热力发电厂2.2
- 格式:ppt
- 大小:884.00 KB
- 文档页数:9
热力发电厂汽轮机设备的安装与检修探析摘要:随着技术的不断进步,热力发电厂汽轮机设备的安装与检修工作也在不断演进。
为保障设备的顺利运行和延长使用寿命,提高效率和安全性成为关键。
本文将介绍一些常见的传统和先进的安装与检修方法,以及新兴的技术应用,同时提出提升安装流程、检修效率和加强安全管理的建议,旨在帮助热力发电厂实现高质量的设备安装与维护。
关键词:热力发电厂;汽轮机设备;安装;检修引言热力是现代社会不可或缺的能源之一,而热力发电厂汽轮机设备的安装与检修对于能源生产具有重要意义。
随着科技的进步和工艺的发展,传统的方法被更先进的技术所取代。
本文将探讨传统与现代安装与检修方法的差异,并介绍新兴的技术应用。
同时,提出加强安全管理和培训的建议,以确保设备运行的稳定性和安全性。
1.安装与检修的基本概念和流程1.1安装工作的流程和要点如图所示:1.2检修工作的流程和要点热力发电厂汽轮机设备检修工作的流程和要点如下:(1)计划与准备:制定检修计划,明确工作范围和目标;准备所需工具、材料和设备。
(2)设备停机与封锁:按规定程序停机,封锁相关设备,确保安全。
(3)拆卸与清洁:按顺序拆卸设备部件,进行清洗和检查,记录问题。
(4)维修与更换:修复或更换有问题的部件,确保设备正常运行。
(5)组装与调试:按要求组装各部件,进行装配和调试。
(6)试运行与测试:进行设备的试运行和性能测试,调整并改进问题。
2.常见的安装与检修方法和技术2.1传统的安装与检修工艺传统的安装与检修工艺包括以下几种方法和技术:(1)拆卸与装配:根据设备拆卸安排,使用传统的手工工具和设备进行部件的拆卸和装配。
(2)清洗与保养:使用传统的清洗剂和工具对设备进行清洗和保养,以确保设备的正常运行和延长使用寿命。
(3)焊接与连接:使用传统的焊接技术和连接方式对设备进行加固和修复,确保设备的结构稳定和密封性。
(4)调试与验收:按照传统的调试方法,使用测试工具和测量仪器对设备进行参数调整和功能验证,并进行设备的验收和记录。
1000 MW凝汽式发电机组全厂原则性热力系统的设计学院:交通学院专业:热能与动力工程*名:***学号: **********指导教师:***2015年 12月1000MW 热力发电厂课程设计任务书1.2设计原始资料1.2.1汽轮机形式及参数机组型式:N1000-26.25/600/600(TC4F )超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压额定功率:P e =1000MW主蒸汽参数:P 0=26.25MPa ,t 0=600℃高压缸排气:P rh 。
i =6.393MPa ,t rh 。
I =377.8℃再热器及管道阻力损失为高压缸排气压力的8%左右。
MPa 5114.0MPa 393.608.0p rh =⨯=∆中压缸进气参数:p rh =5.746MPa ,t rh =600℃汽轮机排气压力:P c =0.0049MPa给水温度:t fw =252℃给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。
1.2.2锅炉型式及参数锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉过热蒸汽参数:p b =27.56MPa ,t b =605℃汽包压力:P drum =15.69MPa额定蒸发量:D b =2909.03t/h再热蒸汽出口温度:603t 0.rh b=℃ 锅炉效率:%8.93b =η1.2.3回热系统本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。
七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。
三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。
汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。
《热力发电厂》课程设计说明书班级:0 8热能(3)班小组成员:易维涛虞循东赵显顺吴文江高雨婷王颖张盈文王靖宇白杨指导老师:孙公钢2011-12-05---2011-12-181、引言1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
热力发电厂第二版课后答案【篇一:热力发电厂第三版(叶涛)课后答案】ass=txt>一、发电厂在完成能量的转换过程中,存在哪些热损失?其中哪一项损失最大?为什么?各项热损失和效率之间有什么关系?能量转换:化学能——热能——机械能——电能(煤)锅炉汽轮机发电机热损失:1、锅炉热损失,包括排烟损失、排污热损失、散热损失、未完全燃烧热损失等。
2、管道热损失3、汽轮机冷源损失: 凝汽器中汽轮机排汽的气化潜热损失; 膨胀过程中的进气节流、排气和内部损失。
4、汽轮机机械损失。
5、发电机能量损失最大:汽轮机冷源热损失中的凝汽器中的热损失最大。
原因:二、发电厂的总效率有哪两种计算方法?各在什么情况下应用?1)热量法和熵方法(或火用方法或做功能力法)2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。
熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。
三、热力发电厂中,主要有哪些不可逆损失?怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性?存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。
主要不可逆损失有1)锅炉内有温差换热引起的不可逆损失;可通过炉内打礁、吹灰等措施减少热阻减少不可逆性。
2)锅炉散热引起的不可逆损失;可通过保温等措施减少不可逆性。
3)主蒸汽管道中的散热和节流引起的不可逆性;可通过保温、减少节流部件等方式来减少不可逆性。
4)汽轮机中不可逆膨胀引起的不可逆损失;可通过优化汽轮机结构来减少不可逆性。
5)凝汽器有温差的换热引起的不可逆损失;可通过清洗凝汽器减少热阻以减少不可逆性。
四、发电厂有哪些主要的热经济性指标?它们的关系是什么?主要热经济性指标有:能耗量(汽耗量,热耗量,煤耗量)和能耗率(汽耗率,热耗率,煤耗率)以及效率。
能耗率是汽轮发电机生产1kw.h的电能所需要的能耗量。
热力发电厂第二版教学设计前言热力发电厂是一个关键的能源转化系统,它将化石燃料等能源转化为电力。
此教学设计旨在帮助学生了解和理解热力发电厂的工作原理和系统组成,同时提高学生的应用技能和创新能力。
教学目标1.了解热力发电厂的基本工作原理和系统组成;2.理解热力发电厂几种主要的能量转化方式,包括燃烧、蒸汽发生、涡轮发电和冷却;3.掌握热力发电厂的操作技能;4.培养学生的创新能力,让学生在实践中提出解决问题的方案。
教学内容第一部分:热力发电厂基本概念1.1 热力发电厂的定义介绍热力发电厂的定义和组成,包括锅炉、发动机、冷却系统等。
1.2 热力发电厂的工作原理讲解热力发电厂的基本工作原理和能量转化方式,包括燃烧、蒸汽发生、涡轮发电和冷却等。
第二部分:热力发电厂系统组成2.1 热力发电厂主要设备介绍热力发电厂主要设备的组成和性能,如锅炉、涡轮机、发电机等。
2.2 燃烧系统讲解燃烧系统的基本原理和操作技术,包括燃料的处理和燃烧过程的控制等。
2.3 蒸汽发生系统介绍蒸汽发生系统的组成和工作原理,包括水循环系统、蒸汽发生器等。
2.4 涡轮机/发电机系统讲解涡轮机/发电机系统的组成和工作原理,包括涡轮机、发电机等。
2.5 冷却系统介绍冷却系统的组成和工作原理,包括冷却循环水系统等。
第三部分:实践教学3.1 实验设计设计热力发电厂的模拟实验,让学生了解热力发电厂的基本原理和操作技术。
3.2 操作培训进行实际操作培训,让学生了解热力发电厂的具体操作技能。
3.3 创新项目提供创新项目,让学生自主提出解决方案,并实际实施,提高学生的创新能力和实践能力。
