热力发电厂
- 格式:docx
- 大小:13.53 KB
- 文档页数:2
热力发电厂生产的实质是能量转换,即将燃料中的化学能通过在锅炉中燃烧转变为蒸汽的热能,并通过汽轮机的旋转变为机械能,最后通过发电机转为所需电能。
热力发电厂的类型:化石燃料发电厂,供电的凝汽式发电厂;核能发电厂,供电,供热的热电厂;再生能源发电,供电,热,冷的发电厂;垃圾发电厂,供电,热,煤气的发电厂;磁流体发电厂,多功能热电厂;新能源发电厂。
评价热力发电厂热经济性两种基本分析方法:从热力学观点来分析,只要两种基本分析方法,即基于热力学第一定律的热量法(效率法,热平衡法);基于热力学第二定律的火用方法(可用能法,做功能力法)或火商方法(火用损,做功能力损失)。
两种热经济性评价方法的比较及其应用:1,两种方法算得的总损失量和装置效率是相同的。
2,对于损失的分布,两种方法得出了不同的结果。
热量法中的能量损失以散失于环境为准,不区分能量品味的高低,故凝汽器的损失最大;火用方法中,锅炉由于燃烧、传热的严重不可逆性,可用能损失最大。
3,热量法只表明能量数量转变的结果,不能揭示能量损失的本质原因。
火用方法不仅表明能量转换的结果,并能确切揭示能量损失的部位、数量及其损失原因,考虑了不同事物有其质的区别,两者对同一事物不同侧面的认识,两者是相辅相成、互为补充,却不能相互取代。
4,定量计算采用热量法,定性分析采用火商方法。
蒸汽动力循环的循环参数:新蒸汽压力P0、温度t0,及再热后进入中压缸的再热蒸汽温度trh和进入凝汽器的排气压力pc。
现在火电厂的常用蒸汽循环为:再热循环、回热循环、热电联产循环和热电冷三联产循环。
提高蒸汽初温:排气干度x提高到x’,减少了低压缸排汽湿汽损失。
提高蒸汽温度使其比体积增大,当其他条件不变时,汽轮机高压端的叶片高度加大,相对减少了高压端漏气损失,因而可提高汽轮机的相对内效率nri,从而提高了汽轮机的绝对内效率ni=ntnri.影响提高蒸汽初参数的主要因素1,提高蒸汽初参数可提高热经济性,节约燃料2,提高t0受金属材料的制约3,提高p0受蒸汽膨胀终了时湿度的限制4,提高p0,t0影响电厂的钢材消耗和总投资5,更高蒸汽初参数,更大容量机组的可用率电厂用水量凝汽器的冷却水量Gc一般可根据冷却水倍率m来确定,即Gc=mDc,Dc为汽轮机的最大凝汽流量。
1、热力发电厂的类型(1)按能源利用:化石燃料发电厂、原子能发电厂、新能源发电厂(2)按能源供应:只供电的凝汽式发电厂、同时供应电能和热能的发电厂(3)按原动机类型:汽轮机的发电厂、燃气轮机发电厂、内燃机发电厂、燃气-蒸汽联合循环发电厂(4)按机组或火电厂容量等级分单机容量6MW及以下、全厂容量25MW及以下的小型发电厂、单机容量6-50MW及以下、全厂容量25-250MW的中型发电厂、单机容量100MW及以下、全厂容量250MW及以上的小型发电厂(5)按进入汽轮机的蒸汽初参数:中低压电厂、高压电厂、超高压电厂、亚临界压力电厂、超临界压力电厂、超超临界压力电厂(6)按电厂位置特点:坑口发电厂、负荷中心发电厂(7)按电厂承担电网负荷的性质:基本负荷发电厂、中间负荷发电厂、调峰发电厂(8)按机炉组合:非单元机组发电厂、单元机组发电厂(9)按服务规模:区域性发电厂、企业自备发电厂、移动式发电厂、未并入电网的孤立发电厂2、主要热经济性指标的概念主要热经济性指标:能耗量(汽耗量、热耗量、煤耗量)、能耗率(汽耗率、热耗率、煤耗率)以及效率气耗率:汽轮机发电机组每生产1KW*h的电能所需要的蒸汽量热耗率:汽轮机发电机组每生产1KW*h的电能所需要的热量3、朗肯循环经历的四个热力过程定压吸热绝热膨胀定压放热绝热压缩4、评价热力发电厂热经济性的主要方法(1)以热力学第一定律为基础的热量法(热效率法)(2)以热力学第一定律和热力学第二定律为基础的做功能力法。
