第九篇 解析几何第6讲 双曲线
- 格式:doc
- 大小:170.50 KB
- 文档页数:4
解析几何【6】双曲线1、双曲线的定义(1)平面内到两个定点1F 、2F 的距离之差的绝对值等于常数2a (122a F F )的点的轨迹称为双曲线,这两个定点1F 、2F 称为双曲线的焦点,两个焦点的距离12F F 称为焦距.为空集.2、在x a 和x a 两条平行线的外侧,向左、右两旁无限伸展y a 和y a 两条平行线的外侧,向上、下两方无限伸展关于x 、y 轴均对称,关于原点中心对称1,0A a , 2,0A a 10,A a , 20,A a ,0F c ,,0F c 0,F c ,0,F c3、等轴双曲线实轴和虚轴等长的双曲线称为等轴双曲线.焦点在x 轴上,标准方程为222x y a (0a );焦点在y 轴上,标准方程为222y x a (0a ).渐近线方程为y x .以坐标轴为渐近线的双曲线方程为xy m (0m ).4、共轭双曲线以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线称为原双曲线的共轭双曲线.互为共轭的两双曲线22221x y a b 和22221y x (0a ,0b )有相同的渐近线,它们的四个焦点共圆.5、设直线kx m (0k ),双曲线22221x y a b (a 221my b,消去y 得222222220ba x a mkx a m ab .(1)220a k ,即bk a,直线与双曲线渐近线平行,直线与双曲线相交于一点.(2)若2220b a k ,即b k a, 22222222224a mk b a k a m a b .①0 直线与双曲线相交,有两个交点;若相交于同侧(两个交点在一支上)的条件为120x x,若相交于异侧(两个交点在不同支上)的条件为120x x .②0 直线与双曲线相切,有一个交点;注意:直线与双曲线有一个公共点是直线与双曲线相切的必要不充分条件.③0 直线与双曲线相离,无交点.【温馨点睛】1、求双曲线的标准方程的两种方法:(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a 、2b 或2c ,从而求出2a 、2b ,写出双曲线方程.(2)待定系数法:先确定焦点是在x 轴上还是在y 轴上,设出标准方程,再由条件确定2a 、2b 的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为2222x y m n(0 ),根据条件求 的值.2、【例(1)(2)【同类变式】设直线l 的方程为210x By ,倾斜角为 .(1)试将 表示为B 的函数;(2)若263,求B 的取值范围:(3)若 ,21,B ,求 的取值范围.【例(1)(2)(3)【同类变式】求适合下列条件的直线方程.(1)经过点 0,2A ,它的倾斜角的正弦值是35;(2)经过点 5,2B ,且在x 轴上的截距等于在y 轴上截距的2倍;(3)经过点 5,4C ,与两坐标轴围成的三角形面积为5.【考点三】直线过定点问题【例3】已知直线 :2311l a y a x .(1)求证;无论a 为何值,直线l 总经过第一象限;(2)直线l 是否有可能不经过第二象限?若有可能,求出a 的范围;若不可能,说明理由.【同类变式】已知直线方程为 22140m x m y .(1)该直线是否经过定点?若经过,求出该点坐标;若不经过,说明你的理由;(2)当m 为何值时,点 3,4Q 到直线的距离最大,最大值为多少?(3)当m 在什么范围时,该直线与两坐标轴负半轴均相交?【例轴的正半轴分别交于A 、B 两点,求ABO 的面积的最小(1)(2)【真题自测】1.现有下列四个命题:①经过定点 000,P x y 的直线都可以用方程 00y y k x x ;②经过任意两个不同的点 111,P x y 、 222,P x y 的直线都可以用方程121121x x y y y y x x 表示;③不经过原点的直线都可以用方程1x ya b表示:④经过定点 0,A b 的直线都可以用方程y kx b 表示.其中真命题的个数是().A 0;.B 1;.C 2;.D 3.2..A .B .C .D3.直线:tan105l x y 的倾斜角.4.已知点 2,3A 、 1,4B ,则直线AB 的点法式方程为.5.已知点 3,4A 、 2,2B ,直线20mx y m 与线段AB 相交,则实数m 的取值范围是.6.1212x y y .k ,0k。
9。
6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫作双曲线。
这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a〉0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b〉0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b>0)。
3。
双曲线的性质标准方程x2a2−y2b2=1(a〉0,b〉0)y2a2−x2b2=1(a〉0,b〉0)图形续表标准方程x2a2−y2b2=1(a>0,b〉0)y2a2−x2b2=1(a>0,b〉0)性质范围x≥a或x≤-a,y∈Ry≤—a或y≥a,x∈R 对称性对称轴:,对称中心:顶点A1,A2A1,A2渐近线y=±xxx y=±xxx离心率e=xx,e∈(1,+∞)a,b,c的关系c2=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长1.过双曲线x2a2−y2b2=1(a>0,b〉0)上一点M(x0,y0)的切线方程为x0xa2−y0yb2=1.2.双曲线x2a2−y2b2=1(a>0,b〉0)的左、右焦点分别为F1,F2,点P(x0,y0)为双曲线上任意一点,且不与点F1,F2共线,∠F1PF2=θ,则△F1PF2的面积为b2xxxθ2。
3。
若点P(x0,y0)在双曲线x2a2−y2b2=1(a〉0,b〉0)内,则被点P所平分的中点弦的方程为x0xa2−y0yb2=x02a2−y02b2。
第6讲双曲线
双基自测
1.双曲线x2
10-y2
2=1的焦距为().
