高中数学【Word版题库】7.3 二元一次不等式组与简单的线性规划问题
- 格式:doc
- 大小:262.00 KB
- 文档页数:8
专题7 二元一次不等式(组)与简单的线性规划问题学习目标1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识点一二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分知识点二点P1(x1,y1)和P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0;位于直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)>0.知识点三简单的线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由变量x,y组成的一次不等式(组)目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次函数解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题考点一二元一次不等式(组)表示的平面区域【典例1】(山东烟台二中2019届模拟)(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则实数a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞【答案】(1)B (2)D【解析】(1)作出不等式组所表示的可行域如图中阴影部分所示,△ABC 的面积即所求.求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S =12×(2-1)×2=1.(2)不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝⎛⎭⎫23,23,由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0). 若原不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.【方法技巧】1.求平面区域面积的方法(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高.若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解.若为不规则四边形,可分割成几个规则图形分别求解再求和即可.2.平面区域的形状问题两种题型及解法(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状;(2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论.【变式1】(河南开封高级中学2019届模拟)若不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +2≥0,2x -y -2≤0所表示的平面区域被直线l :mx -y +m +1=0分为面积相等的两部分,则m =( )A.12 B .2 C .-12D .-2【答案】A【解析】由题意可画出可行域为△ABC 及其内部所表示的平面区域,如图所示.联立可行域边界所在直线方程,可得A (-1,1),B ⎝⎛⎭⎫23,-23,C (4,6).因为直线l :y =m (x +1)+1过定点A (-1,1),直线l 将△ABC 分为面积相等的两部分,所以直线l 过边BC 的中点D ,易得D ⎝⎛⎭⎫73,83,代入mx -y +m +1=0,得m =12,故选A.考点二 求线性目标函数的最值【典例2】【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A .−7 B .1C .5D .7【答案】C【解析】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5,故选C .【方法技巧】线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以直接解出可行域的顶点,将坐标代入目标函数求出相应的数值,从而确定目标函数的最值。
配餐作业(三十七)二元一次不等式(组)与简单的线性规划问题(时间:40分钟)一、选择题1.(2016·四川高考)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,故选A 。
答案 A2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点。
故选C 。
答案 C3.(2017·郑州模拟)已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x -1,x +3y -5≤0,那么点P 到直线3x -4y -13=0的距离的最小值为( )A.115 B .2 C.95D .1解析 在坐标平面内画出题中的不等式组表示的平面区域及直线3x -4y -13=0。
结合图形可知,在该平面区域内所有的点中,到直线3x -4y -13=0的距离最近的点是(1,0)。
又点(1,0)到直线3x -4y -13=0的距离等于|3×1-4×0-13|5=2,即点P 到直线3x -4y -13=0的距离的最小值为2。
故选B 。
答案 B4.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解析 解法1:如图,已知约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,所表示的平面区域为图中所示的三角形区域ABC (包含边界),其中A (0,2),B (3,0),C (1,3)。
考点28 二元一次不等式(组)与简单的线性规划问题一、选择题1.(2013·新课标全国Ⅱ高考理科·T9)已知a>0,x,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩若z=2x+y 的最小值为1,则a= ( ) A.14B. 12C.1D.2【解题指南】结合线性约束条件,画出可行域,由目标函数取得最小值1,结合图形可求得a.【解析】选B.画出不等式组表示的平面区域如图所示:当目标函数z=2x+y 表示的直线经过点A 时,z 取得最小值,而点A 的坐标为(1,-2a),所以2-2a=1,解得a=1,2,故选B.2.(2013·新课标全国Ⅱ高考文科·T3)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )A.7-B.6-C.5-D.3-【解题指南】结合线性约束条件,画出可行域,将目标函数平移得最小值.【解析】选B.由z=2x-3y 得3y=2x-z ,即233z y x =-。
作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233z y x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.3. (2013·陕西高考文科·T7)若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为 ( ) A. -6B .-2C. 0D. 2【解题指南】画出直线围成的封闭区域,把求2x-y 最小值转化为求y=2x-z 所表示直线的截距的最大值,通过平移可求解.【解析】选A.2||==y x y 与的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 在封闭区域内平移直线y=2x ,在点(-2,2)时,2x – y = - 6取最小值.4. (2013·山东高考理科·T6)在平面直角坐标系xOy 中,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为 ( ) A.2 B.1 C.13- D. 12-【解题指南】本题可先根据题意画出平面区域,然后利用数形结合找出斜率的最值.【解析】选C. 作出可行域如图由图象可知当M 位于点D 处时,OM 的斜率最小.由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩,即(3,1)D -,此时OM 的斜率为1133-=-. 5.(2013·北京高考理科·T8)设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m 的取值范围是( )A.4,3⎛⎫-∞- ⎪⎝⎭B. 1,3⎛⎫-∞ ⎪⎝⎭C. 2,3⎛⎫-∞- ⎪⎝⎭D. 5,3⎛⎫-∞- ⎪⎝⎭【解题指南】作出平面区域,则区域的边界点中有一个在x 0-2y 0=2的上方,一个在下方。
二元一次不等式(组)与简单线性规划问题课堂巩固1.若222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数z x y =-的取值范围是A .[1,1]-B .[2,0]-C .[0,2]D .[2,2]-2.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a的值为A. -5B. 1C. 2D. 33.已知D 是由不等式组2030x y x y -≥⎧⎨+≥⎩,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为[ ]A4π B 2πC 34πD 32π4.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值5.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。