教学方法本课程主要采用讲解和实践相结合的教学方法。
通过讲解热力发电厂的基本概念,让学生掌握热力发电厂的工作原理和系统组成;通过模拟实验和操作培训,让学生掌握热力发电厂的操作技能;通过创新项目,培养学生的创新意识和实践能力。
教学评价针对本课程,教师将对学生进行定期测试,记录学生的出勤情况,参与度和成绩等。
滨海热电厂2#机组高加经济运行的经济性分析摘要:为积极响应热电公司节能降耗的号召,现根据滨海热电厂的实际运行情况,提出停运2#汽轮机组两台高加,增加2#机的供热发电量来提高经济性的设想,并针对此设想,通过计算和分析,得出一定结论。
认为当热网负荷大于机组供热能力时,不投高加是有利的,而当热网负荷小于机组供热能力时,投高加可提高机组的热经济性。
关键词:高压加热器汽轮机运行经济性针对当前国家能源趋紧的不利形势,节能降耗已成为各个企业运作的工作重点。
本文针对我厂2#汽轮机为背压式汽轮机的特点,从热力循环和热电联产的角度对高加停用对热经济性的影响加以分析。
1 背压型机组装设高加的目的汽轮发电机组装设回热加热器实现热力循环的主要目的是为了减少冷源损失提高循环热效率。
由于背压机组不存在冷源损失,其装设高加的目的,主要是为了提高锅炉给水温度,降低工质吸热过程的不可逆损失,从而降低锅炉的燃料消耗。
同时,投入高加能增大汽轮机的进汽量,可改善汽轮机通流部分的运行状况,提高相对内效率。
然而不论是否采用回热加热系统,背压机组的循环热效率不变。
2 高加投切对机组的影响2.1 对锅炉效率的影响在高加停运时,排烟温度因给水温度下降而降低,排烟损失减小,锅内效率略有提高。
2.2 对机组内效率的影响背压机组的相对内效率与机组进汽量很有关系,在低负荷时,效率变化快,在额定负荷附近,效率变化不多,在机组进汽量一定时,机组相对内效率基本为定值。
因此当热网负荷大于机组供热能力时,在进汽量不变的情况下停止高加运行可多向外供热,提高系统的经济效益,此时机组的相对内效率基本不变。
相反若热网负荷低于机组供热能力,机组在低负荷下运行时,投入高加运行可增加进汽量,能提高机组相对内效率。
若外界热负荷低于机组供热能力,机组长期处于低负荷运行时其相对内效率很低,如投入高加可使相对内效率回升,发电量增加,但对低负荷运行背压机组热电联产系统的效益改观不大。
若用户热负荷大于机组供热能力时,汽轮机进汽量一定,不投高加可增加对外供热量和供电量,此时机组相对内效率不变。
目录第一章课程设计任务书........................................................ 错误!未定义书签。
1.1设计题目.................................................................... 错误!未定义书签。
1.2计算任务.................................................................... 错误!未定义书签。
1.3热力系统简介............................................................ 错误!未定义书签。
第二章计算原始资料............................................................ 错误!未定义书签。
2.1汽轮机型式及参数.................................................... 错误!未定义书签。
2.2回热加热器系统参数................................................ 错误!未定义书签。
2.3锅炉型式及参数:.................................................... 错误!未定义书签。
2.4其他数据.................................................................... 错误!未定义书签。
