Chapter 1 谓词逻辑推理理论 5
- 格式:pdf
- 大小:398.69 KB
- 文档页数:42
谓词逻辑基本推理公式
谓词逻辑的基本推理公式包括:
1. 全称量词规则:如果个体域中每一个个体具有性质A,则存在一个个体具有性质A。
即,能找出一个就表示存在。
公式为A ( c ) ⇒∃ x A
( x )A(c)\Rightarrow\exists xA(x)A(c)⇒∃xA(x)。
规则成立的条件是c是个体域中某个确定的个体,代替c的x不在A©中出现过。
2. 存在量词规则:如果个体域中存在个体具有性质A,则至少存在一个个体具有性质A。
公式为∃ x A ( x ) ∀ y A ( y )\exists xA(x)\forall yA(y)∃x A(x)∀yA(y)。
3. 归结推理:将公式中的量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变。
4. 代入规则:把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号。
5. 解释(赋值):谓词公式A的个体域D是非空集合,则每一个常项指定D中一个元素;每一个n元函数指定Dn到D的一个函数;每一个n元谓词指定Dn到{0,1}的一个谓词。
按这个规则做的一组指派,称为A的一个解释或赋值。
以上是谓词逻辑的基本推理公式,通过这些公式可以推导出更复杂的逻辑推理结果。
谓词逻辑推理定律首先,让我们了解什么是谓词逻辑。
谓词逻辑是一种逻辑分析方法,用于分析一些断言或句子的真假性。
谓词逻辑推理是指根据给定的谓词逻辑语句推理出另一个谓词逻辑语句的过程。
通常情况下,谓词逻辑推理被用于解决语义相关问题,如逻辑谬误,语言理解等。
谓词逻辑推理定律是用于谓词逻辑推理过程中所应注意的一些基本原则,它们能够帮助我们合理地进行推理,确保推理的合法性和准确性。
下面我们将详细介绍几个常见的谓词逻辑推理定律。
1. 否定演算规律:一个命题与它的否定命题不能同时成立。
例如,如果说“所有动物都能呼吸”,那么这么说就是错误的:“所有动物不能呼吸”。
因此,被推理的命题不能同时成立为“真”和“假”。
2. 否定引入规律:在一个推理中,当我们不能证明一个命题时,我们可以推出它的否定命题是真的。
例如,如果一个人说“我已经搜索了整个屋子,但是没有找到我的钥匙”,那么我们可以推断出:“我的钥匙不在我的房子里”。
因为如果钥匙在房子里,就一定会被找到。
3. 等价规律:如果两个命题具有相同的真值,那么它们具有等价关系。
例如,命题“猫是哺乳动物”和“所有哺乳动物都是猫”就是等价的。
4. 分配律:如果一个逻辑命题包含多个逻辑操作符,将它们分成两个组合不影响其含义。
例如,命题“(p∧q)∨r”和“(p∨r)∧(q∨r)”就是等价的。
5. 归纳法则:当推理一组命题时,我们通常可以通过研究一组具有相似特征的实例来了解整个集合的性质。
例如,如果我们希望证明所有偶数之和是偶数,我们可以归纳地首先证明2和4之和为6,接着证明6和6之和为12,以此类推。
通过这种归纳方法,我们可以得出结论:所有偶数之和是偶数。
6. 相反法则:只有证明命题的逆否命题为真,才能真正证明该命题为真。
例如,如果我们想证明“如果人类能够站立,那么他们就能够行走”,我们可以相反地批判性地假设人类不能行走,然后我们就可以推断出,他们也不能站立。
以上谓词逻辑推理定律是推理过程中注意的基本原则。
离散数学基础2017-11-19•一些基本定义:−谓词公式中原子或原子的否定形式称为文字。
−文字的析取式称为子句。
−不包含任何文字的子句称为空子句。
»空子句是不可满足的。
−若干相互形成合取关系的子句以集合元素的形式构成集合,称为子句集。
•定理:谓词公式的子句集化归−任何谓词公式都可应用谓词逻辑等值式及推理规则化成相应的子句集。
−过程(构造性证明):(1)蕴涵消去:消去条件蕴涵符号;(2)否定词深入:否定词直接作用在原子上;(3)变量标准化:处于不同量词辖域的约束变量根据易名规则使用不同的变量名;(4)消去存在量词:对不受约束的存在量词,使用常量符号例化;对被约束的存在量词,引入Skolem函数建立依赖;(5)化为前束形: (前缀)(母式),前缀包含全称量词串,母式中不包含任何量词;(6)将母式化为合取范式;(7)消去全称量词(自由变量默认全称量化);(8)由(6)中各极大项构成子句;(9)变量分离:使各子句不含同名变量。