课后检测一、选择题1.若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+表示区域的面积为( )A .34 B. 43 C. 12D. 11,01(),03x x x x ⎧<⎪⎪⎨⎪-≥⎪⎩2.设x ,y 满足约束条件360200,0x y x y x ⎧⎪⎨⎪⎩--≤-+≥y ≥y ≥,若目标函数z =ax +by (a >0,b>0)的最大值为12,则2a +3b 的最小值为A .256 B .83 C .113D .4 3.已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组4325022010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则cos POQ ∠的最小值为A .12B .22C .32D .14.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无 数个,则a 为A .-2B .2C .-6D .6二、填空题5.设220240330x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则目标函数22z x y =+取得最大值时,x y +=6.若函数()f x = 则方程1()3f x =-的解集为 .7.已知函数2lg ,(0)()1,(0)x x f x x x ->⎧=⎨-≤⎩则不等式()0f x >的解集为______________。
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
高考数学一轮复习学案:7.3 二元一次不等式(组)与简单的线性规划问题(含答案)7.3二元一次不等二元一次不等式式组组与简与简单的线性规划问题单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式组表示的平面区域.目标函数最值的求法为主,兼顾由最优解可行域情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识本节内容在高考中以选择.填空题的形式进行考查,难度中低档.1二元一次不等式表示的平面区域1一般地,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0某一侧所有点组成的平面区域我们把直线画成虚线,以表示区域不包括边界直线当我们在坐标系中画不等式AxByC0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线2对于直线AxByC0同一侧的所有点,把它的坐标x,y代入AxByC,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点x0,y0作为测试点,由Ax0By0C的符号即可断定AxByC0表示的是直线AxByC0哪一侧的平面区域2线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式或方程组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域1直线定界不等式中无等号时直线画成虚线,有等号时直线画成实线2特殊点定域若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取0,1或1,0来验证知识拓展1利用“同号上,异号下”判断二元一次不等式表示的平面区域对于AxByC0或AxByC0时,区域为直线AxByC0的上方;2当BAxByC0表示的平面区域一定在直线AxByC0的上方3点x1,y1,x2,y2在直线AxByC0同侧的充要条件是Ax1By1CAx2By2C0,异侧的充要条件是Ax1By1CAx2By2C0.4 第二.四象限表示的平面区域可以用不等式xy0表示5线性目标函数的最优解是唯一的6最优解指的是使目标函数取得最大值或最小值的可行解7目标函数zaxbyb0中,z的几何意义是直线axbyz0在y轴上的截距题组二教材改编2P86T3不等式组x3y60,xy20表示的平面区域是答案B解析x3y60表示直线x3y60及其右下方部分,xy20表示直线xy20的左上方部分,故不等式组表示的平面区域为选项B中的阴影部分3P91T2投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米现某单位可使用资金1400万元,场地900平方米,则上述要求可用不等式组表示为__________________用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨答案200x300y1400,200x100y900,x0,y0解析用表格列出各数据AB总数产品吨数xy资金200x300y1400场地200x100y900所以不难看出,x0,y0,200x300y1400,200x100y900.题组三易错自纠4下列各点中,不在xy10表示的平面区域内的是A0,0B1,1C1,3D2,3答案C解析把各点的坐标代入可得1,3不适合,故选C.5xx日照一模已知变量x,y满足2xy0,x2y30,x0,则z22xy的最大值为A.2B22C2D4答案D解析作出满足不等式组的平面区域,如图阴影部分所示,令m2xy,则当m取得最大值时,z22xy取得最大值由图知直线m2xy经过点A1,2时,m取得最大值,所以zmax22124,故选D.6已知x,y满足xy50,xy0,x3,若使得zaxy取最大值的点x,y有无数个,则a的值为________答案1解析先根据约束条件画出可行域,如图中阴影部分所示,当直线zaxy和直线AB重合时,z取得最大值的点x,y有无数个,akAB1,a1.题型一二元一次不等式组表示的平面区域命题点1不含参数的平面区域问题典例xx黄冈模拟在平面直角坐标系中,已知平面区域Ax,y|xy1,且x0,y0,则平面区域Bxy,xy|x,yA的面积为A2B1C.12D.14答案B解析对于集合B,令mxy,nxy,则xmn2,ymn2,由于x,yA,所以mn2mn21,mn20,mn20,即m1,mn0,mn0,因此平面区域B的面积即为不等式组m1,mn0,mn0所对应的平面区域阴影部分的面积,画出图形可知,该平面区域的面积为212111,故选B.命题点2含参数的平面区域问题典例若不等式组xy0,2xy2,y0,xya表示的平面区域的形状是三角形,则a的取值范围是Aa43B0a1C1a43D00,y12x3,x4y12,则zy3x2的取值范围为A.,12B.,13C.12,13D.13,答案B解析不等式组所表示的平面区域如图中阴影部分所示,zy3x2表示点D2,3与平面区域内的点x,y之间连线的斜率因为点D2,3与点B8,1连线的斜率为13且C的坐标为2,2,故由图知,zy3x2的取值范围为,13,故选B.2已知x,y满足约束条件xy0,xy2,y0,若zaxy的最大值为4,则a等于A3B2C2D3答案B解析根据已知条件,画出可行域,如图阴影部分所示由zaxy,得yaxz,直线的斜率ka.当0k1,即1a1,即a1时,由图形可知此时最优解为点0,0,此时z0,不合题意;当1k0,即0a1时,无选项满足此范围;当k1时,由图形可知此时最优解为点2,0,此时z2a04,得a2.题型三线性规划的实际应用问题典例某玩具生产公司每天计划生产卫兵.骑兵.伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元1试用每天生产的卫兵个数x与骑兵个数y表示每天的利润元;2怎样分配生产任务才能使每天的利润最大,最大利润是多少解1依题意每天生产的伞兵个数为100xy,所以利润5x6y3100xy2x3y300.2约束条件为5x7y4100xy600,100xy0,x0,y0,x,yN.整理得x3y200,xy100,x0,y0,x,yN.目标函数为2x3y300,作出可行域,如图阴影部分所示,作初始直线l02x3y0,平移l0,当l0经过点A 时,有最大值,由x3y200,xy100,得x50,y50.最优解为A50,50,此时max550元故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元思维升华解线性规划应用问题的一般步骤1审题仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系2设元设问题中起关键作用或关联较多的量为未知量x,y,并列出相应的不等式组和目标函数3作图准确作出可行域,平移找点最优解4求解代入目标函数求解最大值或最小值5检验根据结果,检验反馈跟踪训练xx全国某高科技企业生产产品A和产品B需要甲.乙两种新型材料生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时生产一件产品A的利润为2100元,生产一件产品B的利润为900元该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A.产品B的利润之和的最大值为________元答案216000解析设生产A产品x件,B产品y件,根据所耗费的材料要求.工时要求等其他限制条件,得线性约束条件为1.5x0.5y150,x0.3y90,5x3y600,x0,xN*,y0,yN*,目标函数z2100x900y.作出可行域为图中的四边形,包括边界,顶点为60,100,0,200,0,0,90,0,在60,100处取得最大值,zmax210060900100216000元线性规划问题考点分析线性规划是高考重点考查的一个知识点这类问题一般有三类目标函数是线性的;目标函数是非线性的;已知最优解求参数,处理时要注意搞清是哪种类型,利用数形结合解决问题典例xx天津设变量x,y 满足约束条件xy20,2x3y60,3x2y90,则目标函数z2x5y的最小值为A4B6C10D17答案B解析由约束条件作出可行域如图阴影部分所示,目标函数可化为y25x15z,在图中画出直线y25x,平移该直线,易知经过点A时z最小又知点A的坐标为3,0,zmin23506.故选B.。