5、初压力P0提高,循环热效率提高存在转折点。
结论:若蒸汽初温、初压同时改变,由于循环初温度愈高时提高初压力愈有利,所以循环效率提高。
6、SCR:选择性催化还原法SNCR:选择性非催化还原7、给水除氧的作用给水中的氧会对钢铁组成的热力管道和设备产生强烈的腐蚀,二氧化碳及会加剧氧腐蚀,危及设备及系统的安全运行,因此要对给水除氧。
8、热电分产:当动力设备只用来供应一种能量,电能或热能来满足电或热的需要时,称为热电分产。
热力发电厂动力循环和热经济性分析热力发电厂是利用燃料燃烧产生的热能,通过动力循环转化为机械能,再经由发电机转化为电能的设备。
热力发电厂的动力循环系统是其核心部分,直接影响发电厂的发电效率和热经济性。
本文将对热力发电厂的动力循环和热经济性进行分析,探讨其影响因素和优化策略。
一、热力发电厂动力循环热力发电厂的动力循环通常采用蒸汽动力循环,其基本流程包括燃料燃烧产生热能、锅炉产生高温高压蒸汽、蒸汽推动汽轮机做功、汽轮机驱动发电机发电、冷凝器冷却蒸汽成为凝水、给水加热再进入锅炉循环。
这一循环过程中,热能不断转化为机械能和电能,完成能量转换的功能。
常见的动力循环系统有单回路、双回路和再热再生等不同种类,每种系统都有其特点和应用场景。
热力发电厂动力循环系统的性能主要取决于压力、温度和流量等参数。
为了提高发电效率和减少燃料消耗,热力发电厂通常会采用高参数化设计,提高锅炉出口蒸汽参数和汽轮机进汽参数,增大机组容量和提高透平效率。
优化循环方式、改进设备结构和提高系统运行稳定性也是提高动力循环效率的重要途径。
二、热力发电厂热经济性分析热力发电厂的热经济性是评价其综合能源利用效果的重要指标,也是节能减排的关键环节。
热力发电厂的热经济性主要包括锅炉燃烧效率、汽轮机汽耗、热力发电厂热力循环的热力损失等因素。
首先是锅炉燃烧效率。
锅炉是热力发电厂的关键设备,其燃烧效率直接影响热能利用程度和二氧化碳排放量。
提高锅炉燃烧效率是节能减排的重要途径,可以采用提高燃烧温度、改进燃烧器结构和优化燃料供给等技术手段进行改进。
其次是汽轮机汽耗。
汽轮机是热力发电厂的关键设备之一,其汽耗直接影响发电效率和热经济性。
提高汽轮机汽耗是提高热力发电厂综合能源利用效率的关键,可以采用提高汽轮机进汽参数、减少内发热损失和提高汽轮机效率等措施进行改进。
为了提高热力发电厂动力循环效率和热经济性,可以采取以下优化策略:1、采用高参数化设计。
提高锅炉出口蒸汽参数和汽轮机进汽参数,增大机组容量和提高透平效率,提高热力发电厂的动力循环效率。
热力发电厂第一篇:热力发电厂热力发电厂1、凝汽式发电厂的能量转换过程:即燃料的化学能通过锅炉转换成蒸汽的热能,蒸汽在汽轮机中膨胀做功,将蒸汽的热能转变成机械能,通过发电机最终将机械能转换成电能。
2、汽轮机本体包括哪哪些部分?静止部分、转动部分、配汽机构。
3、热量法是以燃料化学能从数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性定量分析。
4、凝汽式发电厂的能量转换顺序:燃料的化学能---蒸汽的热能—机械能—电能。
主要热经济性指标有能耗量(汽耗量、热耗量、煤耗量)和能耗率(汽耗率、热耗率、煤耗率)以及效率。
5、影响回热过程热经济性因素有:(1)多级回热给水总焓升在各加热器间的分配;(2)锅炉最佳给水温度;(3)回热加热级数;6、最佳给水温度:回热循环汽轮机绝对内效率为最大值时对应的给水温度称为热力学上的最佳给水温度。
7、蒸汽中间再热有哪些方法?(1)烟气再热(2)蒸汽再热(3)用中间载热质再热蒸汽的方法8、用中间载热质的再热系统需要有两个热交换器:一个装在锅炉设备烟道中,用来加热中间载热质;另一个是安装在汽轮机附近用中间载热质对汽轮机的排汽再加热。
