圆锥曲线中的面积最值问题
- 格式:doc
- 大小:192.50 KB
- 文档页数:2
2022年高考数学总复习第64讲:圆锥曲线中的范围、最值问题考点1 范围问题求参数范围的4种方法(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解.(2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. (3)判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围.(4)数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.(2019·山师附中模拟)已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l 与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围.[解] (1)联立方程x 23+y 22=1和y =kx +m , 得(2+3k 2)x 2+6kmx +3m 2-6=0, 所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0, 所以m 2<2+3k 2,所以2+3k 2>3,即k 2>13, 解得k >33或k <-33.所以实数k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞.(2)设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2.设直线OA ,OB 的斜率分别为k 1,k 2, 因为直线OA ,AB ,OB 的斜率成等比数列,所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x2=k 2(m ≠0),化简得2+3k 2=6k 2,即k 2=23.因为|AB |=1+k 2|x 1-x 2|=53⎝ ⎛⎭⎪⎫6-32m 2, 点O 到直线l 的距离h =|m |1+k2=35|m |,所以S △OAB =12|AB |·h =66·32m 2⎝ ⎛⎭⎪⎫6-32m 2≤66×32m 2+⎝ ⎛⎭⎪⎫6-32m 22=62, 当m =±2时,直线OA 或OB 的斜率不存在,等号取不到,所以△OAB 的面积的取值范围为⎝⎛⎭⎪⎫0,62.本例求解采用了学生熟知的两种方法:不等式法和判别式法,利用判别式构建目标不等式的核心是抓住直线与圆锥曲线的位置关系和判别式Δ的关系建立目标不等式.[教师备选例题](2019·江南十校联考)已知右焦点为F 2(c ,0)的椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.[解] (1)∵椭圆C 过点⎝ ⎛⎭⎪⎫1,32,∴1a 2+94b 2=1,①∵椭圆C 关于直线x =c 对称的图形过坐标原点, ∴a =2c ,∵a 2=b 2+c 2,∴b 2=34a 2,② 由①②得a 2=4,b 2=3,1.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.[解] (1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴. (2)由(1)可知⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 2, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0). 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324()y 20-4x 032.因为x 20+y 24=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 2.已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的焦距为4,且过点(2,-2). (1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)椭圆C :y 2a 2+x 2b 2=1(a >b >0)的焦距是4,所以焦点坐标是(0,-2),(0,2),2a =2+0+2+(2+2)2=42, 所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1. (2)若直线l 垂直于x 轴,则点E (0,22),F (0,-22),OE →·OF →=-8. 若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2), 将直线l 的方程代入椭圆C 的方程得到: (2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,所以OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8, 因为0<202+k 2≤10,所以-8<OE →·OF →≤2, 综上所述,OE →·OF →的取值范围是[-8,2]. 考点2 最值问题圆锥曲线中最值问题的解决方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.利用基本不等式求最值 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.[解] (1)由题意,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝ ⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20 )x 20+4 =x 202+8x 20+4(0<x 20≤4).因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.[解] (1)设F (c ,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1, 得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+14k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12·d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t ≤1.当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以当△OPQ 的面积最大时,l 的方程为2y ±7x +4=0.利用函数性质求最值在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO |=|AF |=32.(1)求C 的方程;(2)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.[解] (1)∵点A 在C 上,|AO |=|AF |=32,∴p 4+p 2=32,∴p =2,∴C 的方程为x 2=4y .(2)设直线方程为y =kx +b ,代入抛物线方程,可得x 2-4kx -4b =0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b , ∴y 1+y 2=4k 2+2b ,∵线段PQ 的中点的纵坐标为1,∴2k 2+b =1,△OPQ 的面积S =12·b ·16k 2+16b =b 2+2b =2·b 3+b 2(0<b ≤1), 设y =b 3+b 2,y ′=3b 2+2b >0,故函数单调递增, ∴b =1时,△OPQ 的面积的最大值为2.若题目中的条件和要求的结论能体现一种明确的函数关系,则可先建立目标函数,然后根据其结构特征,构建函数模型求最值,一般情况下,可以构建二次型函数、双曲线型函数、多项式型函数等.[教师备选例题]如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 点坐标.[解] (1)由抛物线的性质可得:p2=1,∴p =2, ∴抛物线的准线方程为x =-1;(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ),令y A =2t ,t ≠0,则x A =t 2,由于直线AB 过F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得:y 2-2(t 2-1)ty -4=0,∴2ty B =-4,即y B =-2t ,∴B (1t 2,-2t ),又x G =13(x A +x B +x C ),y G =13(y A +y B +y C ),重心在x 轴上,∴2t -2t +y C =0, ∴C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0,∴直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0), ∵Q 在焦点F 的右侧,∴t 2>2, ∴S 1S 2=12|FG |·|y A |12|QG |·|y C |=|2t 4-5t 2+23t 2|·|2t ||t 2-1-2t 4-2t 2+23t 2|·|2t -2t |=2t 4-t 2t 4-1=2-t 2-2t 4-1,令m =t 2-2,则m >0, S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12m ·3m +4=1+32,∴当m =3时,S 1S 2取得最小值为1+32,此时G (2,0).已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.[解] (1)依题意知F (1,0),设直线AB 的方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2), 所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2. ② 联立①和②,消去y 1,y 2,得m =±24.所以直线AB的斜率是±2 2.(2)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AO B.因为2S△AOB =2·12·|OF|·|y1-y2|=(y1+y2)2-4y1y2=41+m2,所以当m=0时,四边形OACB的面积最小,最小值是4.。