§7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的区域(1)当B>0时,Ax+By+C>0表示直线Ax+By+C=0的;Ax+By+C<0表示直线Ax+By+C=0的.(2)当B<0时,Ax+By+C>0表示直线Ax+By+C=0的;Ax+By+C<0表示直线Ax+By+C=0的.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做,由所有可行解组成的集合叫做.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据(即画出不等式组所表示的公共区域).②设,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定函数.然后,用图解法求得数学模型的解,即,在可行域内求得使目标函数.自查自纠:1.(1)上方区域下方区域(2)下方区域上方区域2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解下列命题中正确的是()A.点(0,1)在区域x-y+1>0内B.点(0,0)在区域x+y+1<0内C.点(1,0)在区域y≥2x内D.点(0,0)在区域x+y≥0内解:将(0,0)代入x+y≥0,成立.故选D.不等式x-2y+6>0表示的区域在直线x-2y+6=0的()A.左下方B.左上方C.右下方D.右上方解:画出直线及区域范围知C正确.故选C.(2014·湖北)若变量x,y满足约束条件⎩⎪⎨⎪⎧x+y≤4,x-y≤2,x≥0,y≥0,则z=2x+y的最大值是()A.2B.4C.7D.8解:画出不等式组的可行域如图阴影部分所示,结合目标函数可知,当直线y=-2x+z经过点A(3,1)时,z取最大值,且为7.故选C.点()-2,t在直线2x-3y+6=0的上方,则t的取值范围是.解:()-2,t在2x-3y+6=0的上方,则2×()-2-3t+6<0,解得t>23.故填⎩⎨⎧⎭⎬⎫t|t>23.不等式组⎩⎪⎨⎪⎧x>0,y>0,4x+3y<12表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有个.解:画出平面区域的图象,可以看出整点有(1,1),(1,2),(2,1),共3个,故填3.类型一 二元一次不等式(组)表示的平面区域(2013·大纲)记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D ,若直线y =a (x +1)与D 有公共点,则a 的取值范围是________.解:作出题中不等式组表示的可行域如图中阴影部分所示,∵直线y =a (x +1)恒过定点C (-1,0),由图并结合题意易知k BC =12,k AC =4,∴要使直线y =a (x+1)与平面区域D 有公共点,则12≤a ≤4.故填⎣⎡⎦⎤12,4.点拨:①关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O (0,0)为特殊点;②这里的直线y =a (x +1)是过定点..(-1,0)且斜率为a 的直线系.注意:含一个参数的直线方程都可看成有一个定元素的直线系.(2014·安徽)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD |=2,C 点坐标(8,-2),∴S △ABC =S △ABD +S △BCD =12×2×(2+2)=4.故填4.类型二 利用线性规划求线性目标函数的最优解(2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( ) A.8 B.7 C.6 D.5解:作出可行域(如图阴影部分所示)后,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 的值最大,易得A (2,-1),则m =z max =2×2-1=3.当直线y =-2x +z 经过点B 时,z 的值最小,易得B (-1,-1),则n =z min =2×(-1)-1=-3.故m -n =6.故选C.点拨:可行域是封闭区域时,可以将端点代入目标函数z =2x +y ,求出最大值3与最小值-3,从而得到相应范围.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥1,x -2y ≤2,则z =x +y ( )A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值解:画出不等式表示的平面区域,如图,由z =x +y ,得y =-x +z ,令z =0,画出y =-x 的图象,当它的平行线经过A (2,0)时,z 取得最小值为z min =2+0=2,由于可行域是向右上方无限延伸的非封闭区域,y =-x +z 向右上方移动时,z =x +y 也趋于无穷大,所以z =x +y 无最大值,故选B.类型三 含参数的线性规划问题(1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解:由题目所给的不等式组可知,其表示的平面区域如图阴影部分所示,这里直线y =kx +43只需经过线段AB 的中点D即可,此时D 点的坐标为⎝⎛⎭⎫12,52,代入可得k =73.故选A.(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A.-5B.1C.2D.3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B 的坐标分别为A (0,1)和B (1,0),且S △ABC=2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y=4,将点C (1,4)代入ax -y +1=0得a =3.故选D.点拨:此类问题综合性较强,注意到y =kx +43,ax -y +1=0都是含参数且恒过定点的直线,因此这两题我们采用数形结合求解.注意把握的两点:①参数的几何意义;②条件的合理转化.(1)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)解法一:z =ax +2y 的斜率为-a2,目标函数在点(1,0)处取得最小值,由图象知斜率-a 2满足:-1<-a2<2⇒-4<a<2,所以参数a 的取值范围是(-4,2).解法二:由条件知,可行域是一个三角形,顶点为A (1,0),B (3,4),C (0,1),由于目标函数的最小值仅在A 点处取得,z A =a ,z B =3a +8,z C =2,依题意,z A =a <z B =3a +8,z A =a <z C =2,所以参数a 的取值范围是(-4,2),故选B.(2)(2014·湖南)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 利用线性规划求非线性目标函数的最优解已知⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0.当x ,y 取何值时,x 2+y 2取得最大值、最小值?最大值、最小值各是多少?解:如图,作出可行域(图中的阴影部分),可行域是封闭的△ABC (包括边界),由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0,得顶点A (2,3),同理可得B (0,2),C (1,0),因为x 2+y 2是可行域内一点P (x ,y )到原点的距离的平方,所以,当P (x ,y )和A (2,3)重合时,(x 2+y 2)max =22+32=13,显然,原点到直线BC :2x +y -2=0的距离d 最小,这里d =|2×0+0-2|22+12=25,(x 2+y 2)min=d 2=45, 此时点P 的坐标满足⎩⎪⎨⎪⎧2x +y -2=0,x 2+y 2=45,⇒⎩⎨⎧x =45,y =25,即点P 的坐标为P ⎝⎛⎭⎫45,25.综上可知,当x =2,y =3时,x 2+y 2取得最大值,最大值是13;当x =45,y =25时,x 2+y 2取得最小值,最小值是45.点拨:本题不是求线性目标函数的最优解,而是求a 2+b 2取得最大值、最小值问题,理解待求式的几何意义并准确画图是解这类题目的关键,同时注意取得最值的点不一定在顶点处取得,本题的最小值就是利用距离公式求得的.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求:(1)b -2a -1的值域; (2)(a -1)2+(b -2)2的值域.解:由题意知⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0⇒⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.可行域是一个不包括边界的三角形,其顶点为A (-3,1),B (-2,0),C (-1,0).如图所示.(1)设b -2a -1=k ⇒b =k (a -1)+2,则k 表示可行域内一个动点P (a ,b )和定点Q (1,2)连线的斜率,因为A (-3,1),C (-1,0),则k AQ =14,k CQ =1,k AQ <k <k CQ ,14<k <1.∴b -2a -1的值域是⎝⎛⎭⎫14,1. (2)(a -1)2+(b -2)2表示可行域内一个动点P (a ,b )和定点Q (1,2)的距离的平方,显然,当动点P (a ,b )和点C (-1,0)重合时距离最小,最小值为22,而P (a ,b )和点A (-3,1)重合时距离最大,最大值为17,所以(a -1)2+(b -2)2的值域为(8,17).类型五 线性规划与整点问题设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *)所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为__________.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n.故填3n.点拨:求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0,若x ,y 为整数,则3x +4y 的最小值为( )A.14B.16C.17D.19 解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B.