能器的耗能能力与消能器两端的相对速度有关的消能器,如粘滞消能器、粘弹性消能器等。
(2)位移相关型。
消能器的耗能能力与消能器两端的相对位移有关的消能器,如金属消能器、摩擦消能器和屈曲约束支撑等。
2022年第8期(总第416期)工程设计金属阻尼器因具有屈服强度低、改善结构侧向刚度分布等优点,在高层建筑工程设计中得到了广泛应用。
剪切型金属阻尼器作为常用的应用结构,通过整理剪切型金属阻尼器应用时需注意的内容,对于提升结构抗震性与稳固性有着积极作用。
1剪切型金属阻尼器技术分析从实际应用情况来看,剪切型金属阻尼器技术在应用中具有以下优势:①剪切型金属阻尼器的初始刚度相对较高,能够在出现小震情况时进入屈服状态,从而具有了良好的耗能效果,在使用中能够为上部结构提供一定的应用刚度,而且也可以为整个结构提供相应的阻尼比;②此类结构的单体厚度较小,将其放置在隔墙当中并不会干扰到建筑结构的整体功能;③剪切型金属阻尼器在施工时可以采用后安装的方法进行作业,并不会对工程整体的施工进度产生过多影响。
同时,剪切型金属阻尼器在使用中也具有以下不足:剪切型金属阻尼器在使用中会对隔墙结构产生相应影响,在使用中会由于墙体与阻尼器间隔过近导致一些裂缝问题,影响到整个施工结构的稳定性。
2工程项目概述某高层项目总建筑面积约39万m 2,由两栋塔楼及裙房组成。
其中塔楼A 结构高度为179m(41层),塔楼B 结构高度为89m(20层)。
两栋塔楼及东部裙房均属超限高层,尤其是东部裙房,为平面和竖向均特别不规则的超限高层。
本工程建筑抗震设防类别为丙类,抗震设防烈度为7度(0.1g),设计地震分组为第一组,场地类别为Ⅳ类。
塔楼B 为钢筋混凝土框架-核心筒结构体系,核心筒底部加强区最大墙厚为550mm ,并随楼层高度的增加而逐步减小为350mm 。
该结构存在楼层最大位移比大于1.2和两层楼板有限宽度小于该层典型宽度50%等超限情况,为提升建筑结构整体的抗震性能,选用剪切型金属阻尼器进行施工,以提高整体结构的稳固性。
3剪切型金属阻尼器的应用要点3.1技术参数优化参考该项目工程的应用特点,在应用时引入剪切型金属阻尼器进行施工,用来制作金属阻尼器的钢板力学参数如下:①钢板屈服强度为235MPa ,满足≥225MPa 的设计要求;②钢板极限强度为328MPa ,满足≥300MPa 的设计要求;③钢板延伸率为44%,满足≥40%的设计要求。
U 型金属阻尼器受力性能和数值模拟分析方法研究摘要随着城市交通的发展,车辆行驶速度不断提高,道路状况变化频繁,交通事故发生的可能性也在增加。
因此,保证交通安全和减少交通事故的发生,成为当今社会亟需解决的问题之一。
本文以U 型金属阻尼器为研究对象,针对其受力性能进行了分析和研究。
主要通过数值模拟的方式,对U 型金属阻尼器的受力情况进行了计算和分析,并对其结构优化方案进行了探索。
关键词:U 型金属阻尼器;受力性能;数值模拟;结构优化。
AbstractWith the development of urban traffic, the vehicle speed is constantly increasing, and the road conditions are changing frequently. The possibility of traffic accidents is also increasing. Therefore, ensuring traffic safety and reducing the occurrence of traffic accidents has become one of the pressing issues in today's society. This paper takes the U-shaped metal damper as the research object and analyzes and studies its force performance. Mainly through numerical simulation, the force situation of U-shaped metal damper is calculated and analyzed, and the structural optimization scheme is explored.Keywords: U-shaped metal damper; force performance; numerical simulation; structural optimization.正文1.研究背景随着人们对于交通安全重视程度的提高,减少交通事故的发生已经成为当今社会亟需解决的问题。