9、混合式加热器在加热和冷凝过程中分离出来的不凝结气体和部分余汽被引至凝汽器或者专设的冷却器中。
10、高压加热器——在回热给水系统中位于给水泵至锅炉之间的加热器。
11、蒸汽冷却器的作用?作用(1)减少了回热加热器内汽水换热的不可逆损失;(2)提高加热器的出口水温;(3)减小加热器端差(4)改善回热系统热经济性;12、热力除氧器的原理:对除氧器中的水进行定压加热时,随着温度上升,水蒸发过程不断加深,水面上水蒸气的分压力逐渐加大,溶于水中的其它气体的分压力逐渐减少。
当水被加热到除氧器工作压力下的饱和温度时,水蒸气的分压力接近或等于水面上气体的全压力时,则水面上其他气体的分压力趋于零,水中也就不含其它气体。
因此除氧器不但除去了氧气,而且还除去了其它气体。
热力发电厂四个典型热力过程嘿,朋友们!咱今儿来聊聊热力发电厂那四个超有意思的典型热力过程呀!你想啊,这就好比一场精彩的演出,每个过程都是舞台上的重要角色呢!首先就是燃料燃烧,这就像是一场盛大的狂欢派对,燃料们在锅炉里尽情地燃烧自己,释放出巨大的能量,那热度,那激情,可不一般呐!就好像一群充满活力的舞者,尽情地跳动,把整个场面都烧热啦!然后呢,蒸汽产生啦!这蒸汽就像是舞台上升起的神奇烟雾,带着满满的能量和神秘。
它从那熊熊燃烧的火焰中诞生,袅袅升起,仿佛有了生命一般。
你说神奇不神奇?这可不是随随便便就能出现的,得经过前面那热烈的燃烧过程才行呢!接着呀,就是蒸汽做功啦!这就好比是大力士在展示自己的力量,推动着汽轮机飞速转动,那劲头,真带劲!把蒸汽的能量转化为机械能,让一切都动起来了,就像给整个工厂注入了强大的动力,这可太重要啦!最后呢,就是废热排放啦!哎呀呀,这就像是一场演出结束后,总得把那些用过的道具啊、垃圾啊清理掉一样。
虽然是最后的环节,但也不能小瞧呀,得把那些多余的热量妥善处理好,不然可会出乱子的哟!你看这四个热力过程,环环相扣,缺一不可呀!没有燃料燃烧,哪来的蒸汽;没有蒸汽,又哪来的做功;没有做功,那工厂还怎么运转;没有最后的废热排放,那不是乱套啦!就像咱过日子一样,每一步都得稳稳当当的,一个环节出问题,那可就麻烦咯!在热力发电厂里,这四个过程就像是四位默契的伙伴,共同协作,创造出源源不断的电能。
它们就像是一部精密的机器里的各个零件,各自发挥着作用,让整部机器顺利运转。
咱可得好好感谢它们呀,没有它们,咱的生活哪能这么亮堂堂的呢!所以说啊,这热力发电厂的四个典型热力过程可真是了不起呀!它们默默地工作着,为我们的生活带来光明和温暖。
我们在享受电带来的便利的时候,可别忘了这些背后的功臣们哟!它们虽然不显眼,但却是无比重要的存在呢!这就是热力发电厂的魅力所在,神奇而又不可或缺!。
对热力发电厂的认识和看法
热力发电厂是一种利用化石燃料(如煤、石油、天然气等)或可再生能源(如太阳能、风能等)产生热能,并将其转化为电能的工厂。
它是电力生产的重要组成部分,为人们的生活和工业生产提供了大量的电力资源。
热力发电厂的优点是能够大规模地产生电能,并且相对稳定可靠。
它可以通过调整燃料的供应来适应不同的负荷需求,保证电力供应的连续性和稳定性。
此外,热力发电厂还可以利用余热进行供暖,提高能源利用效率。
然而,热力发电厂也存在一些问题。
首先,它的燃料消耗量大,会产生大量的温室气体和其他污染物,对环境造成负面影响。
其次,热力发电厂的建设和运营成本较高,需要大量的资金和技术投入。
此外,热力发电厂还存在一定的安全风险,需要采取相应的措施来保障人员和设备的安全。
因此,对于热力发电厂,我们应该持谨慎的态度。
在建设和运营过程中,应该采取有效的环保措施,减少对环境的影响。