类型六 线性规划在实际问题中的应用某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为________,________.解:设黄瓜和韭菜的种植面积分别为x ,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y.线性约束条件为⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0. 画出可行域如图所示. 作出直线l 0:x +0.9y =0,向上平移至过点B (30,20)时,z max =30+0.9×20=48.故填30;20.点拨:对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为元.解:设甲种设备需要生产x 天,乙种设备需要生产y 天,该公司所需租赁费为z 元,则z =200x +300y ,甲、乙两种设备每天生产A ,B 两类产品的情况如下表所示:产品 设备 A 类产品(件) (≥50)B 类产品(件)(≥140) 租赁费(元)甲设备5 10 200 乙设备6 20300则x ,y 满足的关系为⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ≥0,y ≥0, 即⎩⎪⎨⎪⎧x +65y ≥10,x +2y ≥14,x ≥0,y ≥0.作出不等式组表示的平面区域,当z =200x +300y 对应的直线过两直线⎩⎪⎨⎪⎧x +65y =10,x +2y =14的交点(4,5)时,目标函数z =200x +300y 取得最小值为2300元.故填2300.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过的一个便是.第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数ZP i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.不等式组⎩⎪⎨⎪⎧x ≥2,x -y ≥0所表示的平面区域是()解:画出直线x =2,在平面上取直线的右侧部分(包含直线本身);再画出直线x -y =0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2014·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A.2B.3C.4D.5解:画出约束条件表示的平面区域如图中阴影部分所示,目标函数可化为y =-12x +12z ,由图可知,当直线y =-12x +12z 经过点(1,1)时,z 取得最小值3.故选B.3.设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0所表示的平面区域为M ,则使函数y =a x ()a >0,a ≠1的图象过区域M 的a 的取值范围是( )A.[1,3]B.[2,10] C.[2,9] D.[10,9]解:如图,阴影部分为平面区域M ,显然a >1,只需研究过(1,9),(3,8)两种情形,a 1≤9且a 3≥8即2≤a ≤9,故选C.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( )A.a ≥43B.0<a ≤1C.1≤a ≤43D.0<a ≤1或a ≥43解:如图,由条件可知,当直线x +y =a 在直线x +y =43右上方时,可行域可以组成一个三角形,即a ≥43时,可行域可以组成一个△OAB ;当0<a ≤1,可以组成一个三角形,所以0<a ≤1或a ≥43,故选D.5.(2014·安徽)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或1 B.2或12 C.2或1 D.2或-1解:作出可行域如图阴影部分所示,k AB =2,k AC =-1.由z =y -ax 得y =ax +z.当a >0,直线y =ax +z 与直线AB 重合时,z 取最大值2,此时a =2;当a <0时,直线y =ax +z 与直线AC 重合时,z 取最大值2,此时a =-1.故选D.6.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0且x +y 的最大值为9,则实数m =( )A.-2B.-1C.1D.2解:如图,令z =x +y ,则y =-x +z ,平移可知可行域只可能是△ABC ,且x +y 的最大值只在点C 处取得,联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x -my =-1得C ⎝ ⎛⎭⎪⎫3m +12m -1,52m -1(若m =12,则与2x -y -3=0平行,不可能),(x +y )max =3m +12m -1+52m -1=9,解得m =1.故选C.7.若点P (m ,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =.解:由题意可得⎩⎪⎨⎪⎧|4m -9+1|5=4,2m +3<3,解得m =-3,故填-3.8.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0, 且z =y -x 的最小值为-4,则k 的值为________.解:由所给条件知目标函数取最小值-4时,对应的直线为y =x -4,由x +y -2≥0且y ≥0知,直线kx -y +2=0过点(4,0),∴k =-12.故填-12.9.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=yx表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].10.某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电、劳力、获得利润及每天资源限额(最大供应量)如下表所示:甲产品 (每吨) 乙产品 (每吨) 资源限额(每天) 煤(t ) 9 4 360 电(k w ·h ) 4 5 200 劳力(个) 3 10 300 利润(万元)612问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?解:设此工厂应分别生产甲、乙两种产品x 吨、y 吨,获得利润z 万元.依题意可得约束条件⎩⎪⎨⎪⎧9x +4y ≤360,4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0.利润目标函数z =6x +12y.如图,作出可行域,作直线l :6x +12y =0,把直线l 向右上方平移至l 1位置,直线经过可行域上的点M ,且与原点距离最大,此时z =6x +12y 取最大值.解方程组⎩⎪⎨⎪⎧3x +10y =300,4x +5y =200得M (20,24).所以生产甲种产品20t ,乙种产品24t ,才能使此工厂获得最大利润.11.若关于x 的实系数方程x 2+ax +b =0有两个根,一个根在区间(0,1)内,另一根在区间(1,3)内,记点(a ,b )对应的区域为S.(1)设z =2a -b ,求z 的取值范围;(2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域S ,求反射光线所在直线l 经过区域S 内的整点(即横纵坐标为整数的点)时直线l 的方程.解:(1)方程x 2+ax +b =0的两根分别在区间(0,1)和(1,3)上的几何意义是:函数y =f (x )=x 2+ax +b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,3)内,由此可得不等式组⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (3)>0 即⎩⎪⎨⎪⎧b >0,a +b +1<0,3a +b +9>0,则在坐标平面aOb 内,点(a ,b )对应的区域S 如图阴影部分所示,易得图中A ,B ,C 三点的坐标分别为(-4,3),(-3,0),(-1,0).(1)令z =2a -b ,则直线b =2a -z 经过点A 时,z 取得最小值,经过点C 时,z 取得最大值,即z min =-11,z max =-2,又A ,B ,C 三点不在可行域内,所以-11<z <-2.(2)过点(-5,1)的光线经x 轴反射后的光线所在直线必过点(-5,-1),由图可知,区域S 内满足条件的整点为(-3,1),所以所求直线l 的方程为:y +1=1-(-1)-3-(-5)·(x +5),即y =x +4.(2014·浙江)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1), 都代入1≤ax +y ≤4得⎩⎪⎨⎪⎧1≤a ≤4,1≤a +32≤4,1≤2a +1≤4.解不等式组可得1≤a ≤32.故填⎣⎡⎦⎤1,32.。