利用均值不等式求圆锥曲线中的最值一、考情分析与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受命题者青睐,其中利用均值不等式求圆锥曲线中的最值是一类常见问题,求解时常涉及函数与方程、化归转化等数学思想.二、解题秘籍(一)利用均值不等式求圆锥曲线中最值的方法与策略利用均值不等式求圆锥曲线中的最值,一是直接根据圆锥曲线中的和(积)为定值的性质求积(和)的最大(小)值,如根据椭圆中PF 1 +PF 2 为定值,可求PF 1 PF 2 的最大值,二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用基本不等式求最值,求解这类问题的核心是建立参数之间的等量关系.【例1】(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆Γ:x 2a 2+y 2b2=1a >b >0 ,F 1,F 2是椭圆Γ的左、右焦点,点A 1,32 在椭圆Γ上,点P 4,0 在椭圆Γ外,且PF 2 =4-3.(1)求椭圆Γ的方程;(2)若B 1,-32,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记△OMN ,△PMN 的面积分别为S 1,S 2,求S 21-S 1S 2+S 22的最小值.【解析】(1)因为点A 1,32 在椭圆Γ上,所以1a 2+34b 2=1,①因为点P 4,0 在椭圆Γ外,且PF 2 =4-3,所以c =3,即a 2-b 2=c 2=3,②由①②解得a 2=4,b 2=1,故椭圆Γ的方程为x 24+y 2=1.(2)设点M x 1,y 1 ,N x 2,y 2 ,设直线MN :x =my +t ,由椭圆性质以及点C 的横坐标大于1可知,t >2,将直线MN 代入方程x 24+y 2=1并化简可得,my +t 2+4y 2-4=0,即m 2+4 y 2+2mty +t 2-4=0,因为直线l 与椭圆有且仅有一个交点,所以Δ=4m 2t 2-4m 2+4 t 2-4 =0,即t 2=m 2+4.直线AP 的方程为:x =4-23y ;直线BP 的方程为l BP :x =4+23y ,联立方程x =my +t ,x =4-23y ,得y 1=4-t 23+m ,同理得y 2=t -423-m,所以y 1-y 2=4-t -43 m 2-12=43t +4,所以S 1=12t y 1-y 2 ,S 2=124-t y 1-y 2 ,所以S 21-S 1S 2+S 22=14t 2y 1-y 2 2-t 4-t 4y 1-y 2 2+14(4-t )2y 1-y 22=14y 1-y 2 2t 2-4t +t 2+16-8t +t 2 =14×48t +4 23t 2-12t +16 =36-489t +8 t 2+8t +16,令9t +8=λλ>26 ,则S 21-S 1S 2+S 22=36-48×81λ+282λ+56≥97,当且仅当λ=28,即t =209时,不等式取等号,故当t =209时,S 21-S 1S 2+S 22取得最小值97.【例2】已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为32,且过点1,2 .(1)求椭圆C 的方程;(2)若直线l 被圆x 2+y 2=a 2截得的弦长为26,设直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,求△OAB 面积的最大值.【解析】(1)e =32,b a =a 2-c 2a =1-e 2=12,由椭圆过点1,2 得4a 2+1b 2=1,解得a 2=8,b 2=2,∴椭圆C 的方程为y 28+x 22=1.(2)直线l 被圆x 2+y 2=8截得的弦长为26,则圆心到直线l 的距离d 满足6 2=22 2-d 2,解得d =2,当l 的斜率存在时,设l :y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,圆心为原点则有d =m 1+k 2=2,∴m 2=2k 2+1.将l 方程代入椭圆方程中整理得:k 2+4 x 2+2mkx +m 2-8=0,∴x 1+x 2=-2mk k 2+4,x 1x 2=m 2-8k 2+4,AB =k 2+1⋅x 1+x 2 2-4x 1x 2=k 2+1⋅42k 2+8-m 2k 2+4=46⋅k 2+1k 2+4,∴S △OAB =12AB d =43×1k 2+1+3k 2+1≤2,当且仅当k 2+1=3k 2+1,即k =±2时取等号.当l 的斜率不存在时,则l :x =±2,过椭圆的左、右顶点,此时直线l 与椭圆只有一个交点,不符合题意.∴△OAB 面积的最大值为2.(二)把距离或长度用单变量表示,然后利用均值不等式求最值.此类问题通常利用两点间距离或弦长公式,把距离或长度表示成关于直线斜率、截距或点的横坐标(纵坐标)的函数,然后利用均值不等式求最值.【例3】已知圆C 过定点A (0,p )(p >0),圆心C 在抛物线x 2=2py 上运动,若MN 为圆C 在x 轴上截得的弦,设|AM |=m ,|AN |=n ,∠MAN =θ.(1)当点C 运动时,|MN |是否变化?试证明你的结论;(2)求m n +n m的最大值.【解析】(1)设C x 0,x 202p ,则AC =x 20+x 202p -p 2,故圆C 的方程x -x 0 2+y -x 202p2=x 20+x 202p -p2 ,令y =0有x -x 0 2+x 404p 2=x 20+x 404p 2-x 20+p 2,故x -x 0 2=p 2,解得x 1=x 0+p ,x 2=x 0-p ,故MN =x 1-x 2 =2p 不变化,为定值(2)由(1)不妨设M x 0-p ,0 ,N x 0+p ,0 ,故m =x 0-p 2+p 2,n =x 0+p 2+p 2,故m n +nm=m 2+n 2mn =x 0-p 2+p 2+x 0+p 2+p 2x 0-p 2+p 2x 0+p 2+p 2=2x 20+4p 2x 20+2p 2 2-4p 2x 2=2x 20+2p 2 x 40+4p 4=21+4x 20p 2x 40+4p 4=21+4p 2x 20+4p 4x 2≤21+4p 22x 20⋅4p 4x 20=22,当且仅当x 2=4p 4x 20,即x 0=±2p 时取等号.故m n +nm 的最大值为22(三)把面积表示为单变量函数,然后利用基本不等式求值该类问题求解的基本思路是把三角形面积表示成关于直线斜率与截距的函数,然后利用均值不等式求最值.【例4】(2022届陕西省汉中市高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1(-3,0),F 2(3,0)且经过点P (3,2).(1)求椭圆C 的标准方程;(2)若斜率为1的直线与椭圆C 交于A ,B 两点,求△AOB 面积的最大值(O 为坐标原点)【解析】(1)由椭圆的定义,可知2a =PF 1 +PF 2 =(23)2+4+2=4+2=6解得a =3,又b 2=a 2-(3)2=6.∴椭圆C 的标准方程为x 29+y 26=1.(2)设直线l 的方程为y =x +m ,联立椭圆方程,得5x 2+6mx +3m 2-18=0,△=36m 2-60m 2+360>0,得-15<m <15设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-6m 5,x 1⋅x 2=3m 2-185,∴|AB |=2⋅x 1+x 2 2-4x 1⋅x 2=2⋅36m 225-12m 2-725=435⋅15-m 2,点O (0,0)到直线l :x +y -m =0的距离d =|m |2,∴S △AOB =12|AB |⋅d =12×435×15-m 2×|m |2=6515-m 2 ⋅m2≤6515-m 2+m 22 2=65×152=362.当且仅当15-m 2=m 2,(-15<m <15),即m 2=152,m =±302时取等号;∴△AOB 面积的最大值为362.(四)把面积用双变量表示,然后利用均值不等式求最值求解该类问题通常先建立两个变量之间的等量关系,然后利用和或积为定值,借助均值不等式求最值.【例5】(2022届湖南省长沙市高三上学期11月月考)已知椭圆x 2a 2+y 2b2=1的离心率为e =32,Q 2,22 为椭圆上一点.直线l 不经过原点O ,且与椭圆交于A x 1,y 1 ,B x 2,y 2 两点.(1)求椭圆的方程;(2)求△OAB 面积的最大值,并求当△OAB 面积最大时AB 的取值范围.【解析】(1)∵e =c a =32,a 2=b 2+c 2,∴a 2=43c 2,b 2=c 23,∴3x 24c 2+3y 2c 2=1.将Q 2,22 代入得32c 2+32c2=1⇒c =3⇒a 2=4,b 2=1,∴椭圆方程为x24+y 2=1.(2)设l :x =ty +m m ≠0 ,与椭圆联立得:t 2+4 y 2+2tmy +m 2-4=0,所以y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4,Δ=16t 2+4-m 2 >0.则S △OAB =12m ⋅y 1-y 2 =2m t 2+4-m 2t 2+4=2m 2t 2+41-m 2t 2+4 ,因为t 2+4-m 2>0,故0<m 2t 2+4<1,所以2m 2t 2+41-m 2t 2+4 ≤m 2t 2+4+1-m 2t 2+4 =1当且仅当m 2t 2+4=12时取等号,此时Δ=16m 2>0,符合题意.所以S △OAB ≤1,即△OAB 面积的最大值为1.