高考数学平面向量复习6
- 格式:pptx
- 大小:140.32 KB
- 文档页数:23
特别提醒:①,sin()sin ,sincos 22A B C A B C A B C π++=-+==: ②锐角三角形⇒sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭⇒sin sin sin cos cos cos A B C A B C ++>++.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin i a b A B :=:;()sin 2a ii A R =;()2sin iii a R A =; ②已知三角形两边及一边的对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等, 解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.(4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径). (5)大边对大角:当出现多个解时,常用于判断哪些是符合题意的解、哪些不是.在三角形中,sin sin A B A B >⇔>,这是“正弦定理+大边对大角”的应用.14. 致命易错点提示:(1)特殊角三角函数值、诱导公式和三角变换公式使用错误;(2)大题第一步化简错误(应在化简完后立刻检验);(3)已知三角函数值求角、同角三角函数之间的互化、三角函数值域和最值的研究经常会忽略角的范围.第五部分 平面向量1. 向量有关概念:(1)向量的概念:既有大小又有方向的量,叫向量. 向量常用有向线段来表示.注意向量和数量的区别.(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的.(3)单位向量:长度为一个单位长度的向量叫做单位向量.(与AB 共线的单位向量有两个:AB±,一个同向,一个反向).(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性.(5)相反向量:长度相等方向相反的向量叫做相反向量, a 的相反向量是-a .(6)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行.提醒:①两个向量平行与两条直线平行是不同的两个概念,两个向量平行包含基线平行与重合两种情况, 但两条直线平行不包含两条直线重合.②三点A B C 、、共线⇔AB ∥AC .2. 向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意前为起点,后为终点.(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等.(3)坐标表示法:在平面直角坐标系内,以与x 轴、y 轴正方向同向的两个单位向量i ,j 为基底,则平面内任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.3. 平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.如:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(用,a b 表示)(答:1322a b -). (2)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0).4. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:(1);a a λλ=(2)当λ0>时,λa 的方向与a 的方向相同;当λ0<时,λa 的方向与a 的方向相反;当λ=0时,0a λ=,注意:λa ≠0. 5. 平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角.当θ=0时,a ,b 同向;当θ=π时,a ,b 反向;当θ=2π时,a ,b 垂直.(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积,或点积),记作:b a ⋅,即b a ⋅=cos a b θ.规定:零向量与任一向量的数量积是0.注意数量积是一个实数,不再是一个向量.如:①2=5=,3-=⋅b a ,则a b +等于____.) ②已知非零向量,a b 满足a b a b ==-,则,a a b 〈+〉的大小为____.(答:30)(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0. 如:已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在→b 上的投影为____.(答:512) (4)b a ⋅的几何意义:数量积b a ⋅等于a 的模||a 与b 在a 上的投影数量的积.(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0=⋅⇔⊥b a b a .②当a ,b 同向时,b a ⋅=a b ,特别地,22||a a a a =⋅=,||a = 当a 与b 反向时,b a ⋅=-a b .当θ为锐角时,b a ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件.当θ为钝角时,b a ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件.③非零向量a ,b 夹角θ的计算公式:||||cos b a b a =θ ④||||||b a b a ≤⋅.如 :已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______.(答:43λ<-或0λ>且13λ≠) 6.向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行.向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC叫做a 与b 的和,即a b AB BC AC +=+=.②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么, 由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同.(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±.②实数与向量的积:()()1111,,a x y x y λλλλ==.③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.④平面向量数量积:2121y y x x b a +=⋅.⑤向量的模:222222||,||a x y a a x y =+==+.⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =.7. 向量的运算律: (1)交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅.( 2 ) 结合律:()(),a b c a b c a b c a b c ++=++--=-+,)()()(b a b a b a λλλ⋅=⋅=⋅.(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+, c b c a c b a ⋅+⋅=⋅+)(.如:在下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(.② →→→→→→⋅⋅=⋅⋅c b a c b a )()(. ③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+. ④ 若0=⋅→→b a ,则0=→a 或0=→b . ⑤ 若,a b c b ⋅=⋅则a c =.⑥22a a =. ⑦2a bb a a ⋅=.⑧222()a b a b ⋅=⋅. ⑨222()2a b a a b b -=-⋅+.其中正确的是______.(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约). (2)向量的“乘法”不满足结合律,即c b a c b a )()(⋅≠⋅.(为什么?)8. 向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0.如:(1)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =___.(答:4).(2)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 三点共线.(答:-2或11)9. 向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如:已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = .(答:32)10.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-. 当 a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.当 a b 、不共线⇔||||||||||||a b a b a b -<±<+. (这些和实数比较类似)(3)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭. 如 :若ABC ∆的三边的中点坐标分别为(2,1)、(-3,4)、(-1,-1),则ABC ∆的重心坐标为_______.(答:24(,)33-) ②1()3PG PA PB PC =++⇔G 为ABC ∆的重心, 特别地,0PA PB PC P ++=⇔为ABC ∆的重心.③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.④向量()(0)||||AC AB AB AC λλ+≠的基线经过ABC ∆的内心. (4)P 为12P P 的中点122MP MP MP +⇔=. (5)向量 PA PB PC 、、的终点A B C 、、共线⇔存在实数αβ、,使得PA PB PC αβ=+,且1αβ+=.如:平面直角坐标系中,O 为坐标原点,已知)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是____. (答:直线AB ) 第六部分 数列1.数列的定义:数列是一个定义域为正整数集*N (或它的有限子集{}n ,,3,2,1 )上 的特殊函数,数列的通项公式也就是相应函数的解析式.2. 一般数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 3. 等差数列的概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数).(2)等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d =+-.(3)等差数列的前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 注意n S 与中间项的关系.(4)等差中项:若,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,2a b A +=. 4.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是。
