第二十六章二次函数知识点及典型例题8k(用)
- 格式:doc
- 大小:503.21 KB
- 文档页数:4
二次函数知识点总结ppt一、基本概念1. 二次函数的定义二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。
2. 二次函数的图像二次函数的图像是一个抛物线,开口方向取决于a的正负,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。
4. 二次函数的对称轴二次函数的对称轴是通过抛物线顶点且垂直于x轴的直线,其方程为x=-b/2a。
5. 二次函数的平移二次函数的图像可以通过平移来变换位置,如上下平移、左右平移等。
6. 二次函数的零点二次函数的零点是函数与x轴相交的点,其坐标为(x1, 0)和(x2, 0),其中x1和x2分别是二次方程ax^2+bx+c=0的根。
二、性质及相关概念1. 二次函数的坐标二次函数的坐标为(x, y),其中x为自变量,y为因变量。
2. 二次函数的定义域二次函数的定义域为实数集R。
3. 二次函数的值域二次函数的值域取决于抛物线开口方向和顶点坐标。
4. 二次函数的最值当a>0时,二次函数的最小值为f(-b/2a),当a<0时,二次函数的最大值为f(-b/2a)。
5. 二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,二次函数有两个不相等的实根;当Δ=0时,二次函数有两个相等的实根;当Δ<0时,二次函数无实根。
6. 二次函数的性质(1)a的正负决定抛物线开口方向和抛物线的最值;(2)a的绝对值大小决定抛物线的开口程度;(3)b决定了抛物线的位置;(4)c决定了抛物线与y轴的交点。
三、二次函数的图像及相关变换1. 抛物线开口向上的二次函数二次函数y=ax^2+bx+c,当a>0时,抛物线开口向上。
2. 抛物线开口向下的二次函数二次函数y=ax^2+bx+c,当a<0时,抛物线开口向下。
3. 二次函数的平移二次函数y=ax^2+bx+c的平移变换为y=a(x-h)^2+k,其中(h, k)为抛物线顶点坐标。
二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
二次函数知识点总结及典型例题一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法---五点法: 二、二次函数的解读式 二次函数的解读式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴所在直线;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点。
②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 四、二次函数的性质 1、二次函数的性质五、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
第26章二次函数 (1)§26.1二次函数 (2)§26.2二次函数的图象与性质 (3)1. 二次函数y=ax2的图象与性质 (3)2. 二次函数y=ax2+bx+c的图象与性质 (5)3. 求二次函数的函数关系式 (13)阅读材料................................................................................................... 错误!未定义书签。
生活中的抛物线....................................................................................... 错误!未定义书签。
§26.3实践与探索 (15)小结 (17)复习题 (18)第26章二次函数要用长20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎么样围法才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m,花圃的面积为y m2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?§26.1 二次函数问题1(本章导图中的问题)如图26.1.1,要用总长为20 m的铁栏杆,一面靠墙,围成一个矩形的花圃.怎样围法,才能使围成的花圃面积最大?试一试(1)设矩形花圃的垂直于墙的一边AB的长为x m,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积y m2.试将计算结果填写在下表的空格中.(2)x的值是否可以任意取?有限定范围吗?(3)我们发现,当AB的长(x)确定后,矩形的面积(y)也就随之确定,y 是x的函数,试写出这个函数的关系式.问题2某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?分析在这个问题中,该商品每天的利润与其降价的幅度有关.设每件商品降价x 元(0≤x≤2),该商品每天的利润为y元,y是x的函数.我们可以得到:问题1中的函数关系式为y=x(20-2x)(0<x<10)即y=-2x2+20x(0<x<10)问题2中的函数关系式为y=(10-x-8)(100+100x)(0≤x≤2),即y=-100x2+100x+200(0≤x≤2).观察得到的两个函数关系式有什么共同特点?这两个问题有什么共同特点?概括它们都是用自变量的二次多项式来表示的.问题都可归结为:自变量x为何值时函数y取得最大值?形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数(quadratic function ).练 习1. 已知一个直角三角形的两条直角边长的和为10 cm .(1) 当它的一条直角边长为4.5 cm 时,求这个直角三角形的面积;(2) 设这个直角三角形的面积为S cm 2,其中一条直角边长为x cm ,求S关于x 的函数关系式.2. 已知正方体的棱长为x cm ,它的表面积为S cm 2,体积为V cm 3.(1) 分别写出S 与x 、V 与x 之间的函数关系式; (2) 这两个函数中,哪个是x 的二次函数?习题26.11. 设圆柱的高为6 cm ,底面半径r cm ,底面周长C cm ,圆柱的体积为V cm 3. (1) 分别写出C 关于r 、V 关于r 、V 关于C 的函数关系式; (2) 这三个函数中,哪些是二次函数?2. 正方形的边长为4,若边长增加x ,则面积增加y ,求y 关于x 的函数关系式.这个函数是二次函数吗?3. 已知二次函数y =ax 2+c ,当x =2时,y =4;当x =-1时,y =-3.求a 、c 的值. 4. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m .(1) 求隧道截面的面积S (m 2)关于上部半圆半径r (m )的函数关系式;(2) 求当上部半圆半径为2 m 时的截面面积.(π取3.14,结果精确到0.1m 2)§26.2 二次函数的图象与性质回 顾上一节所提出的两个问题,都归结为有关二次函数的问题.为了解决这类问题,需要研究二次函数的性质.在研究一次函数时,曾借助图像了解了一次函数的性质.对二次函数的研究,我们也从图像入手.1. 