当t 不存在时,设l :y =h h ≠0 ,则S △OAB =21-h 2⋅h ≤1,当h =22时取等号.综上,△OAB 面积的最大值为1当△OAB 面积最大时:若t 存在,则此时t 2=2m 2-4≥0⇒m 2≥2,则AB =1+t 2⋅4t 2+4-m 2t 2+4=22-3m 2∈2,22 ,若t 不存在,则此时AB =41-h 2=22.综上,AB ∈2,22 ..(五)与斜率有关的最值问题与斜率有关的最值问题的思路一是设出动点.是利用斜率定义表示出斜率,然后利用函数或不等式知识求解,二是设出直线的点斜式或斜截式方程,利用根与系数之间的关系或题中条件整理关于斜率的等式或不等式求解.【例6】(2022届福建省福州第十八中学高三上学期考试)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ =9QF,求直线OQ 斜率的最大值.【解析】(1)抛物线C :y 2=2px (p >0)的焦点F p 2,0 ,准线方程为x =-p2,由题意,该抛物线焦点到准线的距离为p 2--p2=p =2,所以该抛物线的方程为y 2=4x ;(2)设Q x 0,y 0 ,则PQ =9QF=9-9x 0,-9y 0 ,所以P 10x 0-9,10y 0 ,由P 在抛物线上可得10y 0 2=410x 0-9 ,即x 0=25y 20+910,据此整理可得点Q 的轨迹方程为y 2=25x -925,所以直线OQ 的斜率k OQ =y 0x 0=y 025y 20+910=10y 025y 20+9,当y 0=0时,k OQ =0;当y 0≠0时,k OQ =1025y 0+9y 0,当y 0>0时,因为25y 0+9y 0≥225y 0⋅9y 0=30,此时0<k OQ ≤13,当且仅当25y 0=9y 0,即y 0=35时,等号成立;当y 0<0时,k OQ <0;综上,直线OQ 的斜率的最大值为13.(六)与数量积有关的最值问题求解与数量积有关的最值问题,通常利用数量积的定义或坐标运算,把数量积表示成某个变量的函数,然后再利用均值不等式求最值.【例7】设椭圆x 25+y 24=1的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA ⋅PB的最小值.【解析】设椭圆的两切线为l 1,l 2.①当l 1⊥x 轴或l 1⎳x 轴时,对应l 2⎳x 轴或l 2⊥x 轴,可知切点为;②当l 1与x 轴不垂直且不平行时,x ≠±5,设l 1的斜率为k ,则k ≠0,l 2的斜率为-1k,并设l 1,l 2 的交点为x 0,y 0 ,则l 1的方程为y -y 0=k x -x 0 ,联立x 25+y 24=1,得:5k 2+4 x 2+10y 0-kx 0 kx +5y 0-k 0x 0 2-20=0 ,∵直线与椭圆相切,∴Δ=0,得5y 0-kx 0 2k 2-5k 2+4 y 0-kx 0 2-4 =0,∴x 20-5 k 2-2x 0y 0k +y 20-4=0,∴k 是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的一个根,同理-1k是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的另一个根,∴k ⋅-1k =y 20-4x 20-5得x 20+y 20=9,其中x ≠±5,∴交点的轨迹方程为:x 2+y 2=9x ≠±5 ,∵±5,±2 也满足上式;综上知:轨迹C 方程为x 2+y 2=9;设PA =PB =x ,∠APB =θ,则在△AOB 与△APB 中应用余弦定理知,AB 2=OA 2+OB 2-2OA ⋅OB ⋅cos ∠AOB =PA 2+PB 2-2PA ⋅PB ⋅cos ∠APB ,即32+32-2⋅3⋅3cos 180°-θ =x 2+x 2-2x ⋅x ⋅cos θ ,即x 2=91+cos θ1-cos θ,PA ⋅PB =PA ⋅PB cos ∠APB =x ⋅x cos θ=91+cos θ cos θ1-cos θ,令t =1-cos θ∈0,2 ,则cos θ=1-t ,PA ⋅PB =92-t 1-t t =9t 2-3t +2 t =9⋅t +2t-3 ≥9⋅2t ⋅2t -3 =922-3 ,当且仅当t =2t,即t =2时,PA ⋅PB 取得最小922-3 ;综上,PA ⋅PB 的最小为922-3 .三、跟踪检测1.(2023届山东省青岛市高三上学期检测)在平面直角坐标系Oxy 中,动圆P 与圆C 1:x 2+y 2+2x -454=0内切,且与圆C 2:x 2+y 2-2x +34=0外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心C 2且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接AC 2交轨迹E 于点B .(i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心C 1的直线交轨迹E 于D ,G 两个不同的点,且AB ⊥DG ,求四边形ADBG 面积的最小值.【解析】(1)设动圆P 的半径为R ,圆心P 的坐标为x ,y由题意可知:圆C 1的圆心为C 1-1,0 ,半径为72;圆C 2的圆心为C 21,0 ,半径为12.∵动圆P 与圆C 1内切,且与圆C 2外切,∴PC 1 =72-RPC 2 =12+R⇒PC 1 +PC 2 =4>C 1C 2 =2∴动圆P 的圆心的轨迹E 是以C 1,C 2为焦点的椭圆,设其方程为:x 2a 2+y 2b2=1(a >b >0),其中2a =4,2c =2,∴a =2,b 2=3从而轨迹E 的方程为:x 24+y 23=1(2)(i )设直线AB 的方程为y =k x -1 k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,则M x 1,-y 1 由y =k x -1x 24+y 23=1可得:4k 2+3 x 2-8k 2x +4k 2-12=0∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3直线BM 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,令y =0可得N 点的横坐标为:x N =x 2-x 1y 2+y 1y 1+x 1=k x 2-x 1 x 1-1 k x 1+x 2-2+x 1=2x 1x 2-x 1+x 2 x 1+x 2-2=2×4k 2-124k 2+3-8k 24k 2+38k 24k 2+3-2=4∴N 为一个定点,其坐标为4,0(ii )根据(i )可进一步求得:AB =1+k 2x 2-x 1 =1+k 2×x 2+x 12-4x 1x 2=1+k 2×8k 24k 2+3 2-4×4k 2-124k 2+3=12k 2+1 4k 2+3.∵AB ⊥DG ,∴k DG =-1k,则DG =12k 2+13k 2+4∵AB ⊥DG ,∴四边形ADBG面积S=12AB×DG=12×12k2+14k2+3×12k2+13k2+4=72k2+124k2+33k2+4(法一)S=72k2+124k2+33k2+4≥72k2+124k2+3+3k2+422=28849等号当且仅当4k2+3=3k2+4时取,即k=±1时,S min=288 49(法二)令k2+1=t,∵k≠0,∴t>1,则S=72t212t2+t-1=72-1t2+1t+12=72-1t-122+494当1t=12,即k=±1时,S min=288492.已知椭圆x2a2+y2b2=1(a>b>0)经过点3,-32,且椭圆的离心率e=12,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,B及C、D.(1)求椭圆的方程;(2)求证:1|AB|+1|CD|为定值;(3)求|AB|+916|CD|的最小值.【解析】(1)由e=ca=12,得c2a2=14,∴a2=4c2=4(a2-b2),∴3a2=4b2.①,由椭圆过点3,-3 2知,3a2+34b2=1②.联立①②式解得a2=4,b2=3.故椭圆的方程是x24+y23=1.(2)1|AB|+1|CD|为定值712.证明:椭圆的右焦点为F(1,0),分两种情况.1°不妨设当AB的斜率不存在时,AB:x=1,则CD:y=0.此时|AB|=2b2a=3,|CD|=2a=4,1|AB|+1|CD|=712;2°当直线AB的斜率存在时,设AB:y=k(x-1)(k≠0),则CD:y=-1k(x-1).又设点A(x1,y1),B(x2,y2).联立方程组y=k(x-1)3x2+4y2=12 ,消去y并化简得(4k2+3)x2-8k2x+4k2-12=0,∴x1+x2=8k24k2+3,x1∙x2=4k2-124k2+3,∴|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2∙(x1+x2)2-4x1x2=1+k2∙64k4-16(k2-3)(4k2+3)(4k2+3)2=12(k2+1)4k2+3,由题知,直线CD的斜率为-1 k,同理可得|CD |=12(1+k 2)4+3k 2所以1|AB |+1|CD |=7k 2+712(k 2+1)=712为定值.(3)解:由(2)知1|AB |+1|CD |=712,∴|AB |+916|CD |=127|AB |+916|CD | 1|AB |+1|CD |=1272516+916|CD ||AB |+|AB ||CD |≥1272516+2916|CD ||AB |×|AB ||CD |=214,当且仅当916|CD ||AB |=|AB ||CD |,即|AB |=34|CD |,即|AB |=3,|CD |=4时取等号,∴|AB |+916|CD |的最小值为214.3.(2023届四川省隆昌市第一中学高三上学期考试)已知离心率为12的椭圆C 1:x 2a 2+y 2b2=1a >b >0 过点1,32,抛物线C 2:y 2=2px p >0 .