[基础题组练]1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )解析:选C.用特殊点代入,比如(0,0),容易判断为C.2.(2019·开封市高三定位考试)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是( )A.132 B.116 C .32D .64解析:选C.作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max =⎝⎛⎭⎫12-5=32,故选C.3.(2018·高考北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D.若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D.4.(2019·长春市质量检测(二))已知动点M (x ,y )满足线性条件⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,5x +y -8≤0,定点N (3,1),则直线MN 斜率的最大值为( )A .1B .2C .3D .4解析:选C.不等式组表示的平面区域为△ABC 内部及边界,如图所示,数形结合可知,当M 点与B 点重合时,MN 的斜率最大.由⎩⎪⎨⎪⎧5x +y -8=0,x +y =0,得B (2,-2).MN 斜率的最大值为1+23-2=3.5.(2019·陕西省质量检测(一))若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:法一:由约束条件可知可行域的边界分别为直线y =1,x +y =0,x -y -2=0,则边界的交点分别为(-1,1),(3,1),(1,-1),分别代入z =x -2y ,得对应的z 分别为-3,1,3,可得z 的最大值为3.法二:作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0并平移,由图可知,当直线过点(1,-1)时,z 取得最大值,即z max =1-2×(-1)=3. 答案:36.(2019·广东茂名模拟)已知点A (1,2),点P (x ,y )满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,O 为坐标原点,则z =OA →·OP →的最大值为________.解析:由题意知z =OA →·OP →=x +2y ,作出可行域如图阴影部分,作直线l 0:y =-12x ,当l 0移到过A (1,2)的l 的位置时,z 取得最大值,即z max =1+2×2=5.答案:57.(2019·石家庄市质量检测(二))设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -3≤0,x +y ≥3,y -2≤0,则y +1x的最大值为________.解析:作出可行域,如图中阴影部分所示,而y +1x 表示区域内的动点(x ,y )与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点C (1,2)时,斜率最大,为2-(-1)1-0=3.答案:38.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图中阴影部分所示,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1. 所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).[综合题组练]1.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A.通解 作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.优解 在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.2.(2019·重庆六校联考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D.画出约束条件所表示的可行域,如图中阴影部分所示.令z =0,画出直线y =ax ,a =0显然不满足题意.当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与x +y -2=0平行,此时a =-1;当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与2x -y +2=0平行,此时a =2.综上,a =-1或2.3.(2019·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千克B .360千克C .400千克D .440千克解析:选 B.设生产甲产品x 件,生产乙产品y 件,利润z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,z =2x +y ,作出⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N )时,z 取得最大值,为360.4.(综合型)实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 坐标为(7,9),显然点B到直线x +2y -4=0的距离最大,此时z max =21.答案:21。
高二数学二元一次不等式组与简单的线性规划问题(20121018)一、教学目标1.掌握二元一次不等式(组)表示的平面区域的确定方法。
2.对线性目标函数z =Ax +By 中B 的符号一定要注意:当B > 0 时,当直线过可行域且在 y 轴截距最大时,z 值最大,在 y 轴截距最小时,z 值最小;当B < 0 时,当直线过可行域且在 y 轴截距最大时,z 值最小,在 y 轴截距最小时,z 值最大。
3.如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点。
4.由于最优解是通过图形来观察的,故作图要准确,否则观察的结果可能有误。
二、考纲要求:①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.三、学习内容⎩1、概念引入⎧x + 2 y ≤ 8 ⎪(1) 若 z= 2x + 3y ,式中变量 x 、y 满足上面不等式组⎨x + y ≤ 6 ⎪x ≥ 0, y ≥ 0 ,则不等式组叫做变量 x 、y 的约束条件 , z = 2x + 3y 叫做目标函数;又因为这里的是关于变量 x 、y 的 一次解析式,所以又称为线性目标函数。
(2) 满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域; (3) 其中使目标函数取得最大值的可行解(4,2)叫做最优解 2. 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.⎪⎩3. 线性规划问题应用题的求解步骤:(1) 先设出决策变量,找出约束条件和线性目标函数; (2) 作出相应的图象(注意特殊点与边界)(3) 利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值;在求线性目标函数 z = mx + ny 的最大(小)时,直线 mx + ny = 0 往右(左)平移则值 随之增大(小),这样就可以在可行域中确定最优解。
2021届高考数学(理)考点复习二元一次不等式(组)与简单的线性规划问题1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题概念方法微思考1.不等式x≥0表示的平面区域是什么?提示不等式x≥0表示的区域是y轴的右侧(包括y轴).2.可行解一定是最优解吗?二者有何关系?提示不一定.最优解是可行解中的一个或多个.最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一.1.(2020•浙江)若实数x,y满足约束条件31030x yx y-+⎧⎨+-⎩,则2z x y=+的取值范围是()A.(-∞,4]B.[4,)+∞C.[5,)+∞D.(,)-∞+∞【答案】B【解析】画出实数x,y满足约束条件31030x yx y-+⎧⎨+-⎩所示的平面区域,如图:将目标函数变形为1 22zx y-+=,则z表示直线在y轴上截距,截距越大,z越大,当目标函数过点(2,1)A时,截距最小为224z=+=,随着目标函数向上移动截距越来越大,故目标函数2z x y=+的取值范围是[4,)+∞.故选B.2.(2019•天津)设变量x,y满足约束条件20,20,1,1,x yx yxy+-⎧⎪-+⎪⎨-⎪⎪-⎩则目标函数4z x y=-+的最大值为()A.2 B.3 C.5 D.6【答案】C【解析】由约束条件20,20,1,1,x yx yxy+-⎧⎪-+⎪⎨-⎪⎪-⎩作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选C .3.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩则32z x y =+的最大值是( )A .1-B .1C .10D .12【答案】C【解析】由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩作出可行域如图,联立340340x y x y -+=⎧⎨--=⎩,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10.故选C .4.(2019•北京)若x,y满足||1x y-,且1y -,则3x y+的最大值为() A.7-B.1 C.5 D.7【答案】C【解析】由||11x yy-⎧⎨-⎩作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选C.5.(2018•天津)设变量x,y满足约束条件5241x yx yx yy+⎧⎪-⎪⎨-+⎪⎪⎩,则目标函数35z x y=+的最大值为()A.6 B.19 C.21 D.45 【答案】C【解析】由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选C .6.(2018•北京)设集合{(,)|1A x y x y =-,4ax y +>,2}x ay -,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉ D .当且仅当32a时,(2,1)A ∉ 【答案】D【解析】当1a =-时,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,4x y -+>,2}x y +,显然(2,1)不满足,4x y -+>,2x y +,所以A 不正确;当4a =,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,44x y +>,42}x y -,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,4x y +>,2}x y -,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确; 故选D .7.