联结词与复合命题(续)
定义2.5 设p, q为命题, 复合命题 “p当且仅当q”称作p与q 的
等价式, 记作pq, 称作等价联结词. 并规定pq为真当 且仅当 p与q同时为真或同时为假.
pq 的逻辑关系: p与q互为充分必要条件
例如 这件事张三能做好, 且只有张三能做好
设p:张三做这件事, q:这件事做好了
26
(v∧w)∨(v∧w) 又可形式化为 v∨w
12
联结词与复合命题(续)
定义2.4 设 p,q为二命题, 复合命题 “如果p,则q” 称作p与q 的蕴涵式, 记作pq, 并称p是蕴涵式的前件, q为蕴涵式的 后件. 称作蕴涵联结词, 并规定, pq为假当且仅当 p为 真且q为假.
例如 如果明天天气好, 我们就出去郊游 设p:明天天气好, q:我们出去郊游, 形式化为 pq
说明: (1) 赋值记作=12…n, i=0或1, 诸i之间不加标
点符号 (2) 通常赋值与命题变项之间按下标或字母顺序对应, 即
当A的全部命题变项为p1, p2, … , pn时, 给A赋值12…n 是指p1=1,p2=2,…,pn=n; 当A的全部命题变项为p,q,r,… 时, 给A赋值123…是指p=1, q=2, r=3, …
是指p1= 1,p2= 2,…,pn= n; 当A的全部命题变项为p,q,r,…
例如 p:2是偶数, q: 2是素数, p∧q: 2是偶素数,
0 0 1 1 1
联结词(¬, , , , )
1
1
(2) ( p q) q
0 1 1 例4 设p:天冷, q:小王穿羽绒服,
(e) A=B C, 其中B,C的层次及n同(b)
p的否定式, 记作p, 符号称作否定联结词, 并规定p 为真当且仅当 p为假 例如 p:2是合数, p: 2不是合数, p为假, p为真