二次函数y =ax 2的图象与性质我们知道,一次函数的图像是一条直线.那么,二次函数的图像是什么?它有什么特点?又有哪些性质?让我们先来研究最简单的二次函数 y =ax 2 的图像与性质. 例1 画二次函数y =x 2的图象. 解 列表.(第4题)在直角坐标系中描点,然后用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图26.2.1所示.图26.2.1像这样的曲线通常叫做抛物线(parabola).它有一条对称轴,抛物线与它的对称轴的交点叫做抛物线的顶点.做一做(1)在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?(2)在同一直角坐标系中,画出函数y=2x2、y=-2x2的图象.观察并比较这两个函数的图象,你能发现什么?(3)将所画的四个函数的图象作比较,你又能发现什么?概括函数y=ax2的图象是一条抛物线,它关于y轴对称.它的顶点坐标是(0,0).观察y=x2、y=2x2的图象,可以看出:当a>0时,抛物线y=ax2开口向上.在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.顶点是抛物线上位置最低的点.图象的这些特点,反映了当a>0时,函数y=ax2具有这样的性质:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大;当x =0时,函数y=ax2取得最小值,最小值y=0.思考观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<0时,抛物线y=ax2有些什么特点?它反映了当a<0时,函数y=ax2具有哪些性质?将你思考的结果填在下面的方框内,与同伴交流.练 习1.在同一直角坐标系中,画出下列函数的图象:(1) y =3x 2; (2) y =-31x 2.2.根据上题所画的函数图象填空.(1) 抛物线y =3x 2的对称轴是_______________,顶点坐标是____________,当x _________时,抛物线上的点都在x 轴的上方;(2) 抛物线y =-31x 2的开口向________,除了它的顶点,抛物线上的点都在x 轴的_________方,它的顶点是图象的最___________点.3.不画图象,说出抛物线y =-4x 2和y =41x 2的对称轴、顶点坐标和开口方向.4.记r 为圆的半径,S 为该圆的面积,有面积公式S =πr 2,表明S 是r 的函数.(1) 当半径r 分别为2、2.5、3时,求圆的面积S (π取3.14); (2) 画出函数S =πr 2的图象.2. 二次函数y =ax 2+bx +c 的图象与性质问题1试研究二次函数y =2x 2-4x +3的图象. 分 析将函数关系式配方,得y =2(x -1)2+1.我们设法寻求它与y =2x 2图像的联系.为此,先看几个简单的例子. 例2 在同一直角坐标系中,画出函数y =2x 2与y =2x 2+1的图像. 解 列表.描点、连线,画出这两个函数的图象,如图26.2.2所示.图26.2.2观 察当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?观察这两个函数的图象,分别说出它们的开口方向、对称轴和顶点坐标.它们有哪些是相同的?又有哪些不同?概 括通过观察,我们发现:当自变量x 取同一数值时,函数y =2x 2+1的函数值都比函数y =2x 2的函数值大1.反映在图象上,函数y =2x 2+1的图象上的点都是由函数y =2x 2的图象上的相应点向上移动了一个单位.函数y =2x 2+1与y =2x 2的图象的开口方向、对称轴相同,但顶点坐标不同.函数y =2x 2+1的图象可以看成是将函数 y =2x 2 的图象向上平移一个单位得到的,它的顶点坐标是(0,1).据此,可以由函数y =2x 2的性质,得到函数y =2x 2+1的一些性质:当x _____时,函数值y 随x 的增大而减小;当x ______时,函数值y 随x 的增大而增大;当x _____时,函数取得最____值,最____值y =______.做一做先在同一直角坐标系中画出函数y =2x 2-2与函数y =2x 2的图象,再作比较,说说它们有什么联系和区别?说出y =2x 2-2的图象的开口方向、对称轴和顶点坐标,并讨论这个函数的性质.思 考在同一直角坐标系中,函数y =-31x 2+2的图象与函数y =-31x 2的图象有什么关系?你能说出函数y =-31x 2+2的图象的开口方向、对称轴和顶点坐标吗?这个函数有哪些性质?练 习1.已知函数y =-31x 2、y =-31x 2+2和y =-31x 2-2.(1) 分别画出它们的图象;(2) 说出各个图象的开口方向、对称轴和顶点坐标;(3) 试说出函数y =-31x 2+4的图象的开口方向、对称轴和顶点坐标.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y =-31x 2得到抛物线y =-31x 2+2和y =-31x 2-2?如果要得到抛物线y =-31x 2+4,应将抛物线y =-31x 2作怎样的平移?3.试说出函数y =ax 2+k (a 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标,并填写下表.例3 在如图26.2.3所示的直角坐标系中,画出函数y =2x 2和y =2(x -1)2的图象.解 列表.描点、连线,画出这两个函数的图象.图26.2.3观 察根据所画出的图象,在下表中填出这两个函数的图象的开口方向、对称轴和顶点坐标.思 考这两个函数的图象之间有什么关系?概 括通过观察、分析,可以发现:函数y =2(x -1)2与y =2x 2的图象,开口方向相同,但对称轴和顶点坐标不同.函数y =2(x -1)2的图象可以看作是将函数y =2x 2的图象向右平移1个单位得到的.它的对称轴是直线x =1,顶点坐标是(1,0).据此,可以由函数y =2x 2的性质,得到函数y =2(x -1)2的性质:当x ______时,函数值y 随x 的增大而减小;当x _____时,函数值y 随x 的增大而增大;当x _____时,函数取得最______值,最______值y =______.做一做在同一直角坐标系中画出函数y =2(x +1)2与函数y =2x 2的图象,比较它们的联系和区别.并说出函数y =2(x +1)2的图象可以看成由函数y =2x 2的图象经过怎样的平移得到.由此讨论函数y =2(x +1)2的性质.思 考在同一直角坐标系中,函数y =-31(x +2)2的图象与函数y =-31x 2的图象有什么关系?试说出函数y =-31(x +2)2图象的开口方向、对称轴和顶点坐标,并讨论这个函数的性质.练 习1. 已知函数y =31x 2、y =31(x +3)2和y =31(x -3)2.(1) 在同一直角坐标系中画出它们的图象;(2) 分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3) 分别讨论各个函数的性质.2. 根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y =31x 2得到抛物线y =31(x +3)2和y =31(x -3)2?3. 你能说出函数y =a (x -h )2(a 、h 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.