(2020•上海)已知x、y满足20230x yx yy+-⎧⎪+-⎨⎪⎩,则2z y x=-的最大值为_________.【答案】1-【解析】由约束条件20230x yx yy+-⎧⎪+-⎨⎪⎩作出可行域如图阴影部分,化目标函数2z y x=-为2y x z=+,由图可知,当直线2y x z=+过A时,直线在y轴上的截距最大,联立20230x yx y+-=⎧⎨+-=⎩,解得11xy=⎧⎨=⎩,即(1,1)A.z有最大值为1211-⨯=-.故答案为:1-.8.(2020•新课标Ⅱ)若x,y满足约束条件1,1,21,x yx yx y+-⎧⎪--⎨⎪-⎩则2z x y=+的最大值是_________.【答案】8【解析】作出不等式组对应的平面区域如图:由2z x y=+得1122y x z=-+,平移直线1122y x z=-+由图象可知当直线1122y x z=-+经过点A时,直线1122y x z=-+的截距最大,此时z最大,由121x yx y-=-⎧⎨-=⎩,解得(2,3)A,此时2238z =+⨯=, 故答案为:8.9.(2020•新课标Ⅲ)若x ,y 满足约束条件0,20,1,x y x y x +⎧⎪-⎨⎪⎩则32z x y =+的最大值为_________.【答案】7【解析】先根据约束条件画出可行域,由120x x y =⎧⎨-=⎩解得(1,2)A ,如图,当直线32z x y =+过点(1,2)A 时,目标函数在y 轴上的截距取得最大值时,此时z 取得最大值,即当1x =,2y =时,31227max z =⨯+⨯=. 故答案为:7.10.(2020•新课标Ⅰ)若x ,y 满足约束条件220,10,10,x y x y y +-⎧⎪--⎨⎪+⎩则7z x y =+的最大值为_________.【答案】1【解析】x,y满足约束条件220,10,10,x yx yy+-⎧⎪--⎨⎪+⎩,不等式组表示的平面区域如图所示,由22010x yx y+-=⎧⎨--=⎩,可得(1,0)A时,目标函数7z x y=+,可得1177y x z=-+,当直线1177y x z=-+过点A时,在y轴上截距最大,此时z取得最大值:1701+⨯=.故答案为:1.11.(2020•上海)不等式13x>的解集为_________.【答案】1(0,)3【解析】由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.12.(2019•上海)已知x,y满足2xyx y⎧⎪⎨⎪+⎩,则23z x y=-的最小值为_________.【答案】6-【解析】作出不等式组2xyx y⎧⎪⎨⎪+⎩表示的平面区域,由23z x y=-即2 3x zy-=,表示直线在y轴上的截距的相反数的13倍,平移直线230x y-=,当经过点(0,2)时,23z x y=-取得最小值6-,故答案为:6-.13.(2019•天津)设x R∈,使不等式2320x x+-<成立的x的取值范围为_________.【答案】2(1,)3-【解析】2320x x+-<,将232x x+-分解因式即有:(1)(32)0x x+-<;2(1)()03x x+-<;由一元二次不等式的解法“小于取中间,大于取两边”可得:213x-<<;即:2{|1}3x x-<<;或2(1,)3-;故答案为:2(1,)3-.14.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩则3z x y=-的最大值是_________.【答案】9【解析】由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩作出可行域如图:化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z =-过(3,0)A 时, 直线在y 轴上的截距最小,z 有最大值为9. 故答案为:9.15.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩则y x -的最小值为_________,最大值为_________.【答案】3-,1【解析】由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.16.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩,则3z x y =+的最小值是_________,最大值是_________.【答案】2-;8【解析】作出x,y满足约束条件262x yx yx y-⎧⎪+⎨⎪+⎩表示的平面区域,如图:其中(4,2)B-,(2,2)A.设(,)3z F x y x y==+,将直线:3l z x y=+进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.()4,22z F∴=-=-最小值.可得当l经过点A时,目标函数z达到最最大值:()2,28z F==最大值.故答案为:2-;8.17.(2018•新课标Ⅲ)若变量x,y满足约束条件23024020x yx yx++⎧⎪-+⎨⎪-⎩,则13z x y=+的最大值是_________.【答案】3【解析】画出变量x,y满足约束条件23024020x yx yx++⎧⎪-+⎨⎪-⎩表示的平面区域如图:由2240xx y=⎧⎨-+=⎩解得(2,3)A.13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.18.(2018•北京)若x ,y 满足12x y x +,则2y x -的最小值是_________. 【答案】3【解析】作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:3.1.(2020•杭州模拟)设M 为不等式1010x y x y +-<⎧⎨-+>⎩所表示的平面区域,则位于M 内的点是( )A .(0,2)B .(2,0)-C .(0,2)-D .(2,0)【答案】C【解析】把(0,2)代入不等式10x y +-<,得10<,成立,∴点A 不在不等式组1010x y x y +-<⎧⎨-+>⎩表示的平面区域内;把(2,0)-代入不等式10x y +-<,得30-<,成立但20110--+=->不成立,∴点B 不在不等式组1010x y x y +-<⎧⎨-+>⎩表示的平面区域内;把(0,2)-代入不等式10x y +-<,得30-<,成立且0(2)10--+>,∴点C 在不等式组1010x y x y +-<⎧⎨-+>⎩表示的平面区域内;把(2,0)代入不等式10x y +-<,得10<,不成立,∴点D 不在不等式组1010x y x y +-<⎧⎨-+>⎩表示的平面区域内.故选C .2.(2020•德阳模拟)不等式组201230 xyy xx y-⎧⎪⎪⎨⎪+-⎪⎩表示的平面区域为Ω,则()A .(,)x y∀∈Ω,23x y+>B.(,)x y∃∈Ω,25x y+>C.2(,),31yx yx+∀∈Ω>-D.2(,),51yx yx+∃∈Ω>-【答案】D【解析】不等式组对应的平面区域如图:20(1,2)30x yAx y-=⎧⇒⎨+-=⎩;1(2,1)230y xBx y⎧=⎪⇒⎨⎪+-=⎩;令2z x y=+,平移20x y+=,则当其过点A时,2z x y=+取最大值:1225+⨯=,当其过点O时,2z x y=+取最小值:0200+⨯=;即:025x y+;故AB都错;设21ykx+=-表示平面区域内的点与定点(1,2)D-连线的斜率;由图可得:1(2)321BDk k--==-或2ODk k=-;C∴错D对;故选D.3.(2020•驻马店模拟)设不等式组30x yx y+⎧⎪⎨-⎪⎩表示的平面区域为Ω,若从圆22:4C x y+=的内部随机选取一点P,则P取自Ω的概率为()A.524B.724C.1124D.1724【答案】B【解析】作出Ω中在圆C 内部的区域,如图所示, 因为直线0x y +=,30x y -=的倾斜角分别为34π,6π, 所以由图可得P 取自Ω的概率为3746224πππ-=.故选B .4.(2020•龙凤区校级一模)已知点(3,1)和(4,6)-在直线320x y a -+=的两侧,则a 的取值范围是()A .724a -<<B .247a -<<C .1a <-或24a >D .24a <-或7a >【答案】A【解析】根据题意,若点(3,1)和(4,6)-在直线320x y a -+=的两侧, 则有[(3321)][3(4)26]0a a ⨯-⨯+⨯--⨯+<, 即(7)(24)0a a +-<, 解可得724a -<<; 故选A .5.(2020•香坊区校级一模)若实数x ,y 满足不等式组24045102x y x y x y --⎧⎪--⎨⎪+⎩,则32z x y =-的最小值为() A .23-B .109C .4D .199【答案】D【解析】画出满足条件24045102x y x y x y --⎧⎪--⎨⎪+⎩的平面区域,如图示:,由45102x y x y --=⎧⎨+=⎩,解得:11979x y ⎧=⎪⎪⎨⎪=⎪⎩,由32z x y =-得322z y x =-, 结合图象直线322z y x =-过11(9,7)9时,2z-最大,即z 最小, 故z 的最小值是:1171932999z =⨯-⨯=, 故选D .6.(2020•江西模拟)已知实数x ,y 满足约束条件4020340x y x y x y +-⎧⎪-+⎨⎪--⎩,目标函数(0z ax by a =+>且0)b >的最大值为2,则12a b+的最小值为( ) A .13302B .762C .322+D .562+【答案】A【解析】由(0,0)z ax by a b =+>>得a zy x b b =-+,0a >,0b >,∴直线的斜率0ab-<,作出不等式对应的平面区域如图:平移直线得a z y x b b =-+,由图象可知当直线a z y x b b =-+经过点A 时,直线a zy x b b=-+的截距最大,此时z 最大.