同时,也应该加强安全管理,确保人员和设备的安全。
此外,还应该不断探索和应用新的技术,提高能源利用效率,减少燃料消耗和污染物排放,推动电力行业的可持续发展。
热力发电厂的工作原理探讨热力发电厂是一种利用热能转化为电能的能源转换设备,其工作原理是基于热力学和热工学原理。
本文将从热力发电厂的基本原理、主要设备、工作流程以及发电效率等方面对热力发电厂的工作原理进行探讨。
一、热力发电厂的基本原理热力发电厂利用燃烧燃料或直接利用地热能源,产生高温高压的蒸汽或工质,通过蒸汽或工质驱动汽轮机或其他热机进行功的转换,进而驱动发电机产生电能。
二、热力发电厂的主要设备1. 燃烧设备:热力发电厂通常采用燃煤、燃油、燃气等燃料进行燃烧,产生高温高压的燃气或燃烧产物。
2. 锅炉:燃气或燃烧产物经过燃烧设备的燃烧后,会进入锅炉内,与锅炉内的水进行热交换,使水蒸发生成高温高压的蒸汽。
3. 汽轮机:蒸汽从锅炉中排出后,进入汽轮机,蒸汽的压力能够驱动汽轮机叶片转动,产生转动功。
4. 发电机:汽轮机驱动发电机转子旋转,通过电磁感应原理产生电流,进而产生电能。
5. 辅助设备:包括冷却水系统、给排水系统、烟气处理系统等,用于辅助电厂的正常运行和环境保护。
三、热力发电厂的工作流程1. 燃烧过程:燃料经过燃烧设备的燃烧产生高温高压的燃气或燃烧产物。
2. 热交换过程:燃气或燃烧产物进入锅炉,与锅炉内的水进行热交换,使水蒸发产生高温高压的蒸汽。
3. 功转换过程:蒸汽从锅炉中排出后,进入汽轮机,驱动汽轮机叶片转动,产生转动功。
4. 电能生成过程:汽轮机驱动发电机转子旋转,通过电磁感应产生电流,进而将机械能转化为电能。
5. 辅助过程:冷却水系统、给排水系统和烟气处理系统等辅助设备用于保证电厂的正常运行和环境保护。
四、热力发电厂的发电效率热力发电厂的发电效率是指单位热值的燃料输入与发电量之比。
影响热力发电厂发电效率的因素有燃料的热值、锅炉的效率、汽轮机和发电机的效率等。
热力发电厂发电效率的提高是节约能源和减少环境污染的重要手段。
总结:热力发电厂的工作原理是通过燃烧燃料或直接利用地热能源产生高温高压的蒸汽或工质,通过蒸汽或工质驱动汽轮机或其他热机进行功的转换,进而驱动发电机产生电能。
热力发电厂简介
热力发电厂是一种利用燃烧化石燃料或核能来产生热能,再通过蒸汽轮机转化为电能的工厂。
这种发电方式是目前世界上最常见的发电方式之一,其在全球范围内占据了重要的地位。
热力发电厂通常通过燃烧煤、天然气或核能来产生高温高压的蒸汽,然后利用蒸汽轮机将高温高压的蒸汽转化为机械能,再通过发电机将机械能转化为电能。
这种发电方式具有燃烧效率高、成本低、可靠性强等特点,因此在能源生产中占据了主导地位。
热力发电厂还可以利用余热发电,将废热通过热交换装置和蒸汽轮机转化为电能,提高了能源利用率。
此外,部分热力发电厂还可以利用温泉、地热等可再生能源来产生热能,进一步减少了环境污染和资源消耗。
总的来说,热力发电厂是以燃烧燃料或核能为动力,通过热能-机械能-电能转化过程产生电能的重要设施。
随着能源问题的日益凸显,热力发电厂的发展将继续占据重要地位,成为未来能源生产的主力军之一。
热力发电厂的生产过程1. 简介热力发电厂是利用燃烧燃料产生高温高压蒸汽,并通过蒸汽驱动涡轮发电机组转动产生电能的发电设备。
其生产过程通常包括燃料供应、燃烧过程、蒸汽发生过程、涡轮发电过程和余热利用等环节。
2. 燃料供应热力发电厂通常使用多种燃料,如煤炭、天然气、石油、生物质等。
这些燃料会经过处理后送入燃料储存区。
在生产过程中,根据需求,燃料通过输送设备(如皮带输送机、提升机等)被送入燃料库或燃料仓,待用于燃烧过程。
3. 燃烧过程燃料从燃料库或燃料仓进入锅炉,进行燃烧过程。