墙式剪切型金属抗震阻尼器刚度等效计算流程
1) 根据连接墙尺寸和阻尼器参数计算消能部件的相关参数: 1连接墙刚度=11+连接墙弯曲刚度连接墙剪切刚度
⨯⨯⨯连接墙剪切刚度=0.4混凝土弹性模量连接墙厚度连接墙长度/连接墙计算长度/1.2⨯⨯⨯⨯⨯⨯⨯33
321
连接墙弯曲刚度=
11+混凝土弹性模量连接墙厚度连接墙长度混凝土弹性模量连接墙厚度连接墙长度连接墙计算高度4连接墙计算高度阻尼器高度3连接墙变形=阻尼器屈服力/连接墙刚度
消能部件屈服位移=阻尼器屈服位移+连接墙变形
2) 消能部件初始刚度
1
消能部件初始刚度=11+阻尼器初始刚度连接墙刚度 3) 计算等代构件(等代柱)的刚度:
⎛⎫⨯⨯⨯⨯ ⎪⎝⎭33112钢弹性模量等代柱宽度等代柱高度12等代柱弯曲刚度=等代柱长度
⨯⨯⨯钢剪切模量等代柱宽度等代柱高度
等代柱剪切刚度= 1.2等代柱长度
1
等代柱刚度=11+等代柱弯曲刚度等代柱剪切刚度
由“等代柱刚度=消能部件初始刚度”可以得到初始的等代柱的构件尺寸。
4) 将等代柱按计算得到的尺寸输入到反应谱计算模型中,开始迭代计算。
对建入等代柱的模型进行小震反应谱分析,读取反应谱计算结果中墙式剪切型阻尼器所在位置的等代柱在阻尼器工作方向的地震工况下的出力(阻尼器实际工作
方向),其中出力为调整前标准出力
5)计算消能部件的水平位移:
消能部件出力
消能部件位移=
消能部件刚度
其中消能部件刚度为目前模型中等代构件的刚度。
6)根据前文“反应谱法迭代计算步骤”,由消能部件的出力和消能部件位移,可求得下一步的附加阻尼比和等代构件的有效刚度,开始迭代直至收敛。
专利名称:一种剪切型金属阻尼器专利类型:实用新型专利
发明人:董硕,王经纬
申请号:CN202122280154.9
申请日:20210919
公开号:CN215802396U
公开日:
20220211
专利内容由知识产权出版社提供
摘要:本实用新型涉及阻尼器技术领域,且公开了一种剪切型金属阻尼器,包括矩形板一,矩形板一的右侧面固定连接有矩形横板一,矩形横板一的右侧面开设有矩形槽一,矩形槽一的内壁滑动连接有矩形横板二,矩形横板二的右侧面固定连接有矩形板二,矩形横板一的前侧面贯穿开设有螺纹孔一,螺纹孔一的内壁贯穿转动连接有螺栓,螺栓的圆周侧面滑动连接有耗能板一,耗能板一的前侧面开设有螺纹孔二,矩形板一的上表面开设有环形槽一;本实用新型中,通过螺纹孔一和螺栓的设置,配合耗能板一和螺纹孔二的设置,可以灵活改变设备的阻尼强度,且设备的阻尼结构均可自由拆卸,便于降低设备的运输和仓储的难度及成本。
申请人:云南博众减隔震咨询有限公司
地址:650000 云南省昆明市呈贡区乌龙街道实力心城11幢1814室
国籍:CN
代理机构:深圳至诚化育知识产权代理事务所(普通合伙)
代理人:刘英
更多信息请下载全文后查看。
简述薄壁结构剖面刚度计算方法及程序开发作者:文加权来源:《科学与信息化》2018年第18期摘要剖面几何特性包括形心、刚心、弯曲惯性矩和扭转惯性矩。
计算弯曲刚度时长桁、蒙皮及梁腹板面积全部有效;计算扭转刚度时长桁面积无效。
关键词薄壁结构;剖面特性;刚心1 计算假设为简化计算,需作如下基本推定:(1)平剖面假设;(2)近似地认为长桁、梁与剖面法向平行;(3)不考虑长桁、大梁缘条形心与剖面外型点之间的距离。
(4)计算弯曲刚度时略去元件(大梁缘条、长桁蒙皮本身的惯性矩。
(5)计算弯曲刚度时长桁、蒙皮及梁腹板面积全部有效;计算扭转刚度时,长桁面积无效。
(6)近似地认为中心主轴与X、Y坐标轴平行。
因此对翼剖面应取平行及垂直于翼弦线的轴线为X、Y轴,对机身剖面X、Y轴应平行及垂直于水平面。