例2及例3的基础上,我们再来研究第7页的问题1,即研究函数y =2(x -1)2+1的图象和性质.分 析我们已经知道函数y =2(x -1)2的图象与函数y =2x 2的图象之间的关系. 在此基础上,可以找到函数y =2(x -1)2+1的图象与函数y =2(x -1)2的图象之间的关系.试一试(1) 填写下表.(2) 从上表中,你能分别找到函数y =2(x -1)2+1与函数y =2(x -1)2、y =2x 2的图象的关系吗?(3) 进一步,你能发现函数y =2(x -1)2+1有哪些性质?做一做(1) 在图26.2.3中,再画出函数y =2(x -1)2-2的图象,并将它与函数y=2(x -1)2 的图象作比较.(2) 试说出函数y =-31(x -1)2+2的图象与函数y =-31x 2的图象的关系,由此进一步说明这个函数图象的开口方向、对称轴和顶点坐标.练 习1.已知函数y =21x 2、y =21(x +2)2+2和y =21(x +2)2-3.(1) 在同一个直角坐标系中画出这三个函数的图象;(2) 分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3) 试讨论函数y =21(x +2)2-3的性质.2.试说明:分别通过怎样的平移,可以由抛物线y =21x 2得到抛物线y =21(x +2)2+2和抛物线y =21(x -2)2-3?如果要得到抛物线y =21(x +2)2-6,那么应该将抛物线y =21x 2作怎样的平移?3.你能说出函数y =a (x -h )2+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.4.不画出图象,直接说出函数y =-3x 2-6x +8的图象的开口方向、对称轴和顶点坐标.(提示:将-3x 2-6x +8配方,化为练习第3题中的形式)例4 画出函数y =-21x 2+x -25的图象,并说明这个函数具有哪些性质.分析 因为 y =-21x 2+x -25=-21(x -1)2-2,所以这个函数的图象开口向下,对称轴为x =1,顶点坐标为(1,-2).根据这些特点,我们容易画出它的图象. 解 列表.画出的图象如图26.2.4.图26.2.4由图象不难得到这个函数具有如下性质:当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小;当x =1时,函数取得最大值,最大值y =-2.做一做(1) 请你按照上面的方法,画出函数y =21x 2-4x +10的图象,由图象你能发现这个函数具有哪些性质?(2) 通过配方变形,说出函数y =-2 x 2+8x -8的图象的开口方向、对称轴和顶点坐标.这个函数有最大值还是最小值?这个值是多少? 思 考对于任意一个二次函数y =ax 2+bx +c (a ≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?练 习1. 说出下列抛物线的开口方向、对称轴及顶点坐标.(1) y =3(x +3)2+4; (2) y =-2(x -1)2-2;(3) y =21(x +3)2-2; (4) y =-32(x -1)2+0.6.2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1) y =2x 2+4x ; (2) y =-2x 2-3x ;(3) y =-3x 2+6x -7; (4) y =21x 2-4x +5.3. 先确定下列抛物线的开口方向、对称轴和顶点坐标,再描点画出图象.(1) y =-2(x -1)2+4; (2) y =21(x +2)2-5;(3) y =-31x 2-2x +1; (4) y =x 2-4x +7.应 用现在让我们应用二次函数的有关知识去解决第2页提出的两个问题. 问题1 这个问题实际上是要求出自变量x 为何值时,二次函数y =-2x 2+20x (0<x <10)取得最大值.将这个函数的关系式配方,得y =-2(x -5)2+50.显然,这个函数的图象开口向下,它的顶点坐标是(5,50),这就是说,当x =5时,函数取得最大值y =50.这时,AB =5(m ),BC =20-2x =10(m ).所以当围成的花圃与墙垂直的一边长5 m ,与墙平行的一边长10 m 时,花圃面积最大,最大面积为50 m 2.问题2 实际上是要求出自变量x 为何值时,二次函数y =-100x 2+100x +200(0≤x ≤2)取得最大值.请同学们完成这个问题的解答.例5 用6 m 长的铝合金型材做一个形状如图26.2.5所示的矩形窗框.应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?解 设做成的窗框的宽为x m ,则长为236x-m .这里应有x >0,且236x->0,故0<x <2.做成的窗框的透光面积y 与x 的函数关系式是y =x •236x -, 即 y =x x 3232+-.配方得 y =-23(x -1)2+23,所以当x =1时,函数取得最大值,最大值y =1.5.因为x =1时,满足0<x <2,这时236x-=1.5.所以应做成宽1 m 、长1.5 m 的矩形窗框,才能使透光面积最大.最大面积是1.5 m 2.练 习1. 求下列函数的最大值或最小值.(1) y =x 2-3x +4; (2) y =1-2x -x 2;(3) y =237272+-x x ; (4) y =100-5x 2;(5) y =-6x 2+12x ; (6) y =-23x 2-4x +1.2. 有一根长为40 cm 的铁丝,把它弯成一个矩形框.当矩形框的长、宽各是多少时,矩形面积最大?最大面积是多少?3. 已知两个正数的和是60,它们的积最大是多少?(提示:设其中的一个正数为x ,将它们的积表示为x 的函数)图26.2.53. 求二次函数的函数关系式问题2如图26.2.6,某建筑的屋顶设计成横截面为抛物线型(曲线AOB )的薄壳屋顶.它的拱宽AB 为4 m ,拱高CO 为0.8 m .施工前要先制造建筑模板,怎样画出模板的轮廓线呢?图26.2.6分 析为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数的关系式,然后根据这个关系式进行计算,放样画图.如图26.2.6,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立直角坐标系.这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式为y =ax 2 (a <0). (1)因为AB 与y 轴交于点C ,所以CB =2AB=2(m ),又CO =0.8 m ,所以点B 的坐标为(2,-0.8).因为点B 在抛物线上,将它的坐标代入(1),得-0.8=a ×22,所以 a =-0.2.因此,函数关系式是y =-0.2x 2.根据这个关系式,容易画出模板的轮廓线.在解决一些实际问题时,往往需要根据某些条件求出函数的关系式. 例6 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.分析 因为这个二次函数的图象的顶点是(8,9),因此,可以设函数关系式为y =a (x -8)2+9.根据它的图象过点(0,1),容易确定a 的值. 例7 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.