第三章全厂原则性热力系统的计算. (5)3.1各加热器进、出水参数计算 (5)3.2绘制汽轮机蒸汽膨胀过程线 (8)3.3锅炉连续排污利用系数及其有关流量的计算 (9)3.4回热抽汽系数计算.................................................... 错误!未定义书签。
热力发电厂水处理摘要:目前电厂用水水源主要有两种:地表水和地下水。
其水质是指水和其中杂质共同表现出来的综合特性,也就是常说的水的质量。
表示水中杂质个体成分或整体性质的项目成为水质指标,它是衡量水质好坏的参数。
膜技术是一项具有巨大潜力的实用性技术,反渗透技术的核心是反渗透膜,这是一种用高分子材料制成的、具有选择性半透性质的薄膜。
关键词:电厂水处理水质分析膜分离技术热力发电厂中,由于汽水品质不良,会引起热力设备结垢和腐蚀,引起过热器和汽轮机积盐,为了保证热力系统中有良好的水质,必须对水进行适当的净化处理和严格地监督汽水质量,确保发电厂热力设备安全、经济运行。
全球淡水资源短缺问题日趋严重,使中水回用成为解决水资源问题的有效途径。
近年来,随着电力建设的高速发展,作为用水大户的火电厂已将循环冷却系统用水放在城市中水回用和“零排放”。
虽然中水经二级处理后已经去除了大部分的SS、COD、BOD、色度、浊度,但是,由于中水、成分复杂、千变万化给回用工程带来了诸多问题和影响。
当前,在火电厂中水深度处理和回技术中还存在一些技术难题,需要进一步研究和解决。
1.锅炉水处理对锅炉能效的影响因素1.1 锅炉水处理原理因素当前我国锅炉水处理可分为锅外水、锅内水处理两个环节,二者的目的均是防止锅炉的腐蚀、结垢。
锅外水重点在于水的软化,以物理、化学及电化学处理方法去除原水中存在的钙、氧、镁硬度盐等杂质;而锅内水则以工业药剂添加为主要处理手段。
作为锅炉水处理关键性环节的锅外水处理包含3个部分,其中,预处理、除氧处理的应用较少,效果不尽理想,而软化处理所采用的钠离子交换法在阴离子HCO3-的去除上难以完成预期目标,水的碱度不能有效降低。
1.2 水质对锅炉能效的关键性影响水处理不当造成的水质问题往往会引发锅炉结垢、腐蚀以及排污率增大等现象,导致锅炉热效率下降,而锅炉热效率每个百分点的下降都会增加1.2~1.5的能耗。
首先,结垢对锅炉能效的影响。
热力发电厂管道水击的现象和处理思路摘要:在热力发电厂中,蒸汽管道和给水管道是必不可少的组成部分,管道发生水击会损害设备和机组的安全稳定运行,本文从管道水击的原理、现象出发,分析并提出了管道水击时运行人员的事故处理思路,以尽量避免水击对机组运行的危害。
关键词:管道,水击,处理思路引言管道水击是较为常见的电厂运行事故,随着管道材质、运输介质的不同,事故的现象和情况也有较大的区别。
本文从管道水击的原理出发,分析水击的特征及其影响因素,并从中找出水击事故的处理方案以及防范水击的有效方法。
1 水击的概念当压力管道中的流速因外界原因而发生急剧变化时,引起液体内部压强迅速交替升降的现象,这种交替升降的压强作用在管壁、阀门或其他管路元件上好像锤击一样,称为水击。
2 管道水击的原理管道水击,可以分为减速增压、增速减压、减速减压、膨胀恢复四个过程。
2.1压缩过程如图(a)所示,当阀门突然关闭,首先在N-N断面上液体停止了流动,同时压力升高ph。
然后相邻的另一层液体也停止了流动,压力也相应升高ph。
这种压力升高以水击波的传播速度c由阀门N处一直向管道进口M传播。
经时间时间传到管道进口,这时整个管道中压力都升高到p+ph。
液体受到压缩,密度增高,管壁膨胀,这是一个减速增压的压缩过程。
2.2 压缩恢复过程当压缩过程结束后,管道中压力比容器中压力高了ph。
在压力差ph的作用下,管道中的液体将以速度v由管道流回容器内,如图(b)所示。
与此同时,这层液体的压力由p+ph恢复到正常的压力p,管壁的膨胀也得到恢复,这种恢复以水击波的传播速度c向管道末端N-N传播。
从阀门关闭时间算起,经过时间后,由M-M传播到N-N断面,使整个管道都恢复到正常数值。