(1)若抛物线C 2的焦点恰为椭圆C 1的右顶点,求抛物线方程;(2)若椭圆C 1与抛物线C 2在第一象限的交点为A ,过A 但不经过原点的直线l 交椭圆C 1于B ,交抛物线C 2于M ,且AM =MB,求p 的最大值,并求出此时直线l 的斜率.【解析】(1)由c a =12设a 2=4c 2,b 2=3c 2,所以将点1,32 代入椭圆C 1:x 24c 2+y 23c 2=1得:椭圆C 1:x 24+y 23=1,所以C 1的右顶点为2,0 ,依题意p 2=2,所以抛物线C 2方程为y 2=8x ;(2)设直线l 的方程为x =my +t t ≠0 ,A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 ,联立x =my +t x 24+y 23=1,消去x 整理得3m 2+4 y 2+6mty +3t 2-12=0,显然Δ>0则y 1+y 2=-6km 3m 2+4,所以y 0=y 1+y 22=-3km 3m 2+4,x 0=my 0+t =4t3m 2+4;联立x =my +t y 2=2px,消去x 整理得y 2-2pmy -2pt =0,∴Δ>0,且y 1y 0=-2pt∴y 1=-2pty 0=2p 3m 2+4 3m由抛物线方程得x 1=y 212p =2p 3m 2+4 29m 2,所以点坐标为A 2p 3m 2+4 29m 2,2p 3m 2+4 3m,将点A 代入椭圆方程3x 2+4y 2=12有:32p 3m 2+429m 22+42p 3m 2+4 3m 2=12整理得:27p2=133m +4m 4+43m +4m 2,令t =3m +4m2,则t ≥23m ⋅4m 2=48,当且仅当3m =4m即m =43,即直线l 的斜率k =32时t ≥48取等号,所以27p2=13t 2+4t ≥20×48,∴p 2≤9320,∴p ≤3540,即p 的最大值为3540,此时直线l 的斜率为32.4.平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为26,过焦点的最短弦长为 2.(1)求椭圆的标准方程;(2)斜率为12的直线与椭圆交于A ,B 两点,P 为椭圆上异于A ,B 的点,求△PAB 的面积的最大值.【解析】(1)由题意得2c =26,2b 2a =2a 2-b 2=c 2⇒a 2=8,b 2=2,故椭圆的标准方程为x 28+y 22=1;(2)设直线AB 的方程为y =12x +m ,则x 28+y 22=1y =12x +m⇒x 2+2mx +2m 2-4=0,,Δ=16-4m 2>0⇒-2<m <2,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=-2m x 1x 2=2m 2-4AB =16-4m 2×1+14=5×4-m 2,当-2<m ≤0时,当P 到AB 的距离最大时,点P 在第二象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n >0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =2,此时P (-2,1),P 到AB 的距离最大为d =m -21+14=2m -2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m -2 5=4-m 2×m -2 ,则S 2=(2+m )(2-m )3=13(6+3m )(2-m )3≤13×6+3m +6-3m 4 4=27,故S ≤33,当且仅当m =-1时取等号. 当0<m <2时,当P 到AB 的距离最大时,点P 在第四象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n <0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =-2,此时P (2,-1),P 到AB 的距离最大为d =m +21+14=2m +2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m +2 5=4-m 2×m +2 ,则S 2=(2-m )(2+m )3=13(6-3m )(2+m )3≤13×6-3m +6+3m 4 4=27,故S ≤33,当且仅当m =1时取等号. 所以△PAB 的面积的最大值为33.5.平面直角坐标系中,过点(1,0)的圆C 与直线x =-1相切.圆心C 的轨迹记为曲线Γ.(1)求曲线Γ的方程;(2)设A ,B 为曲线Γ上的两点,记AB 中点为M ,过M 作AB 的垂线交x 轴于N .①求x N -x M ;②当AB =10时,求x N 的最大值.【解析】(1)设C (x ,y ),由题意,则C 到(1,0)的距离等于C 到x =-1的距离,故C 的轨迹为抛物线y 2=4x ;(2)设A y 124,y 1 ,B y 224,y 2 ,则M y 12+y 228,y 1+y 22,①k AB =y 1-y 2y 124-y 224=4y 1+y 2故k MN=-y 1+y 24,MN :y -y 1+y 22=-y 1+y 24x -y 12+y 228,令y =0,得0-y 1+y 22=-y 1+y 24x -y 12+y 228,故x N =y 12+y 228+2,即xN -x M =2,②由题意y 124-y 2242+(y 1-y 2)2=10,即40=(y 1-y 2)2[(y 1+y 2)2+16]≤(y 1-y 2)2+(y 1+y 2)2+162=y 12+y 22+8,故x N =y 12+y 228+2≥6.6.已知点F 1、F 2分别为椭圆Γ:x 22+y 2=1的左、右焦点,直线l :y =kx +t 与椭圆Γ有且仅有一个公共点,直线F 1M ⊥l ,F 2N ⊥l ,垂足分别为点M 、N .(1)求证:t 2=2k 2+1;(2)求证:F 1M ⋅F 2N为定值,并求出该定值;(3)求OM +ON ⋅ OM -ON的最大值.【解析】(1)联立l :y =kx +t 与Γ:x 22+y 2=1得:2k 2+1 x 2+4ktx +2t 2-2=0,由直线与椭圆有一个公共点可知:Δ=4kt 2-42k 2+1 2t 2-2 =0,化简得:t 2=2k 2+1;(2)由题意得:F 1-1,0 ,F 21,0 ,因为F 1M ⊥l ,F 2N ⊥l ,所以F 1M ∥F 2N ,故F 1M ⋅F 2N =F 1M ⋅F 2N ,其中F 1M =-k +tk 2+1,F 2N =k +tk 2+1,所以F 1M ⋅F 2N =F 1M ⋅F 2N =-k +t k 2+1⋅k +t k 2+1=t 2-k 2 k 2+1=2k 2+1-k 2k 2+1=1,F 1M ⋅F 2N为定值,该定值为1;(3)OM +ON =OF 1 +F 1M +OF 2 +F 2N =F 1M +F 2N =F 1M +F 2N ,由题意得:点F 1,F 2在直线l 的同侧,所以F 1M +F 2N =-k +t k 2+1+k +t k 2+1=2t k 2+1,OM -ON =NM =F 1F 2 ⋅MNMN=F 1F 2 cos α=2k 2+1,(其中α为F 1F 2 ,MN 的夹角),由此可知:OM +ON ⋅ OM -ON =4t k 2+1=8t t 2+1=8t +1t ≤82t ⋅1t=4,当且仅当t =1t即t =1,k =0时,等号成立,所以OM +ON ⋅ OM -ON 的最大值为4.7.(2022届广东省佛山市高三上学期12月模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =22,且点P 2,1 在椭圆C 上.(1)求椭圆C 的方程;(2)若点A ,B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上.求△AOB 面积的最大值.【解析】(1)离心率e =c a =22,将P 代入椭圆方程,可得4a 2+1b2=1,又a 2-b 2=c 2 ,∴联立上述方程,可得:a =6, b =c =3,∴椭圆方程为x 26+y 23=1;(2)设A x 1,y 1 ,B x 2,y 2 可得:x 21+2y 21=6,x 22+2y 22=6,相减可得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,由题意,k OM =k OP =12,即y 1+y 2x 1+x 2=12,∴直线AB 的斜率y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12×2=-1,故可设直线AB 为y =-x +t ,代入椭圆方程可得:3x 2-4tx +2t 2-6=0,由Δ=16t 2-12(2t 2-6)>0,解得-3<t <3,∴x 1+x 2=4t 3,x 1x 2=2t 2-63,AB =2⋅(x 1+x 2)2-4x 1x 2=2⋅16t 29-8t 2-243=439-t 2,又O 到AB 的距离为d =t2,∴△AOB 面积为S =12AB d =23t 29-t 2≤23⋅t 2+9-t 22=322,当且仅当t 2=9-t 2,即t =±322时,S 取得最大值322.8.(2022届衡水金卷高三一轮复习摸底测试)已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的上顶点为B 0,1 ,过点2,0 且与x 轴垂直的直线被截得的线段长为233.(1)求椭圆Γ的标准方程﹔(2)设直线l 1交椭圆Γ于异于点B 的P ,Q 两点,以PQ 为直径的圆经过点B ,线段PQ 的中垂线l 2与x 轴的交点为(x 0,0),求x 0的取值范围.【解析】(1)由已知条件得:b =1,令x =2,得y =±1-2a2,由题意知:21-2a 2=233,解得a =3,∴椭圆的标准方程为x 23+y 2=1,(2)①当直线PQ 的斜率不存在时,显然不合题意;②当直线PQ 斜率存在时,设PQ :y =kx +m ,当k =0时,此时P ,Q 关于y 轴对称,令P (x ,y ),Q (-x ,y ),∴BP =(x ,y -1),BQ =(-x ,y -1)且BP ⋅BQ=0,则(y -1)2=x 2,又x 2=3-3y 2,∴2y 2-y -1=0,解得y =-12或y =1(舍),则P 32,-12 ,Q -32,-12符合题设.