解 设所求二次函数为y =ax 2+bx +c ,由已知,这个函数的图象过(0,1),可以得到c =1.又由于其图象过(2,4)、(3,10)两点,可以得到⎩⎨⎧=+=+.939,324b a b a 解这个方程组,得a =23,b =-23 所以,所求二次函数的关系式是y=123232+-x x .注 意求二次函数的关系式,应根据不同条件,选用适当形式. 练 习1. 根据下列条件,分别求出对应的二次函数的关系式. (1) 已知抛物线的顶点在原点,且过点(2,8); (2) 已知抛物线的顶点是(-1,-2),且过点(1,10); (3) 已知抛物线过三点:(0,-2)、(1,0)、(2,3).2. 已知抛物线y =ax 2+bx +c 过三点:(-1,-1)、(0,-2)、(1,1). (1) 求这条抛物线所对应的二次函数的关系式; (2) 写出它的开口方向、对称轴和顶点坐标;(3) 这个函数有最大值还是最小值?这个值是多少?习题26.21. 分别在同一直角坐标系中,画出下列各组两个二次函数的图象.(1) y =31x 2+2与y =31x 2-3;(2) y =-21(x +3)2与y =-21(x -1)2;(3) y =-3(x -2)2与y =-3(x -2)2+1; (4) y =-(x +3)2-1与y =-(x +3)2+2. 2. 说出下列抛物线的开口方向、顶点坐标和对称轴. (1)y =x 2-3x -4; (2)y =2-4x -x 2;(3)y =21x 2-2x -1; (4)y =-43x 2+6x -7;(5)y =2x 2-3x ; (6)y =-2x 2-5x +7.3. 下列抛物线有最高点或最低点吗?如有,写出这些点的坐标. (1)y =4x 2-4x +1; (2)y =-4x 2-9; (3)y =-4x 2+3x ; (4)y =3x 2-5x +6.4. 根据下列条件,分别求出对应的二次函数的关系式. (1) 已知抛物线的顶点在原点,且过点(3,-27); (2) 已知抛物线的顶点在(1,-2),且过点(2,3); (3) 已知抛物线过三点:(-1,2),(0,1),(2,-7).5. 有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4 m ,跨度为10 m .如图所示,把它的图形放在直角坐标系中. (1) 求这条抛物线所对应的函数关系式;(2) 如图,在对称轴右边1 m 处,桥洞离水面的高是多少?(第5题)§26.3 实践与探索生活中,我们常会遇到与二次函数及其图象有关的问题.请与同伴共同研究,尝试解决下面的问题.问题1某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m .水流在各个方向上沿形状相同的抛物线路径落下,如图26.3.1(1)所示.图26.3.1根据设计图纸已知:在图26.3.1(2)中所示直角坐标系中,水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是y =-x 2+2x +54.(1) 喷出的水流距水平面的最大高度是多少? (2) 如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?问题2图26.3.2一个涵洞成抛物线形,它的截面如图26.3.2.现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?分 析根据已知条件,要求ED 宽,只要求出FD 的长度.在图示的直角坐标系中,即只要求出点D 的横坐标.因为点D 在涵洞所成的抛物线上,又由已知条件可得到点D 的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D 的横坐标.你会求吗?问题3画出函数432--=x x y 的图象,根据图象回答下列问题.(1) 图象与x 轴交点的坐标是什么?(2) 当x 取何值时,y =0?这里x 的取值与方程432--=x x y 有什么关系?(3) 你能从中得到什么启发?试一试根据问题3的图象回答下列问题.(1) 当x 取何值时,y <0?当x 取何值时,y >0? (2) 能否用含有x 的不等式来描述(1)中的问题?练 习1. 画出函数y =x 2-2x -1的图象,求方程x 2-2x -1=0的解.(精确到0.1)2. 你能否画出适当的函数图象,求方程3212+=x x 的解?问题4育才中学初三(3)班的学生在上节课的作业中出现了争论:求方程3212+=x x 的解时,几乎所有学生都是将方程化为03212=--x x ,画出函数3212--=x x y 的图象,观察它与x 轴的交点,得出方程的解.惟独小刘没有将方程移项,而是分别画出了函数y =x 2和的图象321+=x y ,如图26.3.3,认为它们交点A 、 B 的横坐标-23和2就是原方程的解.图26.3.3对于小刘提出的解法,同学们展开了热烈的讨论.做一做 利用图26.3.4,运用小刘的方法求下列方程的解,并检验小刘的方法是否合理. (1) x 2+x -1=0(精确到0.1); (2) 2x 2-3x -2=0. 习题26.3 1. 如图,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约132m ;铅球落地在点B 处.铅球运行中在运动员前4 m 处(即OC =4)达到最高点,最高点高为3 m .已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?2. 某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可销出100件.他想采用提高售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1) 写出售价x (元/件)与每天所得的利润y (元)之间的函数关系式; (2) 每件售价定为多少元,才能使一天的利润最大? 3. 利用函数的图象求下列方程的解.(1) x 2+x -12=0; (2)2x 2-x -3=0. 4. 利用函数的图象求下列方程组的解.(1)⎪⎩⎪⎨⎧=+=;,23212x y x y (2)⎩⎨⎧-=--=.,132x x y x y 小 结一、 知识结构图26.3.4(第1题)二、注意事项1. 二次函数是反映现实世界中变量间的数量关系和变化规律的一种常见的数学模型.要学会分析实际问题中的变量与变量间的关系,列出函数关系式,善于利用二次函数的图象和性质去解决问题.2. 二次函数的图象是研究二次函数性质的重要工具,注意把握二次函数图象的特点(对称轴、开口方向、顶点坐标),并由此发现和认识二次函数的一些性质,如:何时函数值y随自变量x的增加而增加(或减小)?何时函数取得最大(小)值?在学习二次函数时,要善于运用图象,领会和运用数形结合的思想方法(包括利用函数的图象求解方程与方程组).3. 在研究二次函数的图象和性质时,首先抓住最简单的二次函数y=ax2(a ≠0)的图象和性质.对于一般的二次函数,常利用配方法,将函数关系式化为y=a(x-h)2+k(h、k为常数)的形式,抓住它与y=ax2的图象之间的联系来研究.要注意在研究具体实例的过程中,体会这种化归(化未知为已知,变复杂为简单)的思想方法.复习题A组1.填写表中的空格.2.画出下列函数的图象,并根据图象写出它们的最大值或最小值.