该过程是一个增速减压的压缩恢复过程。
2.3膨胀过程(惯性作用)压缩恢复过程结束后,液体并不能停止流动,在惯性的作用下,液体还将以速度v 继续向容器内流动,阀门N-N处液体首先减少,使其压力由p降低到p-ph。
热力发电厂在乏汽回收利用时的冷源损失分析摘要随着节能减排工作日渐受到关注,在各热电企业中,各种乏汽也开始回收利用,其中比较典型的乏汽回收有锅炉连排和除氧器的排汽回收,在抽汽回热式汽轮发电机组上,对这些乏汽余热回收进行效益计算时,不能只计算有多少热量通过装置换热被回收了,然后直接将这些回收的热量折合成标煤算效益,而是应该算出这些热量能做出多少功,因为汽轮机做功有很大的冷源损失。
关键词热力发电厂;乏汽回收;效益计算;冷源损失。
1热电厂乏汽回收简介热力发电厂在生产过程中,锅炉定排扩容器、热力除氧器及其他疏水扩容器在运行中会产生大量的低压蒸汽和闪蒸汽排放,造成工质的损失和能源浪费,为了回收这部分排汽,目前比较常见的做法是加装一套乏汽回收装置,回收装置利用低温凝结水来吸收乏汽的热量,同时乏汽被冷却后变成的冷凝水也作为除盐水加以回收利用,目前各种乏汽回收装置的生产厂家也较多,其中除氧器的乏汽回收和锅炉定排扩容器的乏汽回收比较普遍。
1.1除氧器的乏汽简述为保证热力发电厂生产的的安全和经济,防止热力设备的腐蚀和传热的变坏,必须除去锅炉给水中溶解的氧气和其它不凝结气体,而热力发电厂普遍采用热力除氧法除去给水中的氧气和其它气体,所谓热力除氧就是利用汽轮机的抽汽加热凝结水达到除氧器压力下的对应的饱和温度后除氧除气,在排氧排气过程中,会同时排出一部分饱和蒸汽,这部分排出的汽气混合物就是上面所说的乏汽,除氧器乏汽回收装置回收的就是这部分乏汽的热量和乏汽冷凝后的除盐水。
常见的除氧器乏汽回收系统如图1所示。
图1常见的除氧器乏汽回收系统热力除氧器按工作压力可分为大气式除氧器与高压除氧器,不管是大气式除氧器还是高压式除氧器,它们的排汽温度都是除氧器工作压力对应下的饱和蒸汽温度,大气式除氧器排汽参数一般为0.12MPa绝对压力),104℃,高压除氧器排汽参数本文例举压力0.5MPa,温度151.85℃的除氧器。
1.2锅炉定排扩容器乏汽回收简述为了控制锅炉炉水的水质符合规定的标准,使炉水中杂质保持在一定限度以内,需要从锅炉汽包中不断地排除含盐、碱量较大的炉水和沉积的水渣、污泥、松散状的沉淀物。
热力发电厂Thermal power plant课程代码:02410070学分:2.5学时:40 (其中:课堂教学学时:40实验学时:0上机学时:0课程实践学时:0)先修课程:工程热力学,传热学,流体力学,汽轮机适用专业:热能工程教材:《热力发电厂》郑体宽中国电力出版社2001年3月第1版一、课程性质与课程目标(-)课程性质(需说明课程对人才培养方面的贡献)《热力发电厂》阐述动力循环的基本原理和热经济性分析的基本方法及其在发电厂中的应用,着重介绍国内600MW及以上大型机组以及热力系统。
《热力发电厂》是针对电厂热能及自动化专业的专业必修课程。
(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。
应包括知识目标和能力目标。
)课程目标1:发电厂的热经济性及分析方法课程目标2:提高电厂热经济性的途径课程目标3:新型动力循环课程目标4:发电厂原则性热力系统及全面性热力系统计算注:工程类专业通识课程的课程目标应覆盖相应的工程教育认证毕业要求通用标准;(三)课程目标与专业毕业要求指标点的对应关系(认证专业专业必修课程填写)本课程支撑专业培养计划中毕业要求指标点1-1……m-n1.毕业要求1-1:2.毕业要求……注:课程目标与毕业要求指标点对接的单元格中可输入“「',也可标注“H、M、L”。
第一章热力发电厂的评价(-)教学内容第一节热力发电厂的安全可靠性第二节火力发电厂的环保评价第三节热力发电厂热经济性评价第四节凝汽式发电厂的热经济性指标第五节发电厂的技术经济比较与经济效益的指标体系第六节我国能源和电力工业的可持续发展(二)教学要求讲解热力发电厂评价的相关技术指标。
(三)重点和难点各种专业术语的含义及计算公式。