∴此时有x 0=0;当k ≠0时,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,设P x 1,y 1 ,Q x 2,y 2 ,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,且x 1+x 2=-6km 1+3k2x 1x 2=3m 2-31+3k 2,由BP ⋅BQ=x 1x 2+y 1-1 y 2-1 =0,即1+k 2 x 1x 2+k m -1 x 1+x 2 +m -1 2=0,∴1+k 2 ⋅3m 2-31+3k 2-k m -1 ⋅6km 1+3k 2+m -1 2=0,整理得2m 2-m -1=0,解得m =-12,m =1(舍去),代入Δ=36k 2+12-12m 2>0得:k ∈R ,∴PQ 为y =kx -12,得:x M =x 1+x 22=3k 21+3k 2 ,y M =-121+3k 2 ,则线段的PQ 中垂线l 2为y +121+3k 2 =-1k x -3k 21+3k 2,∴在x 轴上截距x 0=k 1+3k 2,而x 0=k 1+3k 2≤k 2×3k=36,∴-36≤x 0≤36且x 0≠0,综合①②:线段PQ 的中垂线l 2在x 轴上的截距的取值范围是-36,36.9.(2022届河北省高三上学期12月教学质量监测)在平面直角坐标系xOy 中,已知点F 1-1,0 ,F 21,0 ,点P 满足PF 1 +PF 2 =22,点P 的轨迹为C .(1)求C 的方程;(2)不过F 1的直线l 与C 交于A 、B 两点,若直线l 的斜率是直线AF 1、BF 1斜率的等差中项,直线AB 和线段AB 的垂直平分线与y 轴分别交于P 、Q ,求PQ 的最小值.【解析】(1)由椭圆的定义知,点P 在以F 1,F 2为焦点且a =2的椭圆上,所以其方程为:x 22+y 2=1(2)由题意得直线l 的斜率存在且不为0.直线l 的方程为y =kx +b ,A x 1,y 1 ,B x 2,y 2 ,直线方程与椭圆方程联立得x 2+2y 2=2y =kx +b得1+2k 2 x 2+4kb x +2b 2-2=0,所以Δ=4kb 2-41+2k 2 2b 2-2 >0得k 2+1>b 2x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2由题意得2k =y 1x 1+1+y 2x 2+1,即2k x 1+1 x 2+1 =kx 1+b x 2+1 +kx 2+b x 1+1整理得b -k x 1+x 2 =2k -b∵直线l 不过F 1,∴b ≠k ,x 1+x 2=-2∴-4kb 1+2k 2=-2,∴b =1+2k 22k ∵b 2<k 2+1,∴1+2k 22k 2<k 2+1,解得k >22或k <-22线段AB 的中点为-1,b -k ,线段AB 中垂线方程为y -b -k =-1kx +1 当x =0时,y Q =-1k-k +b ,直线AB 与y 轴交点的纵坐标y P =b PQ =y P -y Q =k +1k,k >22或k <-22当k =±1时,PQ 最小,最小值为2.10.已知两圆C 1:(x -2)2+y 2=54,C 2:(x +2)2+y 2=6,动圆M 在圆C 1内部且和圆C 1内切,和圆C 2外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点A 3,0 的直线与曲线C 交于P ,Q 两点.P 关于x 轴的对称点为R ,求△ARQ 面积的最大值.【解析】(1)依题意,圆C 1的圆心C 12,0 ,半径r 1=36,圆C 2的圆心C 2-2,0 ,半径r 2=6,设圆M 的半径为r ,则有MC 1 =r 1-r ,MC 2 =r 2+r ,因此,MC 1 +MC 2 =r 1+r 2=46>4=C 1C 2 ,于是得点M 的轨迹是以C 1,C 2为焦点,长轴长2a =46的椭圆,此时,焦距2c =4,短半轴长b 有:b 2=a 2-c 2=20,所以动圆圆心M 的轨迹C 的方程为:x 224+y 220=1.(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为x =my +3(m ≠0),P (x 1,y 1),Q (x 2,y 2),由x =my +35x 2+6y 2=120消去x 得:(5m 2+6)x 2+30my -75=0,则y 1+y 2=-30m 5m 2+6,y 1y 2=-755m 2+6,点P 关于x 轴的对称点R (x 1,-y 1),S △PQR =12⋅|2y 1|⋅|x 2-x 1|,S △APR =12⋅2y 1⋅ 3-x 1 ,如图,显然x 1与x 2在3的两侧,即x 2-x 1与3-x 1同号,于是得S △AQR =S △PQR -S △APR =y 1 x 2-x 1- 3-x 1 =y 1⋅ x 2-x 1 -3-x 1=|y 1|⋅|x 2-3|=|y 1|⋅|my 2|=|my 1y 2|=75|m |5m 2+6=755|m |+6|m |≤7525|m |⋅6|m |=5304,当且仅当5|m |=6|m |,即m =±305时取“=”,因此,当m =±305时,(S △AQR )max =5304,所以△ARQ 面积的最大值5304.11.已知椭圆C :x 2a2+y 2=1(a >0)的离心率为22,分别过左、右焦点F 1,F 2作两条平行直线l 1和l 2.(1)求l 1和l 2之间距离的最大值;(2)设l 1与C 的一个交点为A ,l 2与C 的一个交点为B ,且A ,B 位于x 轴同侧,求四边形AF 1F 2B 面积的最大值.【解析】(1)∵椭圆C :x 2a2+y 2=1(a >0)的离心率为22,且b =1,∴a =2,b =1,c =1,∴x 22+y 2=1,设直线l 1:x =ty -1;直线l 2:x =ty +1.∴l 1和l 2之间距离d =21+t 2≤2,当t =0时,d max =2;(2)根据题意,不妨设直线l 1与椭圆C 交于A 、D 两点,直线l 2与椭圆C 交于B 、N 两点,则AD ∥BN ,且AD =BN ,即四边形ABND 为平行四边形,∴四边形AF 1F 2B 面积为四边形ABND 面积的一半,由(1)知,d =21+t 2,联立方程x =ty -1x 2+2y 2=2 ,则2+t 2 y 2-2ty -1=0,∴Δ=8t 2+1 >0,y 1+y 2=2t 2+t 2,y 1y 2=-12+t 2,∴AD =1+t 2y 1-y 2 =22t 2+1 2+t 2,∴12S ▱ABND =12d ⋅AD =12×21+t 2×22t 2+1 2+t 2=221+t 22+t 22,令u =1+t 2≥1,12S ▱ABND =22u u +1 2=221u +1u+2,∵u ≥1,∴u +1u+2≥4,∴12S ▱ABND ≤2,当且仅当t =0时,取等号.故四边形AF 1F 2B 面积的最大值2.12.(2022届广西玉林市、贵港市高三12月模拟)设椭圆E :x 2a 2+y 2b2=1(a >b >0)过M 1,32 ,N 3,12 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA ⊥OB若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,说明理由.【解析】(1)将M ,N 的坐标代入椭圆E 的方程得1a 2+34b 2=13a 2+14b 2=1 ,解得a 2=4,b 2=1.所以椭圆E 的方程为x 24+y 2=1.(2)假设满足题意的圆存在,其方程为x 2+y 2=R 2,其中0<R <1,设该圆的任意一条切线AB 和椭圆E 交于A x 1,y 1 ,B x 2,y 2 两点,当直线AB 的斜率存在时,令直线AB 的方程为y =kx +m ,①将其代入椭圆E 的方程并整理得4k 2+1 x 2+8km x +4m 2-4=0,由韦达定理得x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,②因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,③将①代入③并整理得1+k 2 x 1x 2+km x 1+x 2 +m 2=0,联立②得m 2=451+k 2 ,④因为直线AB 和圆相切,因此R =|m |1+k 2,由④得R =255,所以存在圆x 2+y 2=45满足题意.当切线AB 的斜率不存在时,易得x 12=x 22=45,由椭圆方程得y 12=y 22=45,显然OA ⊥OB ,综上所述,存在圆x 2+y 2=45满足题意.当切线AB 的斜率存在时,由①②④得AB =x 1-x 22+y 1-y 2 2=1+k 2x 1-x 2 2=1+k 2x 1+x 2 2-4x 1x 2=1+k 2-8km 4k 2+1 2-4×4m 2-44k 2+1=1+k216+64k 2-16m 21+4k 22=4551+k 21+16k 21+4k 22=45516k 4+17k 2+116k 4+8k 2+1=4551+9k 216k 4+8k 2+1=4551+916k 2+1k2+8,由16k 2+1k 2≥8,得1<1+916k 2+1k2+8≤54,即455≤AB ≤5.当切线AB 的斜率不存在时,易得AB =455,所以455≤AB ≤5.综上所述,存在圆心在原点的圆x 2+y 2=45满足题意,且455≤AB ≤5.13.(2022届上海市青浦区高三一模)已知抛物线y 2=x .(1)过抛物线焦点F 的直线交抛物线于A 、B 两点,求OA ∙OB 的值(其中O 为坐标原点);(2)过抛物线上一点C x 0,y 0 ,分别作两条直线交抛物线于另外两点P x p ,y p 、Q x Q ,y Q ,交直线x =-1于A 1-1,1 、B 1-1,-1 两点,求证:y p ⋅y Q 为常数(3)已知点D 1,1 ,在抛物线上是否存在异于点D 的两个不同点M 、N ,使得DM ⏊MN ?若存在,求N 点纵坐标的取值范围,若不存在,请说明理由.