(1) y =1-3x 2; (2) y =x 2-4x +5; (3) y =x 2-6x ; (4) y =-3x 2+6x -1.3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1) y =x 2-2x -4; (2) y =1+6x -x 2;(3) y =-x 2+4x ; (4) y =41x 2-x +4.4. 已知函数y =2x 2-3x -2. (1) 画出函数的图象;(2) 观察图象,说出x 取哪些值时,函数的值为0. 5. 已知二次函数y =(x -2)2-1.(1) 先确定其图象的开口方向、对称轴和顶点坐标,再画出图象; (2) 观察图象确定:x 取什么值时,① y =0;② y >0;③ y <0. 6. 说出下列函数的图象是将抛物线y =3x 2经过怎样的平移得到的.(1)232-=x y ; (2)2)21(3-=x y ;(3)4)21(32+-=x y ; (4)y =3x 2-6x .7. 求满足下列条件的对应的二次函数的关系式. (1) 抛物线经过(2,0)、(0,-2)和(-2,3)三点; (2) 抛物线的顶点坐标是(6,-4),且过点(4,-2).B 组8. 填空:(1) 抛物线y =x 2-3x +2与y 轴的交点坐标是____________,与x 轴的交点坐标是____________;(2) 抛物线y =-2x 2+5x -3与y 轴的交点坐标是____________,与x 轴的交点坐标是____________.9. 已知抛物线y =ax 2+x +2经过点(-1,0),求a 的值,并求这条抛物线的顶点坐标.10. 观察下面的表格.(1) 求a 、b 、c 的值,并在表内的空格中填上正确的数;(2) 设y =ax 2+bx +c ,求这个二次函数的顶点坐标与对称轴. 11. 若抛物线y =x 2-x -2经过点A (3,a )和点B (b ,0),求点A 、点B . 12. 行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s (m )与车速x (km/h )间有下述的函数关系式:s =0.01x +0.002x 2.现该车在限速140 km/h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m .请推测刹车时,汽车是否超速?C 组13. 如图,有一个抛物线形的水泥门洞.门洞的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m .求这个门洞的高度.(精确到0.1 m )(第13题)(第14题)14. 如图,一位篮球运动员在离篮圈水平距离4 m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m .(1) 建立图中所示的直角坐标系,求抛物线所对应的函数关系式; (2) 若该运动员身高1.8 m ,这次跳投时,球在他头顶上方0.25 m 处出手.问:球出手时,他跳离地面多高?15. 某市经济开发区建区以来5年的财政收入情况如图所示,可以看出图中的折线近似于抛物线的一部分.(1) 试求出过A 、C 、D 三点的二次函数的关系式 (2) 利用(1)的结果,分别求出当x =2和x =5时该二次函数的函数值,并分别与点B 、点E 的纵坐标比较;(3) 利用(1)中的二次函数的关系式预测该开发区第6年的财政收入可能达到的数值.(精确到0.1亿元)(第15题)。
二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。
若是没有交点,那么不能够这样表示。
a 的绝对值越大,抛物线的张口越小。
2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。
最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。
最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。
二次函数知识点知识点总结二次函数知识点总结在数学的世界里,二次函数是一个非常重要的概念,它不仅在数学学科中有着广泛的应用,还在物理、经济等其他领域发挥着重要作用。
下面就让我们一起来深入了解一下二次函数的相关知识点。
一、二次函数的定义一般地,如果形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,那么我们就称它为二次函数。
其中,$x$是自变量,$y$是因变量。
需要特别注意的是,$a$的取值不能为零,因为如果$a = 0$,那么函数就变成了一次函数$y = bx + c$。
二、二次函数的图像二次函数的图像是一条抛物线。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
抛物线的对称轴是直线$x =\frac{b}{2a}$,顶点坐标为$(\frac{b}{2a},\frac{4ac b^2}{4a})$。
通过对二次函数图像的观察和分析,我们可以得到很多有用的信息。
例如,根据抛物线的开口方向和顶点坐标,可以判断函数的最值;根据抛物线与$x$轴的交点个数,可以判断方程$ax^2 + bx + c = 0$的根的情况。
三、二次函数的表达式二次函数常见的表达式有三种形式:1、一般式:$y = ax^2 + bx + c$($a ≠ 0$),这种形式是最常见的,它能直接反映出二次函数的各项系数。
2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$),其中顶点坐标为$(h, k)$。
当已知二次函数的顶点坐标时,使用顶点式会更加方便。
3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$),其中$x_1$和$x_2$是抛物线与$x$轴交点的横坐标。
当已知抛物线与$x$轴的交点坐标时,使用交点式可以更快捷地写出函数表达式。
四、二次函数的平移二次函数的图像可以通过平移得到。
对于抛物线$y = a(x h)^2 +k$,向左平移$m$个单位,得到$y = a(x h + m)^2 + k$;向右平移$m$个单位,得到$y = a(x h m)^2 + k$;向上平移$n$个单位,得到$y = a(x h)^2 + k + n$;向下平移$n$个单位,得到$y = a(x h)^2 + k n$。
二次函数知识点、考点、典型例题及练习(附解析)一、二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