2 计算方法2.1 计算中所用的原始数据xi,yi—节点坐标(将剖面外形用离散点表示,一般在长桁、缘条处取节点);Fi—节点面积(长桁,缘条面积);δ(i,j)—节点i、j之间的蒙皮(或梁腹板)厚度;2.2 弯曲惯性矩计算A=∑Fi+∑δ(i,j)·d(i,j)(1)xc=(∑Fi·xi+∑δ(i,j)·d(i,j)·(0.5·(xi+xj)))/A (2)yc=(∑Fiyi+∑δ(i,j)·d(i,j)·(0.5·(yi+yj)))/A (3)式中:d(i,j)—节点i、j之间的直线距离 A—剖面面积;xc、yc—剖面形心坐标;Jx=∑Fi·(yi-xc)2+∑δ(i,j)·d(i,j)·(0.5·(yi+yj)-yc))2 (4)Jy=∑Fi·(xi-xc)2+∑δ(i,j)·d(i,j)·(0.5·(xi+xj)-xc))2 (5)2.3 扭转惯性矩计算Jnz=∑2AiψI (6)Ψi由以下方程组求得:a11ψI-a12ψi=2A1,-a12ψi+a22ψi=2A2 ┅(7)式中:aii=∮(dsi/δi)(代表一个室,包括壁在内)aij=∫(dsi,i+1/δi,i+1)(代表一个壁)A1、A2—闭室1、2所围的面积。
天津剪切板阻尼器计算
天津剪切板阻尼器计算,主要包括以下几个步骤:
1. 确定材料和几何尺寸:根据实际使用条件和要求,选择合适
的阻尼材料,比如聚氨脂阻尼材料,然后确定剪切板的几何尺寸,包
括长度、宽度和厚度等。
2. 计算阻尼器的阻尼系数:阻尼系数是指材料受到外力作用时,能够消耗的能量与入射能量的比例。
阻尼器的阻尼系数可以通过实验、仿真计算或参考相关文献进行估算。
3. 计算剪切板的刚度:剪切板的刚度可以通过有限元分析获得,也可以根据板材的几何尺寸和材料力学特性进行计算。
4. 通过公式计算阻尼器的阻尼力:阻尼力等于阻尼系数乘以载
荷的速度,可以用公式Fd=CvV计算得到。
其中,Fd为阻尼力,C为阻
尼系数,v为载荷的速度。
5. 根据计算结果确定阻尼器的数量和摆放位置,进行实际设计
和制造。
以上是天津剪切板阻尼器计算的主要步骤,具体计算方法需要根
据实际情况进行调整和优化。
作者简介:徐志强(1987-)男,山东曲阜人,硕士,主要从事结构强度及刚度方面的研究。
收稿日期:2020-12-28铝合金超静定矩形薄壁梁的刚度理论研究与数值计算徐志强,任毅斌,刘云刚,胡国强,宋小雨(中铝材料应用研究院有限公司,北京102209)摘要:对两端固支闭口薄壁梁的刚度进行理论研究,得出任意闭口截面梁在加载处的抗弯刚度及抗扭刚度计算公式,进而推导出矩形薄壁梁抗弯刚度及抗扭刚度的理论计算公式。
通过算例对不同壁厚铝合金矩形薄壁梁的抗弯及抗扭刚度进行理论及数值计算,得出理论与数值的计算结果相同,从而验证了理论的正确性,为客车的矩形梁设计提供了一定的基础。
关键词:薄壁梁;抗弯刚度;抗扭刚度;数值计算中图分类号:TG379,TG146.21文献标识码:A文章编号:1005-4898(2021)05-0003-06doi:10.3969/j.issn.1005-4898.2021.05.010前言薄壁梁结构作为客车结构的主要承力部件,在车身结构中有着十分重要的作用,会影响整车的力学性能,因此研究薄壁梁的刚度对提高整车的性能有着非常重要的意义[1-3]。
一般在客车中采用的薄壁梁多为矩形梁[4],因此,本文将从理论及有限元两方面分析矩形薄壁梁结构的截面几何参数和材料特性对其弯曲和扭转刚度的影响,并通过算例对不同壁厚铝合金矩形薄壁梁的抗弯及抗扭刚度进行理论及数值计算,得出理论与数值相同的计算结果。
1薄壁矩形梁的刚度理论计算考虑到薄壁梁在客车上的设计,梁的两端均会与其他的部件有机械连接或者焊接,因此,在单独分析薄壁梁时,可假定薄壁梁两端固支,研究在两端固支的约束条件下梁上任意一点的刚度值。
1.1抗弯刚度理论计算一长度为L 的两端固支梁如图1所示,在距左端x 处受一垂向载荷P作用。
图1固支梁弯曲模型由平衡方程知ìíîïïPx -F CY L +M C -M A =0F AX -F CX =0F AY +F CY -P =0(1)式中,F AX 、F AY 、F CX 、F CY 分别为A、C 点的X、Y 向的支座反力;M A 、M C 分别为A 、C 点的弯矩。