【解析】(1)由题知,直线斜率不为0,故可设过焦点F 的直线为x =my +14,联立y 2=xx =my +14得y 2-my -14=0,y 1+y 2=my 1⋅y 2=-14,设A x 1,y 1 ,B x 2,y 2 ,则OA ∙OB =x 1x 2+y 1y 2=y 21⋅y 22+y 1y 2=-316;(2)由题可设过点C x 0,y 0 的一条直线交抛物线于P x p ,y p ,交直线x =-1于A 1-1,1 ,另一条直线交抛物线于Q x Q ,y Q ,交直线x =-1于B 1-1,-1 ,则k A 1C ≠0,k B 1C ≠0,k A 1C =y 0-1x 0+1,k B 1C =y 0+1x 0+1,直线A 1C 方程可表示为:y =y 0-1x 0+1x +1 +1,直线B 1C 方程可表示为:y =y 0+1x 0+1x +1 +1,联立直线A 1C 与抛物线方程y 2=xy =y 0-1x 0+1x +1+1可得y 2-x 0+1y 0-1y +x 0+1y 0-1+1 ,故y 0+y p =x 0+1y 0-1,即y p =x 0+1y 0-1-y 0,同理联立直线B 1C 和抛物线方程化简可得y 2-x 0+1y 0-1y +1-x 0+1y 0-1=0,故y 0+y Q =x 0+1y 0+1,y Q =x 0+1y 0+1-y 0,即y p ⋅y Q =x 0+1y 0-1-y 0 x 0+1y 0+1-y 0 =y 20+1y 0-1-y 0 y 20+1y 0+1-y 0=y 0+1y 0-1⋅1-y 0y 0+1=-1(3)假设存在点D 满足DM ⏊MN ,设M y 23,y 3 ,N y 24,y 4 ,DM =y 23-1,y 3-1 ,MN =y 24-y 23,y 4-y 3 ,则DM ⋅MN =y 23-1 ⋅y 24-y 23 +y 3-1 y 4-y 3 =0,易知y 3≠1,y 4≠y 3,化简得y 3+1 y 4+y 3 +1=0,即y 4=-1y 3+1+y 3 =-1y 3+1+y 3+1 -1,当y 3+1<0时,y 4=-1y 3+1-y 3+1 +1≥2-1y 3+1⋅-y 3+1 +1=3,当且仅当y 3=-2时取到等号,故y 4≥3;当y 3+1>0时,y 4=-1y 3+1+y 3+1 -1 ≤-21y 3+1⋅y 3+1 -1 =-1,当且仅当y 3=0时取到等号,因为y 3≠1,故y 3+1≠2,令t =y 3+1,则t +1t ≠52,但t =y 3+1=12能取到,此时t +1t =52,故y 4∈-∞,-1 ;故y 4∈-∞,-1 ⋃3,+∞ .。
专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。
圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,2x 2-),B (x 0,-20x 2-),OAO B ⋅ =2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥, 当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x20)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。
圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。
圆锥曲线中的最值、范围问题圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[典例] (2018·武昌调研)已知椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与直线AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED ―→=6DF ―→,求k 的值; (2)求四边形AEBF 的面积的最大值. [思路演示]解:(1)由题设条件可得,椭圆的方程为x 24+y 2=1,直线AB 的方程为x +2y -2=0.设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1得(1+4k 2)x 2=4, 解得x 2=-x 1=21+4k 2.① 由ED ―→=6DF ―→,得x 0-x 1=6(x 2-x 0), ∴x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由点D 在直线AB 上,得x 0+2kx 0-2=0,∴x 0=21+2k. ∴21+2k =1071+4k2,化简,得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式可知,点E ,F 到AB 的距离分别为d 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),d 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2),又|AB |=22+12=5, ∴四边形AEBF 的面积为S =12|AB |(d 1+d 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k 2=21+4k1+4k 2=21+44k +1k≤21+424k ·1k =22,当且仅当4k =1k (k >0),即k =12时,等号成立.故四边形AEBF 的面积的最大值为2 2. [解题师说]由于四边形AEBF 中的四个顶点中,A ,B 为已知定点,E ,F 为直线y =kx 与椭圆的交点,其坐标一定与k 有关,故四边形AEBF 的面积可用直线y =kx 的斜率k 表示,最后通过变形,利用基本不等式求最值.[应用体验]1.已知椭圆C 的左、右焦点分别为F 1(-1,0),F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1,F 2,Q 是椭圆C 上的动点且在圆P 外,过点Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值. 解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).依题意可知,2b =|1-9|2=4,所以b =2.又c =1,故a 2=b 2+c 2=5, 故椭圆C 的方程为x 25+y 24=1.(2)由题意,圆P 的方程为x 2+(y -t )2=t 2+1.设Q (x 0,y 0),因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 20+(y 0-t )2-t 2-1=-14(y 0+4t )2+4+4t 2. 若-4t ≤-2, 即t ≥12,当y 0=-2时,|QM |取得最大值, |QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2,即0<t <12, 当y 0=-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t =24.综上可知,当t =24时,|QM |的最大值为322.(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[典例] (2018·合肥质检)已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.[思路演示]解:(1)由题意,得a =2c ,b =3c , 则椭圆E 的方程为x 24c 2+y 23c2=1.由⎩⎨⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0,解得c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝⎛⎭⎫1,32, ∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54.当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45.当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0消去y ,得(3+4k 2)x 2+16kx +4=0, 则x 1x 2=43+4k2,且Δ=48(4k 2-1)>0, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝⎛⎭⎫1+13+4k 2,∵k 2>14,∴45<λ<1.综上可知,实数λ的取值范围是⎣⎡⎭⎫45,1. [解题师说]在关系式λ|PM |2=|PA |·|PB |中,P ,M 为已知定点,而A ,B 两点是动直线l 与椭圆的交点,故λ与直线l 的斜率有关,应考虑建立λ关于k 的函数关系式求解.[应用体验]2.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1―→·PF 2―→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.解:(1)依题意,设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2. ∴|PF 2|=b 2a.∵9PF 1―→·PF 2―→=1,∴9|PF 2―→|2=9b 4a2=1.由⎩⎨⎧b 2=a 29,9b4a 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1.(2)∵直线x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0, 即m 2-k 2-9<0. 则x 1+x 2=-2kmk 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0.由⎩⎪⎨⎪⎧m 2-k 2-9<0,-2km k 2+9+1=0得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0.