在锅炉内,燃料与空气充分混合后,通过点火器点火,燃烧释放热量。
烟气在锅炉内自底向上流动,与管道内的水接触进行换热,在此过程中烟气温度逐渐降低,转化为高温高压蒸汽。
4. 蒸汽发生过程蒸汽发生器接收燃烧过程中产生的高温高压烟气,并进一步将其转化为高温高压蒸汽。
该过程中,烟气通过与水相接触进行换热,将部分热量转移到水中,使其蒸发并转化为蒸汽。
蒸汽发生过程的关键设备是蒸汽锅炉,它通常由蒸汽发生器、过热器和再热器等组成,以提高蒸汽的温度和压力。
5. 涡轮发电过程生成的高温高压蒸汽进入涡轮机组,驱动涡轮机组转动,通过转子与定子之间的磁场相互作用,将机械能转化为电能。
涡轮机组通常由高压缸、中压缸和低压缸组成,以便在蒸汽压力的不同阶段对涡轮进行适当的能量提取和功率调节。
6. 余热利用在涡轮发电过程中,蒸汽在驱动涡轮旋转后会变为低压蒸汽,被冷凝成水。
然而,在冷凝过程中,蒸汽释放的大量热量并没有完全利用,因此一般还会安装余热回收系统。
该系统通过将冷凝后的水通过换热器与还未完全凝结的蒸汽进行换热,将余热传递给进入锅炉的冷凝水,从而提高锅炉的能效。
7. 结论热力发电厂的生产过程主要包括燃料供应、燃烧过程、蒸汽发生过程、涡轮发电过程和余热利用等环节。
通过这些环节的协调和配合,热力发电厂能够高效地将燃料的化学能转化为电能。
该过程不仅为社会提供了丰富的电力资源,还起到了环境保护和能源节约的作用。
1,可靠性管理热力发电厂可靠性是指在预定时间内合规定的技术条件下,保持系统设备,部件原件付出额定电力能力,并以量化的一系列可靠性指标来实现.2 寿命管理以设备运行状态及技术材料的长期连续的监督为基础,计算其寿命损耗,并适时的进行各种探伤检查全面掌握设备技术状况及时维修或更换,使设备在使用年限内发挥最佳效益,或延长寿命.3热量法热量法以热效率或热损失率来衡量能量转换过程的热经济性.5 标准煤耗率其表明一个电厂范围内的能量转换过程的技术完善程度,也反映其管理水平和运行水平,同时也是厂际,班组间的经济评比,考核的重要指标之一。
7 临界状态点参数:压力22.115Mp温度374.15°C当水的状态参数达到临界点时在饱和水与饱和蒸汽之间不在有汽水共存的两相区存在。
8 火电厂冷端火电厂的蒸汽终参数即汽轮机的排气压力Pc,不仅与凝气设备有关,还与汽轮机的低压部分以及供水冷却系统有关总称为火电厂的冷端。
9冷却倍率m凝汽器的冷却水量与汽轮机的最大凝气流量之比Gc=mDcDc为汽轮机的最大凝汽流量Gc为冷却水量12 焓降分配法将每一级加热器内水的焓升取为前一级至本级的蒸汽在汽轮机中的焓降。
15 热力系统热力系统是热力发电厂实现热工转换热力部分的工艺系统热力系统图用来反映热力发电厂热力系统的图19表面式加热器端差是指出口端差θ,即加热器汽侧压力下的饱和水温t sj 与出口水温t wj 之间的差值。
θ=t sj—t wj称上端差。
疏水冷却器端差则是指入口端差θ。
它是指离开疏水冷却器的疏水温度t′sj与进口水温t wj+1间的差值θ=t′sj—t wj+1 又称下端差。
20 锅炉排污率以锅炉排污量Db1与锅炉额定蒸发量Db的百分比24 什么是热负荷由热电厂通过热网向热用户供应的不同用途的热量称为热负荷分为生产热负荷,热水供应热负荷,采暖及通风热负荷25 发电厂原则性热力系统是将锅炉设备,汽轮机设备以及相关的辅助设备作为整体的全厂性的热力系统。
热力发电厂是将燃料的化学能转化为热能,热能转化为机械能,最终将机械能转化为电能的工厂,也即将自然界的一次能源转化为洁净、方便的二次能源的工厂。
(一)常规火力发电厂由常规煤粉炉、凝汽式汽轮发电机组为主要设备组建的发电厂,这是火力发电厂的基本类型。