y ax c=+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的二、专题与考点专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a-). 例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)图2图1专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为(不要求写出自变量x的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为()A.y=2a(x-1)B.y=2a(1-x)C.y=a(1-x2)D.y=a(1-x)22.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且AOOC=12,CO=BO,AB=3,则这条抛物线的函数解析式是.A BC D图1菜园墙图23.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题:本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例:某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.三、典型例题题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( )A .(-1,8) B.(1,8) C (-1,2) D (1,-4)点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是( )○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
⼆次函数知识点汇总(全)⼆次函数知识点(第⼀讲)⼀、⼆次函数概念:1.⼆次函数的概念:⼀般地,形如2y ax bx c=++(a b ca≠)的函数,叫做⼆次函数。
,,是常数,0这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0a≠,⽽b c,可以为零.⼆次函数的定义域是全体实数.2. ⼆次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.⑵a b c,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.⼆、⼆次函数的基本形式1. ⼆次函数基本形式:2=的性质:y axa 的绝对值越⼤,抛物线的开⼝越⼩。
2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、⼆次函数图象的平移1. 平移步骤:⽅法⼀:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成⼋个字“左加右减,上加下减”.⽅法⼆:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即22424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,.五、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、⼆次函数2y ax bx c =++的性质1. 当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽减⼩;当2b x a >-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a-.2. 当0a <时,抛物线开⼝向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??--,.当2bx a <-时,y 随x 的增⼤⽽增⼤;当2b x a >-时,y 随x 的增⼤⽽减⼩;当2bx a =-时,y 有最⼤值244ac b a-.七、⼆次函数解析式的表⽰⽅法1. ⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化.⼋、⼆次函数的图象与各项系数之间的关系1. ⼆次项系数a⼆次函数2y ax bx c =++中,a 作为⼆次项系数,显然0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结起来,a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝的⼤⼩.2. ⼀次项系数b在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则03. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般来说,有如下⼏种情况:1. 已知抛物线上三点的坐标,⼀般选⽤⼀般式;2. 已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;4. 已知抛物线上纵坐标相同的两点,常选⽤顶点式.九、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或⽅便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼗、⼆次函数与⼀元⼆次⽅程:1. ⼆次函数与⼀元⼆次⽅程的关系(⼆次函数与x 轴交点情况):⼀元⼆次⽅程20ax bx c ++=是⼆次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是⼀元⼆次⽅程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-②当0?=时,图象与x 轴只有⼀个交点;③当0?<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上⽅,⽆论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下⽅,⽆论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴⼀定相交,交点坐标为(0,)c ;3. ⼆次函数常⽤解题⽅法总结:⑴求⼆次函数的图象与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图象的位置判断⼆次函数2y ax bx c =++中a ,b ,c 的符号,或由⼆次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图象关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标. ⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式2(0)ax bx c a ++≠本⾝就是所含字母x 的⼆次函数;下⾯以0a >时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:⼆次函数考查重点与常见题型1.考查⼆次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为⾃变量的⼆次函数2)2(22--+-=m m x m y 的图像经过原点,则m 的值是2.综合考查正⽐例、反⽐例、⼀次函数、⼆次函数的图像,习题的特点是在同⼀直⾓坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第⼀、⼆、三象限内,那么函数12-+=bx kx y 的图像⼤致是()3.考查⽤待定系数法求⼆次函数的解析式,有关习题出现的频率很⾼,习题类型有中档解答题和选拔性的综合题,如:已知⼀条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数基础知识详细讲解(附例题与答案)一、什么是二次函数?