∵k 2+9>0,∴k 2+94k 2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.1.(2018·广东五校协作体诊断)若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2CB ―→,当△AOB 的面积最大时,求直线l 的方程.解:(1)由题意知,c +b2=3⎝⎛⎭⎫c -b 2, 所以b =c ,a 2=2b 2, 所以e =ca =1-⎝⎛⎭⎫b a 2=22.(2)设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =ky -1(k ≠0),因为AC ―→=2CB ―→,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0.①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1,x 2+2y 2=2b 2消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k 2+2.②由①②知,y 2=-2k k 2+2,y 1=4kk 2+2.因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤3·122|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号,此时直线l 的方程为x =2y -1或x =-2y -1, 即x -2y +1=0或x +2y +1=0. 2.(2018·惠州调研)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B ⎝⎛⎭⎫-c ,-b2a , 由⎩⎪⎨⎪⎧a =2,b2a (a +c )a 2=b 2+c 2,=12,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN =2|PM ||PN |=λ,所以|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN :y =kx -1⎝⎛⎭⎫k >12, M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx -1,x 24+y 23=1消去y ,化简得(4k 2+3)x 2-8kx -8=0.则⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),则x 1=-λ2x 2.将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),则1<(2-λ)2λ<4,且λ>2,解得4<λ<4+23, 所以实数λ的取值范围为(4,4+23).3.(2018·广西三市第一次联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝⎛⎭⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝⎛⎭⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝⎛⎭⎫1,32,∴1a 2+94b2=1,① ∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝⎛⎭⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎨⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m3m 2+4,∴y 0=y 1+y 22=-3m2(3m 2+4), ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m 4m 2+4.①当m =0时,k =0; ②当m ≠0时,k =14m +4m,∵4m +4m =4|m |+4|m |≥8,∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综合①②可知,直线MA 的斜率k 的取值范围是-18,18.4.已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B 两点.记λ=OA ―→·OB ―→,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解:(1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k 2=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA ―→·OB ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23, 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23。
最值问题——数学复习:圆锥曲线双变量型三角形面积最值问题构造函数最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或两个变量的函数,通过求解函数的最值普通方法、基本不等式方法、导数方法等解决的.【例题选讲】[例1] (2020·新全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.[规范解答] (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立{x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×16(3m 2-48)=0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离,即d+由两点之间的距离公式可得|AM |所以△AMN 的面积的最大值为12×318.[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b>0)的离心率为12,点M在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.[规范解答] (1)由椭圆C :x 2a 2+y2b 2=1(a>b >0)的离心率为12,点M在椭圆C 上,得{c =1,1,a 2=b 2+c 2,解得{a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2,由y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2,所以AB 的中点N (-4km3+4k 2,3m 3+4k 2),因为N 在直线y =12x 上,所以-4km3+4k 2=2×3m 3+4k 2,解得k =-32,所以Δ=48(12-m 2)>0,得-mm ≠0,|AB |2-x 1|又原点O 到直线l 的距离d所以S △OAB =12×当且仅当12-m 2=m 2,即m =m m ≠0,所以△OAB [例3] 已知平面上一动点P 到定点F0)的距离与它到直线x P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 的面积的最大值.[规范解答] (1)设P (x ,y ),化简,得x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立{y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简,得m 2<4k 2+1, ①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km (-8km 4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54, ②|MN |1-x 2|∵原点O 到直线l 的距离d ∴S △MON =12|MN|·d =12设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12=12,∴当1t =12,即k =±12时,△MON 的面积取得最大值为1.[例4] 已知动圆过定点F (0,14),且与定直线l :y =-14相切.(1)求动圆圆心的轨迹曲线C 的方程;(2)若点A (x 0,y 0)是直线x -y -1=0上的动点,过点A 作曲线C 的切线,切点记为M ,N ,求证:直线MN 恒过定点,并求△AMN 面积S 的最小值.[规范解答] (1)根据抛物线的定义,由题意可得,动圆圆心的轨迹C 是以点F (0,14)为焦点,以定直线l :y =-14为准线的抛物线.设抛物线C :x 2=2py (p >0),因为点F (0,14)到准线l :y =-14的距离为12,所以p =12,所以圆心的轨迹曲线C 的方程为x 2=y .(2)证明:因为x 2=y ,所以y ′=2x ,设切点M (x 1,y 1),N (x 2,y 2),则x 21=y 1,x 22=y 2,则过点M (x 1,y 1)的切线方程为y -y 1=2x 1(x -x 1),即y =2x 1x -x 21,即y =2x 1x -y 1.同理得过点N (x 2,y 2)的切线方程为y =2x 2x -y 2.因为过点M ,N 的切线都过点A (x 0,y 0),所以y 0=2x 1x 0-y 1,y 0=2x 2x 0-y 2,所以点M (x 1,y 1),N (x 2,y 2)都在直线y 0=2xx 0-y 上,所以直线MN 的方程为y 0=2xx 0-y ,即2x 0x -y -y 0=0.又因为点A (x 0,y 0)是直线x -y -1=0上的动点,所以x 0-y 0-1=0,所以直线MN 的方程为2x 0x -y -(x 0-1)=0,即x 0(2x -1)+(1-y )=0,所以直线MN 恒过定点(12,1).