第1节 平面向量的概念及线性运算[A 级 基础巩固]1.(多选题)已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的是()A .①B .②C .③D .④解析:由题知结果为零向量的是①④. 答案:AD2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是()A .a =2bB .a ∥bC .a =-13b D .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.观察选项,C 项中a ,b 共线且方向相反. 答案:C3.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是() A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D解析:因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.答案:B4.在△ABC 中,G 为重心,记AB →=a ,AC →=b ,则CG →=() A.13a -23b B.13a +23b C.23a -13b D.23a +13b 解析:因为G 为△ABC 的重心,所以AG →=13(AB →+AC →)=13a +13b ,所以CG →=CA →+AG →=-b +13a +13b =13a -23b .答案:A5.设a 是非零向量,λ是非零实数,下列结论中正确的是() A .a 与λa 的方向相反B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a解析:对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.答案:B6.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则() A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上. 答案:B7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .4解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.答案:B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值X 围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析:设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案:D9.如图所示,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析:根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案:310.(2020·武邑中学质检)在锐角△ABC 中,CM →=3 MB →,AM →=xAB →+yAC →(x ,y ∈R),则xy=________.解析:由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故xy =3.答案:311.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为λa +b 与a +2b 平行,所以λa +b =t (a +2b ), 即λa +b =ta +2tb ,所以⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:1212.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,因为DE →=λ1AB →+λ2AC →, 所以λ1=-16,λ2=23,因此λ1+λ2=12.答案:12[B 级 能力提升]13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14 C .1 D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58.答案:A14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值X 围是()A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0) 解析:设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线, 所以λm +μm=1,即λ+μ=m , 所以λ+μ>1. 答案:B15.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →,所以O 是AC 边上的中线BD 的中点, 所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2∶1. 答案:2∶1[C 级 素养升华]16.(多选题)(2020·某某四校联考)如图所示,在△ABC 中,点D 在边BC 上,且CD =2DB ,点E 在边AD 上,且AD =3AE ,则()A.CE →=29AB →+89AC →B.CE →=29AB →-89AC →C.CE →=13AD →+AC →D.CE →=13AD →-AC →解析:因为CE →=CA →+AE →,AE →=13AD →,AD →=AB →+BD →,BD →=13BC →,BC →=BA →+AC →,所以CE →=13AD →-AC →,BD →=13(BA →+AC →),所以AD →=AB →+BD →=AB →+13BA →+13AC →, 所以AE →=13(AB →+13BA →+13AC →),所以CE →=CA →+13AB →+19BA →+19AC →=13AB →+19BA →+CA →+19AC →=29AB →-89AC →. 答案:BD素养培育直观想象——共线向量定理的推广(自主阅读)共线定理:已知PA →,PB →为平面内两个不共线的向量,设PC →=xPA →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.推广形式:如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xPA →+yPB →(x ,y ∈R).当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λPA →+μPB →(λ,μ∈R),则λ+μ=1.由△PAB 与△PED 相似,知必存在一个常数m ∈R ,使得PC →=mPF →,则PC →=mPF →=mλPA →+mμPB →.又PC →=xPA →+yPB →(x ,y ∈R), 所以x +y =mλ+mμ=m . 以上过程可逆.因此得到结论:PC →=xPA →+yPB →, 则x +y =m (定值),反之亦成立.[典例1] 如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R),则α+β的取值X 围是________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4][典例2] 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值X 围是________.解析:由点D 是圆O 外的一点,可设BD →=λBA →(λ>1),则OD →=OB →+BD →=OB →+λBA →=λOA →+(1-λ)OB →.因为C 、O 、D 三点共线,令OD →=-μOC →(μ>1).所以OC →=-λμOA →-1-λμOB →(λ>1,μ>1).因为OC →=mOA →+nOB →,所以m =-λμ,n =-1-λμ,所以m +n =-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0)。
高考真题理科数学解析分类汇编6 平面向量1.【2012高考重庆理6】设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且c b c a //,⊥,+(A (B (C ) (D )10 【答案】B【解析】因为c b c a //,⊥,所以有042=-x 且042=+y ,解得2=x ,2-=y ,即)2,1(),1,2(-==,所以)1,3(-=+10=+,选B.2.【2012高考浙江理5】设a ,b 是两个非零向量。
A.若|a+b |=|a |-|b |,则a ⊥bB.若a ⊥b ,则|a +b |=|a |-|b |C.若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD.若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.3.【2012高考四川理7】设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =【答案】C【解析】A.=为既不充分也不必要条件;B.可以推得||||a ba b =||||b a =C .为充分不必要条件;D 同B.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.【2012高考辽宁理3】已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是(A) a ∥b (B) a ⊥b (C){0,1,3} (D)a +b =a -b 【答案】B【解析】一、由|a +b |=|a -b |,平方可得a ⋅b =0,所a ⊥b ,故选B二、根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B 【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。