A.3 2 B.4 2 C.3 3 D.4 3 2.双曲线2x2-y2=8的实轴长是().
A.2 B.2 2 C.4 D.4 2
3.设双曲线x2
a2-y2
b2=1(a>0,b>0)的虚轴长为2,焦距为23,则双曲线的渐
近线方程为().
A.y=±2x B.y=±2x C.y=±
2
2x D.y=±
1
2x
4.已知双曲线x2
a2-y2
b2=1(a>0,b>0)的两条渐近线均和圆C:x
2+y2-6x+5=
0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为().
A.x2
5-
y2
4=1 B.
x2
4-
y2
5=1 C.
x2
3-
y2
6=1 D.
x2
6-
y2
3=1
5.设P是双曲线x2
a2-
y2
9=1上一点,双曲线的一条渐近线方程为3x-2y=0,
F1、F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|等于________.
考向一求双曲线的标准方程
【例1】►设椭圆C1的离心率为5
13,焦点在x轴上且长轴长为26.若曲线C2上
的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为().
A.x2
42-
y2
32=1 B.
x2
132-
y2
52=1
C.x2
32-
y2
42=1 D.
x2
132-
y2
122=1
【训练1】已知双曲线x2
a2-
y2
b2=1(a>0,b>0)的一条渐近线方程是y=3x,它
的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为________.
难点突破——高考中椭圆与双曲线的离心率的求解问题
【示例1】►(2010·广东)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是().
A.4
5 B.
3
5 C.
2
5 D.
1
5
【示例2】►(2011·福建)设圆锥曲线Γ的两个焦点分别为F1,F2.若曲线Γ上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线Γ的离心率等于().
A.1
2或
3
2 B.
2
3或2
C.1
2或2 D.
2
3或
3
2
A 组
一、选择题
1.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )
A .191622=-y x
B .191622=+-y x
C .116922=+y x
D .116
92
2=-y x 2.方程6)5()5(2222=++-+-y x y x 化简得:
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 3.过点A (1,0)和B ()1,2的双曲线标准方程( )
A .1222=-y x
B .122=+-y x
C .122=-y x D. 122
2=+-y x 4.已知双曲线21
==e a ,且焦点在x 轴上,则双曲线的标准方程是( ) A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x
5.双曲线19
162
2=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x
6.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 二、填空题
7.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.
8.已知16
52
2=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是_________.
B 组
1.设F 1和F 2为双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为( )
A.32 B .2 C.52
D .3 2.已知双曲线x 22-y 2
b 2=1(b >0)的左、右焦点分别是F 1,F 2,其一条渐近线方程为y =x ,点 P (3,y 0)在双曲线上.则PF 1→·PF 2→=( )
A .-12
B .-2
C .0
D .4
3.设双曲线x 216-y 29
=1上的点P 到点(5,0)的距离为15,则P 点到(-5,0)的距离是________. 4.(2011年江西)若双曲线y 216-x 2m
=1的离心率e =2,则m =__________. 5.(2011年北京)已知双曲线x 2
-y 2
b 2=1(b >0)的一条渐近线的方程为y =2x ,则b =________. 6.过双曲线C :x 2a 2-y 2
b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.
7.已知双曲线C :x 2a 2-y 2
b 2=1(a >0,b >0)的离心率为3,虚轴长为2 2. (1)求双曲线C 的方程;
(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.。