由20340x yx y-+=⎧⎨--=⎩,解得(3,5)A,此时目标函数(0,0)z ax by a b=+>>的最大值为2,即352a b+=,∴351 22a b+=,121212351335133513()1()()2302222222a b a ba ba b a b a b b a b a+=+⨯=+⨯+=+++=+,当且仅当352a bb a=,并且352a b+=时取等号.故最小值为13302+,故选A.7.(2020•湖北模拟)当前疫情阶段,口罩成为热门商品,为了赚钱,小明决定在家制作两种口罩:95N口罩和90N口罩.已知制作一只95N口罩需要2张熔喷布和2张针刺棉,制作一只90N口罩需要3张熔喷布和1张针刺棉,现小明手上有35张熔喷布和19张针刺棉,且一只95N口罩有4元利润,一只90N口罩有3元利润.为了获得最大利润,那么小明应该制作() A.5只95N口罩,8只90N口罩B.6只95N口罩,6只90N口罩C.7只95N口罩,6只90N口罩D.6只95N口罩,7只90N口罩【答案】D【解析】设小明应该制作x只95N口罩,y只90N口罩,则23352190,0,,*x yx yx y x y N+⎧⎪+⎨⎪∈⎩且,再设小明所获利润为z,则43z x y=+.由不等式组作出可行域如图所示,联立2192335x yx y+=⎧⎨+=⎩,解得1128xy⎧=⎪⎨⎪=⎩,即11(,8)2A,又x,*y N∈,过A作直线43z x y=+,把直线43z x y=+向左下平移至点(6,7)时,z有最大值为463745z=⨯+⨯=.∴小明要获得最大利润,应该制作6只95N口罩,7只90N口罩.故选D.8.(2020•雨花区校级模拟)若实数x,y满足1030x yx yx-+⎧⎪+-⎨⎪⎩,且23(2)x y x+--恒成立,则k的取值范围是()A.(-∞,1]-B.(-∞,1]C.[1-,)+∞D.[1,)+∞【答案】D【解析】作出不等式组1030x yx yx-+⎧⎪+-⎨⎪⎩,对应的可行域,它为ABC∆,其中(1,2)A,(0,3)B,(0,1)C,则对于可行域内任一点(,)P x y,都有01x,20x∴-<,23(2)x y k x+--,即为231222x y ykx x+-+=+--恒成立,转化为求122yZx+=+-的最大值,又12yx+-即为点(,)P x y和点(2,1)M-连线的斜率,由图可知:12MA Myk kx+-,即[1Z ∈-,1],1max Z ∴=,1k . 故选D .9.(2020•河南模拟)已知实数x ,y 满足约束条件321,48,2,x y x y x y -⎧⎪-⎨⎪+⎩则2x y -的最小值为( )A .7-B .5-C .1-D .2【答案】B【解析】由实数x ,y 满足约束条件321,48,2,x y x y x y -⎧⎪-⎨⎪+⎩作出可行域如图,由32148x y x y -=⎧⎨-=⎩解得(3,4)A ,化目标函数2z x y =-为22x zy =-, 由图可知,当直线22x zy =-过A 时直线在y 轴上的截距最大,z 有最小值, 等于3245-⨯=-. 故选B .10.(2020•唐山二模)已知x ,y 满足约束条件20,21020,x y x y x y -+⎧⎪-+⎨⎪+-⎩则z x y =-的最大值为( )A .2-B .0C .2D .4【答案】B【解析】x ,y 满足约束条件20,21020,x y x y x y -+⎧⎪-+⎨⎪+-⎩的对应的平面区域如图:(阴影部分).由z x y =-得y x z =-,平移直线y x z =-, 由平移可知当直线y x z =-,经过点B 时, 直线y x z =-的截距最小,此时z 取得最大值, 由20210x y x y +-=⎧⎨-+=⎩,解得(1,1)B 代入z x y =-得0z =,即z x y =-的最大值是0,故选B.11.(2020•杜集区校级模拟)已知实数x、y满足02,2,2xyx y ⎧⎪⎨⎪⎩则2z x y=+的最大值为() A.42B .32C.4 D.3【答案】C【解析】由题意作出其平面区域,2z x y=+经过可行域的A点时,直线在y轴上的截距取得最大值,此时z取得最大值,由题意可知(2A,2)即2x=,2y =时,2z x y=+有最大值2224⨯+=,故选C.12.(2020•青羊区校级模拟)若实数x,y满足约束条件2040250x yx yx y-+⎧⎪+-⎨⎪--⎩,则11yzx-=+的最大值为( )A.1 B.2 C.12D.3【答案】A【解析】作出实数x,y满足约束条件2040250x yx yx y-+⎧⎪+-⎨⎪--⎩所对应的可行域(如图阴影),11yzx-=+的几何意义是可行域内的点与定点D连线的斜率,由图象知可知DA 的斜率最大,此时DA 与直线20x y -+=重合, 即z 的最大值为1, 故选A .13.(2020•河南模拟)已知实数x ,y 满足约束条件321,48,2,x y x y x y -⎧⎪-⎨⎪+⎩则24x y 的最小值为( )A .5-B .132C .12D .2【答案】B【解析】由2224xx y y -=,令2z x y =-,得2y x z =-,作出不等式对应的可行域(阴影部分),平移直线2y x z =-,由平移可知当直线2y x z =-,经过点A 时,直线2y x z =-的截距最大,此时z 取得最小值,24xy 的也取得最小值,由32148x y x y -=⎧⎨-=⎩,解得(3,4)A将A 的坐标代入2z x y =-,得385z =-=-,即目标函数24x y y =的最小值为132.故选B .14.(2020•东湖区校级模拟)已知点(,)m n m n +-在0022x y x y x y -⎧⎪+⎨⎪-⎩表示的平面区域内,则22m n +的最小值为( ) A .23B 10C .49D .25【答案】D【解析】0022x y x y x y -⎧⎪+⎨⎪-⎩表示的平面区域如图阴影部分,点(,)m n m n +-在0022x y x y x y -⎧⎪+⎨⎪-⎩表示的平面区域内,可得x m n y m n =+⎧⎨=-⎩,所以2x y m +=,2x y n -=,所以2222221()()()222x y x y m n x y +-+=+=+, 则22m n +的最小值为可行域内的点与原点距离的平方的一半.由可行域可知,可行域内的点与坐标原点的距离的最小值为P 到原点的距离,即原点到直线220x y --=5,所以22m n +的最小值为212(255⨯=.故选D .15.(2020•三模拟)已知非负实数x ,y 满足0x ,0y ,220x y -+,3220x y --,则23x y -的最小值等于( ) A .2- B .3- C .0 D .43【答案】B【解析】设23x y z -=,作出四个不等式0x ,0y ,220x y -+,3220x y --组合后表示的可行域(四边形),解得可行域的四个顶点:(0,0)O ,2(3A ,0),(2,2)B ,(0,1)C ,一一代入计算,比较得3min z =-, 故选B .16.(2020•梅河口市校级模拟)已知实数x ,y 满足2000x y x y y k +⎧⎪-⎨⎪⎩,若2z x y =+的最大值为2019,则实数k 的值为( ) A .20192B .673C .504D .20195【答案】B【解析】画出实数x ,y 满足2000x y x y y k +⎧⎪-⎨⎪⎩,可行域如图:由于目标函数2z x y =+的最大值是2019,可得直线y x =与直线22019x y +=的交点(673,673)A , 使目标函数2z x y =+取得最大值, 将672x =,673y =,可得673k =得: 故选B .17.(2020•桃城区校级模拟)设变量x ,y 满足线性约束条件21022020x y x y x y -+⎧⎪-+⎨⎪+-⎩,若z x ay =+取得最大值时的最优解不唯一,则实数a 的值为( ) A .12-或1B .1或2-C .2-或12-D .1-或2【答案】B【解析】作出不等式组所表示的可行域如图阴影部分所示,因为目标函数z x ay=+取得最大值时的最优解不唯一,所以当0a>时,直线x z ya-+=与直线20x y+-=重合,此时1a=;当0a<时,直线x zya-+=与直线210x y-+=重合,此时2a=-,所以1a=或2a=-.故选B.18.(2020•东湖区校级模拟)已知x,y满足区域30:101x yD x yx+-⎧⎪--⎨⎪⎩,则2()()x y xyx x y-++的取值范围是( )A.[1,)+∞B.(0,23]C.[233,1]-D.[1,23]【答案】C【解析】作出不等式30101x yx yx+-⎧⎪--⎨⎪⎩表示的平面区域如图所示,联立301x y x +-=⎧⎨=⎩,解得(1,2)A ,联立101x y x --=⎧⎨=⎩,解得(1,0)B .令yt x=,则[0t ∈,2],1[1t +∈,3], 2222221()()1()11y yx y xy x xy yt t x x y x x y x xyt x-+-+-+-+===++++ 2(1)3(1)331311t t t t t+-++==++-++.由对勾函数的单调性可知,当13t +3131t t++-+取得最小值为233; 而当11t +=时,31311t t ++-=+,当13t +=时,31311t t++-=+, 即3131t t ++-+的最大值为1. ∴2()()x y xy x x y -++的取值范围是[233,1].故选C .19.(2020•襄城区校级四模)若x ,y 满足约束条件5525x y x y x y +⎧⎪--⎨⎪-⎩,则25x y +=的整数解的个数为() A .1 B .2 C .3 D .4【答案】D【解析】由约束条件5525x y x y x y +⎧⎪--⎨⎪-⎩作出可行域如图,联立55x y x y +=⎧⎨-=-⎩,解得(0,5)A .直线25x y +=经过(0,5)点,2525x y x y +=⎧⎨-=⎩,解得3x =,1y =-,则25x y +=的整数解的的x 只能取0,1,2,3,对应5y =,3,1,1-; 则25x y +=的整数解的个数为4个. 故选D .20.(2020•永康市模拟)已知在平面直角坐标系中,不等式组223xyx y⎧⎪⎨⎪+⎩表示的平面区域面积是__________,周长为__________.【答案】12,22+【解析】不等式组223xyx y⎧⎪⎨⎪+⎩表示的可行域为:如图所示:所以23xx y=⎧⎨+=⎩,解得21xy=⎧⎨=⎩,即(2,1)B.同理23yx y=⎧⎨+=⎩解得12xy=⎧⎨=⎩,(1,2)A所以111122ABC S ∆=⨯⨯=.11222ABC l ∆=++=+.故答案为:12,22+. 21.(2020•合肥模拟)不等式组201030x y x y y +-⎧⎪-+⎨⎪-⎩,则表示区域的面积为__________.【答案】94【解析】画出满足条件的平面区域,如图示:分别求出(1,3)A -,(2,3)B ,1(2C ,3)2,1393224ABC S ∆∴=⨯⨯=,故答案为:94.。