【引例】一个正方体的棱长为a,它的表面积为S,于是我们可以得到函数关系式:S=6a²,这里a是自变量,S是a的函数,因为这里自变量的最高次数是2,所以我们把它称为二次函数我们可以以图表的形式把对应关系表示出来(不考虑实际意义):我们根据列表绘制出它的图像:我们发现:二次函数的图像是一条抛物线二、二次函数的图象研究刚才我们已经知道二次函数的图像是一条抛物线,那么这条抛物线有什么特点那?二次函数的一般形式:y=ax²+bx+c(a≠0)(1)我们先来研究a与抛物线y=ax²+bx+c图像的联系我们发现:当a>0时,抛物线开口向上;当a<>观察上面的抛物线我们发现:当a>0,a越大,开口越小当a<>即|a|越大,开口越小(2)抛物线与y轴的交点对于y=ax²+bx+c,令x=0,得y=c,即抛物线与y轴的交点为(0,c)(3)抛物线与x轴的交点对于y=ax²+bx+c,令y=0,就转化成了一元二次方程ax²+bx+c=0我们知道这个方程根的个数可以用判别式△=b²-4ac来判断,①当△>0时,方程有两个不相等的实根②当△=0时,方程有两个相等的实根③当△<>而一元二次方程ax²+bx+c=0的实根个数和抛物线y=ax²+bx+c 与x轴的交点个数是相对应的①当△>0时,抛物线与x轴有两个交点所以,当给出两个交点时,我们也可以把函数关系式写成:我们也把这个关系式叫做交点式②当△=0时,抛物线与x轴有一个交点③当△<>(4)抛物线的顶点及对称性不难发现,抛物线是个轴对称图形,那么它的对称轴是什么那?我们随便找一个二次函数y=2x²-4x+1,我们对它进行配方,得到y=2(x-1)²-1我们利用列表法描点:根据图像我们发现:此函数图像的对称轴为x=1当x<>当x>1,即在对称轴右侧时,抛物线呈增强趋势;当x=1,即在对称轴上时,y=-1,而(1,-1)即为抛物线y=2(x-1)²-1的顶点下面我们对一般情况进行分析:对二次函数一般形式y=ax²+bx+c进行配方得:因此抛物线y=ax²+bx+c的对称轴:顶点坐标:所以我们也把称为顶点式(5)抛物线的增减性与最值观察图像,我们发现:①若a>0②若a<>三、二次函数图象分析常用图四、二次函数题型归纳及做题技巧类型一二次函数的概念【知识点】判断二次函数解析式的三个特征:①整式;②a≠0;③化简后x的最高次数是2 例题1 下列函数中属于二次函数的是()A. y = 2x + 1 B. y = (x - 1)² - x²C. y = 2x²D.【提示】根据二次函数解析式三个特征例题2 已知是y关于x的二次函数,那么m的值为()A. -2 B. 2 C. ±2 D. 0【提示】根据二次函数解析式三个特征类型二二次函数的图像和性质【知识点】二次函数y=ax²+bx+c图像性质1、根据a判断开口方向,|a|判断开口大小①a>0,开口向上;a<>②|a|越大开口越小,|a|相等,抛物线的开口大小,形状相同2、根据c判断与y轴的交点位置①c>0,交于y轴正半轴②c<>③c=0,抛物线经过原点3、根据△判断交点个数①△>0,与x轴有2个交点②△=0,与x轴有1个交点③△<>4、对称轴对称轴是直线x = -b/2a①b=0时,对称轴为y轴②b/a>0(即a、b同号),对称轴在y轴左侧③b/a<>5、根据开口方向和对称轴判断增减性①a>0,对称轴左侧递减,右侧递增②a<>6、看图象判定代数式的值或范围①判断a,b,c的符号和取值根据开口方向及大小,对称轴在y轴哪侧,与y轴交点判断②如何得到a±b+c的值或范围x取±1时可得出③如何得到2a±b的值或范围比较对称轴-b/2a与±1的大小关系得出④如何得到b²-4ac的大小根据图象与x轴的交点个数⑤如何得到a,b,c的关系式试试经过的点代入⑥碰到特殊的技巧和规律就积累下来例题3 函数y= - x² + 1的图象大致为()【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图象例题4 关于抛物线y = x² - 2x +1,下列说法错误的是()A. 开口向上B. 与x轴有两个重合的交点C. 对称轴是直线x = 1D. 当x>1时,y随x的增大而减小【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图像,或直接画出图象例题5 下列图像中,有一个可能是函数y = ax² + bx + a + b (a≠0)的图象,它是()【提示】根据y = ax² + bx + a + b(a≠0),对a,b的正负进行分类讨论,把一定错误的排除掉即可得到正确选项例题6 已知函数y = ax² + bx +a + c,当y > 0时,-1/3 < x="">< 1/2,则函数y="cx²" -="" bx="" +="">【提示】根据a,b,c分别对图象的影响或利用根与系数的关系例题7 如图,已知二次函数y = ax² + bx + c(a≠0)的图像与x 轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x = 1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac-b²<8a ④1/3 < a="">< 2/3="" ="">其中含所有正确结论的选项是()A. ①③B. ①③④C. ②④⑤D. ①③④⑤【提示】根据对称轴及图象开口方向向上可判断出a,b,c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),从而判断②;根据图像经过(-1,0)可得到a,b,c之间的关系,从而判断③⑤;从图像与y轴的交点B在(0,-2)和(0,-1)之间,从而判断c的大小,进而判断④类型三利用二次函数的对称性解题【知识点】1、若抛物线上的点,纵坐标相同,它们一定关于对称轴对称如上图,经过抛物线的A、B两点的纵坐标都是2,那么它们一定关于对称轴对称2、若抛物线上A、B两点关于对称轴对称,且它们的横坐标分别为m、n,则对称轴为x=(m+n)/2例题8 二次函数y = ax² + bx +c,自变量x与函数y的对应值如表:下列说法正确的是()A. 抛物线开口向下B. 当x>-3时,y随x的增大而增大C. 二次函数的最小值是-2D. 抛物线的对称轴是x=-5/2【提示】注意表格中给出的y值,有三对相同的数字,而它们都是图象上点的纵坐标,抛物线上的点,纵坐标相同,它们一定关于对称轴对称,再根据二次函数的性质逐项判断例题9【提示】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,根据二次函数图象的对称性可知,关于对称轴对称,即可判断例题10 如图,抛物线y = x² - bx + c交x轴于点A(1,0),交y轴于点B,对称轴是x = 2(1)求抛物线的解析式(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由【提示】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,求出b,c即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质连接BC 与x=2交于点P,点P即为所求,求出直线BC与x=2的交点即可类型四根据条件确定二次函数的解析式【知识点】注:有顶点信息用顶点式,有交点信息用交点式,没特殊信息用一般式例题11 已知某二次函数的图象如图,则这个二次函数的解析式为()A. y = - 3(x - 1)² + 3B. y = 3(x - 1)² + 3C. y = - 3(x + 1)² + 3D. y = 3(x + 1)² + 3【提示】有顶点信息,用顶点式例题12 已知二次函数的图象经过(-1,-5),(0,-4),(1,1),则这个二次函数的表达式为()A. y = - 6x² + 3x + 4B. y = - 2x² + 3x - 4C. y = x² + 2x - 4D. y = 2x² + 3x - 4【提示】无特殊信息,用一般式例题13 已知二次函数图象经过(1,0),(2,0),(0,2)三点,则该函数图象的关系式是_____________________.