它由热力系统,燃料供应系统,除灰系统,化学水处理系统,供水系统,电气系统,热工控制系统,附属生产系统组成。
(1)热力系统:是常规火电厂实现热功转换热力部分的工艺系统。
它通过热力管道及阀门将各热力设备有机地联系起来,以在各种工况下能安全经济、连续地将燃料的能量转换成机械能。
联系热力设备的汽水管道有主蒸汽管道、主给水管道、再热蒸汽管道、旁路蒸汽管道、主凝结水管道、抽汽管道、低压给水管道、辅助蒸汽管道、轴封及门杆漏汽管道、锅炉排污管道、加热器疏水管道、排汽管道等。
热力系统除联系热力设备的汽水管道外,还有煤粉制备系统。
它是为提高锅炉效率和经济性能,将原煤碾磨成细粉然后送进锅炉炉膛进行悬浮燃烧所需设备和有关连接管道的组合,常简称为制粉系统。
(2)燃料供应系统:是接受燃料、储存、并向锅炉输送的工艺系统,有输煤系统和点火油系统。
煤的最主要的运输方式是火车,沿海、沿江电厂也多采用船运。
当由铁路来煤时,卸煤机械大型电厂选用自卸式底开车、翻车机,中、小型电厂选用螺旋卸煤机、装卸桥。
贮煤设施除贮煤场外,尚有干煤棚和贮煤筒仓,煤场堆取设备一般选用悬臂式斗轮堆取料机或门式斗轮堆取料机。
皮带机向锅炉房输煤是基本的上煤方式。
点火油系统除点火时投入运行外,在锅炉低负荷时投油以保证其稳定燃烧。
(3)除灰系统:是将煤燃烧后产生的灰、渣运出、堆放的系统。
除灰系统的形式是选厂阶段、可行性研究阶段考虑方案最多的专业之一。
系统的选择要根据灰渣量,灰渣的化学、物理特性,除尘器型式,排渣装置形式,冲灰水质、水量,发电厂与贮灰场的距离、高差、地形、地质和气象等条件,通过技术经济比较确定。
除灰系统按输送介质分为水力除灰和气力除灰系统。
1.热量法和熵方法的实质是什么?热量法:以燃料化学能从数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性定量分析。
熵方法或火用方法:以燃料化学能的做功能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性定性分析。
2.电厂不可逆损失的种类及提高热经济性的措施?
有温差换热过程的做功能力损失。
如电厂中的锅炉、各种加热器、冷却器等。
工质节流过程的做功能力损失、工质膨胀做功(或压缩)过程的做功能力损失。
减少冷源损失;(热量法,第一定律)减少锅炉传热温差,提高锅炉的给水温度,从而降低温差传热而产生的不可逆传热损失。
(做功能力损失法,第二定律)具体方法:采用回热、再热、热电联产等来提高发电厂的热经济性
3.提高蒸汽初参数的目的及限制条件?提高蒸汽初温受到的限制,提高蒸汽初温受动力设备材料强度的限制。
提高蒸汽初压受到的限制。
提高蒸汽初压力主要受到汽轮机本级叶片容许的最大湿度的限制。
1.
4.说明大机组采用高参数,小机组采用低参数的理由?
对于大容量汽轮机,当蒸汽初参数提高时,相对内效率可能降低的数值不大,可以提高设备热经济性。
对于小容量汽轮机,由于它的蒸汽容积流量小,当提高蒸汽初参数时,其相对内效率的降低会超过此时循环热效效率的提高,设备的热经济性降低,而且还会使设备复杂,造价高。
因此,汽轮机组的进汽参数与容量的配合必然是“高参数必须是大容量”。
5.降低终参数的目的及限制条件?(1)降低蒸汽终参数Pc将便循环放热过程的平均温度降低
理想循环热效率将随着排汽压力Pc的降低而增加。
(2)降低排汽压力Pc,使汽轮机比功Wi增加,理想循环热效率增加。
降低蒸汽终参数的极限:理论极限——排汽的饱和温度必须等于或大于自然水温,绝不可能低于这个温度;技术极限——冷却水在凝汽器内冷却汽轮机排汽的过程中,由于冷却蒸汽的凝汽器冷却面积不可能无穷大的缘故,排汽的饱和温度应在自然水(冷却水)水温的基础上加上冷却水温升和传热端差。