【最新】数学《平面向量》高考复习知识点一、选择题1.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A .3B .2C .3D .2【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r ,||||AB AC λ===u u u ru u ur . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.2.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,12AC AC =-⨯=∴=,∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以22333333,,(2)()1322222AD DB OB =⨯==∴=++=, 所以72cos 13213BOA ∠==, 所以1327213OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r的最大值为32cos023⨯⨯=o ,∴43λμ+的最大值是723+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r,则λ+μ的值为( )A.6 5B.85C.2D.83【答案】B【解析】【分析】建立平面直角坐标系,用坐标表示,,CA CE DBu u u r u u u r u u u r,利用(,)CA CE DB Rλμλμ=+∈u u u r u u u r u u u r,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),(2,2),(2,1),(1,2)CA CE DB∴=-=-=u u u r u u u r u u u rCA CE DBλμ=+u u u r u u u r u u u rQ∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.4.已知5MN a b=+u u u u r rr,28NP a b=-+u u u r rr,3()PQ a b=-u u u r rr,则()A.,,M N P三点共线B.,,M N Q三点共线C.,,N P Q三点共线D.,,M P Q三点共线【答案】B【解析】【分析】利用平面向量共线定理进行判断即可.【详解】因为28NP a b=-+u u u r rr,3()PQ a b=-u u u r rr所以()2835NQ NP PQ a b a b a b=+=-++-=+u u u r u u u r u u u r r r r r r r,因为5MN a b=+u u u u r rr,所以MN NQ=u u u u r u u u r由平面向量共线定理可知,MN u u u u r与NQ uuu r为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.5.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.6.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.7.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u uv u u u vB .53AD BE +u u uv u u u vC .4132AD BE +u u uv u u u vD .5132AD BE +u u uv u u u v【答案】B 【解析】 【分析】利用向量的加减运算求解即可 【详解】2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .故选B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题8.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .22C .2D .2【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题9.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r的最小值为( )A .252-B .8-C .172-D .1758-【答案】A 【解析】 【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值.【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r,则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭.故选:A. 【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.10.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v,则λ=( )A .14B .14-C .13D .13-【答案】B 【解析】 【分析】由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u ur u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出.【详解】 13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,故选B. 【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.11.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r表示CP u u u v,再利用数量积的定义得解. 【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v 221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.12.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则2AB AC BD DE EC =====,AD AE ===,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.13.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) ABC.2-D【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r, 因为()()21a c b c -⋅-=r r r r,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.14.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r的取值范围( ) A .(4,)+∞ B .[4,)+∞C .(0,4)D .(2,4)【答案】A 【解析】 【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u r u u u r u u u r,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u r u u u u u r求解.【详解】因为,EF ED DC CF EF EA AB BF =++=++u u u ru u u ru u u ru u u r u u u ru u u r u u u ru u u r, 所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r ,所以24AB DC EF +==u u u r u u ,因为AB 不平行于CD ,所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r.故选:A【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.15.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.16.如图,向量a b -r r等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r【答案】D 【解析】 【分析】 【详解】由向量减法的运算法则可得123a e b e -=-+r r r u u r,17.已知向量OA u u u r 与OB uuu r的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】因为2cos OA OB θ⋅=u u u r u u u r,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r的最大值为( ) A .714-B .24-C .514-D .30-【答案】A 【解析】 【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x <AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x +(,AM x ∴=+u u u u r()1,343E x M x -=--u u u r()()()3433531AM ME x x x x --∴⋅=--++u u u u r u u u r242660x x =-+- 242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max714AM ME⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.19.已知向量(sin ,cos )a αα=r ,(1,2)b =r,则以下说法不正确的是( ) A .若//a b r r,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r取得最大值,则1tan 2α= D .||a b -r r 51 【答案】B 【解析】 【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()fα的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性. 【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r1,此时a =r,,a b r r反向.故选项D 正确.故选:B 【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.20.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13B.3-C.3-D .13-【答案】D 【解析】 【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案. 【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D 【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.。
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。