【提示】有交点信息,用交点式类型五利用二次函数解决实际问题例题14 在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是y cm²,设金色纸边的宽度为x cm,那么y关于x的函数是()A. y = (60+2x)(40+2x)B. y = (60+x)(40+x)C. y = (60+2x)(40+x)D. y = (60+x)(40+2x)【提示】挂图面积 = 长×宽 =(60+2x)(40+2x)例题15 某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?【提示】可参考(九年级第5讲)一元二次方程的实际应用【参考答案】例题1:C例题2:A例题3:B例题4:D例题5:C例题6:D例题7:D例题8:D例题9:D例题10:(1)解析式为:y=x²- 4x + 3(2)点P的坐标为(2,1)例题11:A例题12:D例题13:y= x² - 3x + 2例题14:A例题15:(1)销售量:600(件),销售利润:12000(元)(2)关系式:y= -20(x-75)² + 12500最大利润:12500元(3)定价为70元或80元时这批服装可获利12000元。
1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2、二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4、二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6、抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作直线h x =.特别地,y 轴记作直线0=x .7、顶点决定抛物线的位置:几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9、抛物线c bx ax y ++=2中,c b a ,,的作用(1)二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.A 、当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;B 、当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 10、几种特殊的二次函数的图像特征如下:11、用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,21x x AB -=13、二次函数的最值:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2-=时,ab ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,ab ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
14、二次函数图象的平移 (1)平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(2) 平移规律:在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“上加下减,左加右减”. 15、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: (1) 已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x 轴的两个交点的横坐标,一般选用交点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式.二次函数典型例题解析关于二次函数的概念例1 如果函数1)3(232++-=+-mx x m y m m是二次函数,那么m 的值为 。
例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。
关于二次函数的性质及图象例3 函数)0(2≠++=a c bx ax y 的图象如图所示,则a 、b 、c ,∆,c b a ++,c b a +-的符号为例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。
乙:函数的图像经过第一象限。
丙:当x <2时,y 随x 的增大而减小。
丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。
例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式)例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线xky =)0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( )例8 在同一坐标系中,直线b ax y +=和抛物线2确定二次函数的解析式例9 已知:函数cbx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y(C )322+--=x x y (D )322---=x x y例10 如图:△ABC 是边长为4的等边三角形,AB 在X 轴上, 点C 在第一象限,AC 与Y 轴交于点D ,点A 的坐标为(-1,0) (1) 求 B 、C 、D 三点的坐标;(2) 抛物线c bx ax y ++=2经过B 、C 、D 三点,求它的解析式;以二次函数为基架的综合题例11 二次函数y=ax 2+bx+c 的图象过点(1,0)(0,3),对称轴x= -1。
① 求函数解析式;② 若图象与x 轴交于A 、B (A 在B 左)与y 轴交于C,顶点D ,求四边形ABCD 的面积。
x例12 已知:抛物线m x x y +--=232与X 轴分别交于A 、B 两点(点A 在B 的左边),点P 为抛物线的顶点,(1)若抛物线的顶点在直线313+=x y 上,求抛物线的解析式; (2)若AP ∶BP ∶AB=1∶1∶2,求抛物线的解析式。
例12 已知二次函数y=x 2-(m 2+8)x+2(m 2+6),设抛物线顶点为A ,与x 轴交于B 、C 两点,问是否存在实数m,使△ABC 为等腰直角三角形,如果存在求m;若不存在说明理由。
例13 已知:抛物线y=ax 2+bx+c 过点A (-1,4),其顶点的横坐标是1/2,与X 轴分别交于B (x 1,0),C (x 2,0)两点(其中x 1<x 2),且x 12+x 22=13。
(1)求此抛物线的解析式及其顶点E 的坐标;(2)设此抛物线与y 轴交于点D ,点M 是抛物线上的点,若ΔMBO 的面积为ΔDOC 的面积的2/3倍,求点M 的坐标。