7.3 二元一次不等式组与简单的线性规划问题一、填空题1.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4,所表示的平面区域的面积等于________.解析 画图可知,不等式组所表示的平面区域是一个三角形,且三个顶点的坐标分别是⎝ ⎛⎭⎪⎫0,43,(0,4),(1,1),所以三角形的面积S =12×⎝ ⎛⎭⎪⎫4-43×1=43.答案432.若实数x 、y满足⎩⎨⎧x ≥0,y ≥0,2x +3y ≤100,2x +y ≤60,则z =6x +4y 的最大值是__________.解析 由题设画出线性约束条件表示的可行域如下图,再画出直线6x +4y =0,由图可知平移直线6x +4y =0至直线2x +3y =100与直线2x +y =60的交点(20,20)时,有z =6x +4y 的最大值为200.3.已知实数x 、y 满足 223y x y x x ≤,⎧⎪≥-,⎨⎪≤,⎩则目标函数z=x-2y 的最小值是 .解析 如图,作出可行域为阴影部分,由 23y x x =,⎧⎨=⎩ 得 36x y =,⎧⎨=,⎩即A(3,6),经过分析可知直线z=x-2y 经过A 点时目标函数z=x-2y 取最小值为-9.答案 -94.不等式组⎩⎨⎧x ≥0,y ≥0,4x +3y <12所表示的平面区域的整点的个数是________.答案 65.若点P (m,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =________.解析由题意可得⎩⎨⎧|4m -9+1|5=42m +3<3,解得m =-3.答案 -36.已知实数x ,y 满足⎩⎨⎧2x -y ≤0,x -3y +5≥0,x >0,y >0,则z =⎝ ⎛⎭⎪⎫14x ·⎝ ⎛⎭⎪⎫12y的最小值为________.解析 可行域如图所示,当直线2x +y =t 经过点B (1,2)时,t max =4, 又z =⎝ ⎛⎭⎪⎫122x +y ,所以z min =⎝ ⎛⎭⎪⎫124=116.答案 1167.设x ,y 满足约束条件⎩⎨⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________.解析 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3,于是有2ab +3=35,ab =16,所以a +b ≥2ab =216=8,当且仅当a =b =4时等号成立,所以(a +b )min =8.答案 88.已知不等式组⎩⎨⎧x +y ≤1,x -y ≥-1,y ≥0表示的平面区域为M ,若直线y =kx -3k与平面区域M 有公共点,则k 的取值范围是________.解析 如图所示,画出可行域,直线y =kx -3k 过定点(3,0),由数形结合,知该直线的斜率的最大值为k =0,最小值为k =0-13-0=-13.答案 ⎣⎢⎡⎦⎥⎤-13,09.已知集合P =⎩⎪⎨⎪⎧x ,y ⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎨⎧ 3x -4y +3≥0,4x +3y -6≤0,y ≥0,x ≥0,Q ={(x ,y )|(x -a )2+(y -b )2≤r 2,r >0}.若“点M ∈P ”是“点M ∈Q ”的必要条件,则当r 最大时,ab 的值是________.解析 集合P 所在区间如图阴影部分所示,由题意,Q ⊆P ,且AB ⊥BC ,所以当r 最大时,圆(x -a )2+(y -b )2=r 2是四边形OABC 的内切圆,从而a =b =r ,于是由|3a -4a +3|5=a 且|4a +3a -6|5=a ,解得a =b =12,所以ab =14.答案1410.已知变量x ,y 满足约束条件⎩⎨⎧x +4y -13≤0,x -2y -1≤0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________ .解析 由题意可知,不等式组表示的可行域是由A (1,3),B (3,1),C (5,2)组成的三角形及其内部.当m >0时,z =x +my 与x +y -4=0重合时满足题意,得m =1,当m <0时,z =x +my 在点A 处取得最小值,不合题意,当m =0时不合题意,综上m =1.答案 111.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为________元.解析 设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件⎩⎨⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,求线性目标函数z =400x +300y 的最小值.由线性规划知识可知,当⎩⎨⎧x =4,y =2时,z min =2 200元.答案 2 20012.若A 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.解析 平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.答案7413.已知平行四边形ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在平行四边形ABCD 的内部,则z =2x -5y 的取值范围是________. 解析 设D (m ,n ),则由AD →=BC →,得⎩⎨⎧m =0,n =-4,即D (0,-4),当直线2x -5y =z 经过点B 时,z min =2×3-5×4=-14,当直线2x -5y =z 经过点D 时,z max =2×0-5×(-4)=20.答案 [-14,20] 二、解答题14.用不等式组表示图中阴影部分表示的区域.解析 先求出四边形各边所在的直线方程如下AB :2x -11y +17=0, BC :2x -y -3=0, CD :2x -11y +67=0, DA :2x -y +7=0.∴所求不等式组为⎩⎨⎧2x -11y +17≤0,2x -11y +67≥0,2x -y -3≤0,2x -y +7≥0.15.画出2x -3<y ≤3表示的区域,并求出所有正整数解. 解析 先将所给不等式转化为⎩⎨⎧y >2x -3,y ≤3.而求正整数解则意味着x ,y 满足限制条件,即求⎩⎨⎧y >2x -3y ≤3x ,y >0的整数解.所给不等式等价于⎩⎨⎧y >2x -3y ≤3.依照二元一次不等式表示平面区域可得如图(1).对于2x -3<y ≤3的正整数解,再画出⎩⎨⎧y >2x -3,y ≤3,x ,y >0.表示的平面区域.如图(2)所示:可知,在该区域内有整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3)共五组.16.已知x ,y 满足条件⎩⎨⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.且M (2,1),P (x ,y ),求:(1)y +7x +4的取值范围; (2)x 2+y 2的最大值和最小值; (3)OM →·O P →的最大值; (4)|OP →|cos ∠MOP 的最小值.解析 画出不等式组表示的平面区域如图所示.其中A (4,1),B (-1,-6),C (-3,2). (1)y +7x +4表示区域内点P (x , y )与点D (-4,-7)连线的斜率,所以k DB ≤y +7x +4≤k CD ,即13≤y +7x +4≤9.(2)x 2+y 2表示区域内点P (x ,y )到原点距离的平方,所以(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0.(3)设OM →·OP →=(2,1)·(x ,y )=2x +y =t ,则当直线2x +y =t 经过点A (4,1)时,z max =2×4+1=9.(4)设|OP →|cos ∠MOP =|OM →|·|OP →|cos ∠MOP |OM →|=OM →·OP →5=2x +y 5=z ,则当直线2x+y =5z 经过点B (-1,-6)时,z min =15[2×(-1)-6]=-855.17.若a ≥0,b ≥0,且当⎩⎨⎧x ≥0,y ≥0,x +y ≤1,时,恒有ax +by ≤1,求以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积.解析作出线性约束条件⎩⎨⎧x ≥0y ≥0x +y ≤1对应的可行域如图所示,在此条件下,要使ax +by ≤1恒成立,只要ax +by 的最大值不超过1即可.令z =ax +by ,则y =-a b x +z b.因为a ≥0,b ≥0,则-1<-a b ≤0时,b ≤1,或-a b≤-1时,a ≤1.此时对应的可行域如图,所以以a ,b 为坐标的点P (a ,b )所形成的面积为1.18.某班计划用少于100元的钱购买单价分别为2元和1元的大小彩色气球装点联欢晚会的会场,根据需要,大球数不少于10个,小球数不少于20个,请你给出几种不同的购买方案?解析 设可购买大球x 个,小球y 个.依题意有 **21001020x y x y x y +<,⎧⎪≥,⎪⎪≥,⎨⎪∈,⎪∈,⎪⎩N N其整数解为 1020x y =,⎧⎨=,⎩ 2030x y =,⎧⎨=,⎩ 3030x y =,⎧⎨=,⎩ 3529x y =,⎧⎨=,⎩ …都符合题目要求(满足2x+y-100<0即可).。