联立{2x 0x -y -y 0=0,y =x 2,得x 2-2x 0x +y 0=0,又x 0-y 0-1=0,所以x 2-2x 0x +x 0-1=0,则Δ=4x 20-4(x 0-1)>0,x 1+x 2=2x 0,x 1·x 2=x 0-1,所以MN又因为点A (x 0,y 0)到直线2x 0x -y -y 0=0的距离为d|2x 0·x 0-y 0-y 0||2x 20-2x 0-1|2|x 20-x 0+1|所以S =12MN·d20-0+x 20-x 0+1|.令tS =2t 3所以当点A 的坐标为(12,-12)时,△AMN 的面积S[例5] 已知抛物线Γ:x 2=2py (p >0),直线y =2与抛物线Γ交于A ,B (点B 在点A 的左侧)两点,且|AB |=(1)求抛物线Γ在A ,B 两点处的切线方程;(2)若直线l 与抛物线Γ交于M ,N 两点,且M ,N 的中点在线段AB 上,MN 的垂直平分线交y 轴于点Q ,求△QMN 面积的最大值.[规范解答] (1)由x 2=2py,令y =2,得x =p =3,即x 2=6y .由y =x 26,得y ′=x3,故y ′|x =所以在A 点的切线方程为y -2x -,即2x-0;同理可得在B 点的切线方程为2x +0.(2)由题意得直线l 的斜率存在且不为0,故设l :y =kx +m ,M (x 1,y 1),N (x 2,y 2),由x 2=6y 与y =kx +m 联立,得x 2-6kx -6m =0,又Δ=36k 2+24m >0,故x 1+x2=6k ,x 1x 2=-6m ,故|MN |又y 1+y 2=k (x 1+x 2)+2m =6k 2+2m =4,所以m =2-3k 2,所以|MN |=由Δ=36k 2+24m >0k k ≠0.因为M ,N 的中点为(3k ,2),所以M ,N 的垂直平分线方程为y -2=-1k (x -3k ),令x =0,得y =5,即Q (0,5),所以点Q 到直线kx -y +2-3k 2=0的距离d2所以S △QMN =12·2令1+k 2=u ,则k 2=u -1,则1<u <73,故S △QMN =设f (u )=u 2(7-3u ),则f ′(u )=14u -9u 2,结合1<u <73,令f ′(u )>0,得1<u <149;令f ′(u )<0,得149<u <73,所以当u =149,即k =(S △QMN )max =【对点训练】1.如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.1.解析 (1)由{y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA → +OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以{-2pk =-4,-2pk 2-4=-12,解得{p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d----由{y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |所以△ABP 面积的最大值为52=2.椭圆C :x 2a2+y 2b 2=1(a >b >0)(1)求椭圆C 的方程;(2)设斜率存在的直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l△AOB 面积的最大值.2.解析 (1)设椭圆的半焦距为c ,依题意知{ca =a∴c b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =kx +m .|m |m 2=34(k 2+1).把y =kx+m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0.Δ=36k 2m 2-4(3k 2+1)(3m 2-3)=36k 2-12m 2+12>0.∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)[36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1]=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =3k =0时,|AB||AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值S =12×|AB |max223.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.(1)求椭圆E 的方程;(2)若不过原点O 的直线l 与椭圆交于A ,B 两点,求△OAB 面积的最大值.3.解析 (1)由题意知{bc =a -c =1,又a2=b 2+c 2,所以a =2,b 所以椭圆E 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =kx +m (m ≠0),代入椭圆方程,整理,得(4k 2+3)x 2+8kmx +4m 2-12=0.由Δ>0,得4k 2-m 2+3>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+3,x 1·x 2=4m 2-124k 2+3.于是|AB |3又坐标原点O到直线l 的距离d |m |所以△OAB 的面积S =12·|AB |·d =m因为|m33≤m 2+(4k 2-m 2+3)24k 2+3=12,所以S =12·|AB |·d当直线l 的斜率不存在时,设其方程为x =t ,同理可求得S =12·|AB |·d =12|t综上,△OAB 4.已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM → .(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.4.解析 (1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2,所以P 2)或P (-2),由PF → =3FM →,得M (,23)或M ,23).(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由{y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 中点M 的坐标为(2k ,2k 2+m ).由PF → =3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以{x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |点F (0,1)到直线AB 的距离为d |m -1|所以S △ABP =4S △ABF =8|m -记f (m )=3m 3-5m 2+m +1(-13<m ≤43),令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1,可得f (m )在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数,又f(19)=256243>f (43)=59.所以当m =19时,f (m )取到最大值256243,此时k =所以△ABP。
弦长和面积的最值问题
1.已知菱形ABCD 的顶点A C ,在椭圆22
34x y +=上,对角线BD 所在直线的斜率为1.
(1)当直线BD 过点(01),时,求直线AC 的方程; (2)当60ABC ∠=时,求菱形ABCD 面积的最大值.
2.设椭圆的中心在坐标原点,且(20)(01)A B ,,,是它的两个顶点,若直线(0)y kx k = >与线段AB 相交于点D ,与椭圆相交于,E F 两点.求四边形AEBF 面积的最大值.
3.已知PAB ∆内接于椭圆2236x y +=,点P 的坐标为,且APB ∠的平分线为1x =. (1)求证:直线AB 的斜率为定值; (2)求PAB ∆的面积的最大值.
4.已知PAB ∆内接于焦点在y 轴上的椭圆22mx ny mn +=,且点P 的坐标为,椭圆的焦距为4.
(1)求椭圆的标准方程;
(2)若直线PA 与直线PB 的倾斜角互补,求PAB ∆面积的最大值.
5.已知椭圆的两顶点为A ,(0,1)B ,其左右焦点分别是12,F F .
(1)在线段AB 上是否存在点C ,使得12CF CF ⊥?若存在,请求出点C 的坐标;若不存在,请说明理由.
(2)设过1F 的直线交椭圆于,P Q 两点,求2PQF ∆面积的最大值.
6.已知抛物线2:E y x =与圆222
:(4)(0)M x y r r -+=>相交于,,,A B C D 四个点. (1)求r 得取值范围;
(2)设四边形ABCD 的对角线AC 与BD 的交点P ,求ABCD 的面积最大时点P 的坐标.
7.设椭圆的左右焦点分别为12,F F ,离心率e =,右准线为l ,且l 上两动点,M N 使得120FM F N ⋅=. (1)若1
2||||25FM F N ==,求,a b 的值; (2)证明:当||MN 取最小值时,12FM F N +与12F F 共线.
8.设椭圆E :22
221x y a b
+=(,0)a b >过M ,N 两点,O 为坐标原点. (1)求椭圆E 的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点,A B ,且OA OB ⊥?若存在,写出该圆的方程,并求||AB 的取值范围;若不存在,说明理由.
9.若,A B 是抛物线2
4y x =上的不同两点,不平行于y 轴的弦AB 的垂直平分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当2x >时,点(,0)P x 存在无穷多条“相关弦”.现给定02x >.
(1)证明:点0(,0)P x 的所有“相关弦”的中点的横坐标相同;
(2)点0(,0)P x 的“相关弦”的弦长中是否存在最大值?若存在,求最大值(用0x 表示),若不存在,说明理由.。