第二章热力发电厂的蒸汽参数及其循环(一)教学内容第一节提高蒸汽初参数第二节降低蒸汽终参数第三节给水回热循环第四节蒸汽再热循环第五节热电联产循环(二)教学要求定性分析各种参数变化对热力发电厂热经济性影响。
热力发电厂第四版教学设计前言在本次教学设计中,我们将着重介绍热力发电厂的基本原理和运作流程,同时介绍该工业领域的最新技术和趋势。
学生们将能够了解能源的转化和利用过程,同时理解发电厂的重要性及其对全球能源需求的影响。
教学目标通过本次教学,学生将能够:•理解热力发电厂的原理和运作流程;•了解能源的基本知识和转化过程;•掌握发电厂的基础设施和操作技能;•认识热力发电厂的未来发展趋势和最新技术。
教学内容1. 热力发电厂的原理和运作流程1.1 发电厂的类型和结构1.2 燃料的燃烧和储存1.3 地源和海洋能的利用1.4 发电机的组成和工作原理1.5 传输和分配2. 能源的基本知识和转化过程2.1 能源的种类和特性2.2 能量的转化与储存2.3 能源和环境的关系3. 发电厂的基础设施和操作技能3.1 锅炉和蒸汽发生器3.2 涡轮机和发电机3.3 发电厂的控制与监测4. 热力发电厂的未来发展趋势和最新技术4.1 新能源的利用和发展4.2 数字化和智能化技术在发电厂的应用4.3 发电厂的智能化管理和监测教学方法本次教学将采取:•课堂讲授:讲解热力发电厂的基础知识和运作流程;•实际案例分析:利用实际发电厂案例来介绍发电厂的基础设施和操作技能;•专业实践训练:实现对发电厂设施的实际操作培训。
教学评估为了确保教学质量,我们将采用以下方式进行评估:•课堂测试:检测学生对课堂所学知识的掌握程度;•实践操作评估:评定学生在实践操作中的技能能力;•项目报告:要求学生撰写热力发电厂案例分析报告,展示他们对热力发电厂的理解和运用能力。
结束语热力发电厂是一个复杂和重要的工业领域,我们希望本次教学能够帮助学生们更好地理解和掌握其基础原理和运作流程,同时利用新技术和趋势来应对未来的挑战。
感谢您的参与和支持。
名词解释0.1二次能源:由一次能源直接或间接加工、转换而来的能源。
1.2最佳给水温度:回热循环汽轮机绝对内效率为最大值时对应的给水温度。
1.6蒸汽中间再热循环:蒸汽中间再热就是将汽轮机高压部分做过功的蒸汽从汽轮机某一中间级引出,送到锅炉的再热器加热,提高温度后送回汽轮机继续做功。
与之相对应的循环称蒸汽中间再热循环。
1.10什么叫抽汽做功不足系数:因回热抽汽而做功不足部分占应做功量的份额。
1.12什么叫再热机组的旁路系统:高参数蒸汽不进入汽轮机,而是经过与汽轮机并联的减压减温器,将降压减温后的蒸汽送入再热器或低参数的蒸汽管道或直接排至凝汽器的连接系统。
1.14热电厂的燃料利用系数:电、热两种产品的总能量与输入能量之比。
1.15热化发电率:质量不等价的热电联产的热化发电量与热化供热量的比值。
2.7热力系统:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。
2.8高压加热器:水侧部分承受除氧器下给水泵压力的表面式加热器。
低压加热器:水侧部分承受凝汽器下凝结水泵压力的表面式加热器。
2.13最佳真空:提高真空所增加的汽轮机功率与为提高真空使循环水泵等所消耗的厂用电增加量之差达到最大时的真空值。
2.18加热器端差:加热器汽侧压力下的饱和温度与出口水温之间的差值。
3.3热电厂的燃料利用系数:热电厂的燃料利用系数又称热电厂总热效率,是指热电厂生产的电、热两种产品的总能量与其消耗的燃料能量之比。
3.4供热机组的热化发电率ω:热化发电率只与联产汽流生产的电能和热能有关,热化发电量与热化供热量的比值称为热化发电率,也叫单位供热量的电能生产率。
3.6上端差:加热器汽测出口疏水温度(饱和温度)与水侧出口温度之差。
下端差:加装疏水冷却器(段)后,疏水温度与本级加热器进口水温之差称。
3.7以热电联产方式进行生产的电厂叫热电厂。
4.11旁路系统:是指高参数蒸汽在某些特定情况下,绕过汽轮机,经过与汽轮机并列的减温减压装置后,进入参数较低的蒸汽管道或设备的连接系统,以完成特定的任务。