•例:∀xP(x)→∀x∃y((P(x)∨Q(x))→R(x, y))¬ ∀xP(x) ∨ ∀x∃y(¬(P(x) ∨ Q(x)) ∨ R(x, y)) 蕴涵消去∃x¬P(x) ∨ ∀x∃y ((¬P(x) ˄ ¬Q(x)) ∨ R(x, y))否定词深入∃x¬P(x) ∨ ∀z∃y ((¬P(z) ˄ ¬Q(z)) ∨ R(z, y))变量标准化¬P(c) ∨ ∀z((¬P(z) ˄ ¬Q(z)) ∨ R(z, f Skolem(z))消去存在量词∀z(¬P(c) ∨ ((¬P(z) ˄ ¬Q(z)) ∨ R(z, f Skolem(z))) 化为前束形∀z((¬P(c) ∨ ¬P(z) ∨ R(z, f Skolem(z)) ˄(¬P(c) ∨ ¬Q(z) ∨ R(z, f Skolem(z)))将母式化为合取范式¬P(c) ∨ ¬P(z) ∨ R(z, f Skolem(z), ¬P(c) ∨ ¬Q(z) ∨ R(z, f Skolem(z) 消去全称量词 {¬P(c) ∨ ¬P(u) ∨ R(u, f Skolem(u), ¬P(c) ∨ ¬Q(v) ∨ R(v, f Skolem(v)} 变量分离−说明:»子句中的变量总是被默认为全称量化的;»化归得到的子句集不等价于原公式;»考虑到量词消去和引入规则的应用,若公式 A 在逻辑上遵循公式集 S,则也遵循由 S 变换成的子句集。
逻辑学基础理论逻辑学是哲学的一门分支,研究的是思维和推理的规律。
由于其广泛的应用和严密的体系,逻辑学成为了现代哲学的重要组成部分之一。
逻辑学的基础理论主要包括五个方面:命题逻辑、谓词逻辑、模态逻辑、范畴逻辑和演绎推理。
下面将对这些方面进行具体阐述。
命题逻辑是逻辑学的基础,它研究的是命题之间的关系和推理规律。
在命题逻辑中,命题是真假性已被确定的陈述句,可以用逻辑符号进行表示。
逻辑符号有否定符号、合取符号、析取符号、条件符号和双条件符号等。
命题逻辑的推理规律主要有三大原则:同一律、排中律和矛盾律。
同一律指的是一个命题等价于它本身;排中律指的是任何命题或者为真或者为假;矛盾律指的是任何命题和它的否定命题不可能同时为真。
谓词逻辑是命题逻辑的发展和扩展,它研究的是一般陈述句中的谓词和量词。
在谓词逻辑中,谓词是一种含有变量的陈述句,量词是用来指定谓词变量范围的符号。
谓词逻辑的重要性在于它可以表达更加复杂的推理关系,例如存在量词和全称量词的使用可以表达存在性和普遍性的情况。
模态逻辑是研究命题的可能性和必然性。
在模态逻辑中,常用的符号包括必然符号和可能符号等。
必然符号表示命题为真的必要性,可能符号表示命题为真的可能性。
模态逻辑的重要性在于它可以研究社会、政治、法律等领域中的问题,并且可以解释一些哲学问题,例如自由意志问题等。
范畴逻辑是研究命题之间的类别和关系。
范畴逻辑的主要概念包括类别和关系,类别是一个范畴中的所有元素的集合,关系是两个类别之间的关联。
范畴逻辑可以用来分析一个问题或者研究一个领域的范畴和关系。
演绎推理是逻辑学最重要的研究领域之一。
它研究的是从前提到结论之间的推理规律。
演绎推理可以通过推理规则来判断论证的有效性。
常用的推理规则包括假言蕴涵规则、等价规则、假言拆分规则、析取移项规则等。
演绎推理的重要性在于它可以帮助我们进行有有效性的推理,并且可以减少一些误判或者不必要的知识论证。
总之,逻辑学的基础理论包括了命题逻辑、谓词逻辑、模态逻辑、范畴逻辑和演绎推理。
谓词逻辑知识点总结一、语言和推理的形式化语言和推理的形式化是数理逻辑的基础,它主要研究如何用严格的符号化方法来表示和分析自然语言中的语言和推理。
在谓词逻辑中,我们通常将自然语言中的命题分解成基本的谓词和常量,然后用谓词逻辑公式来表示这些命题。
例如,对于命题“人类都是有智慧的”,我们可以用P(x)来表示“x是人类”,用Q(x)表示“x有智慧”,那么这个命题可以表示为∀x(P(x)→Q(x))。
而推理的形式化则主要是研究如何用逻辑规则和演绎推理方法来推导出符合逻辑规律的结论。
二、谓词演算及其语义谓词逻辑的核心内容就是谓词演算,它是一种用来分析和推导谓词逻辑公式的形式系统。
谓词演算主要包括语法、语义和推导三个方面。
在语法方面,我们主要研究谓词逻辑公式的形式和结构,包括原子公式、复合公式和量词公式等。
在语义方面,我们主要研究谓词逻辑公式的意义和解释,包括谓词的扩展、量词的解释、模型的概念等。
在推导方面,我们主要研究如何用逻辑规则和推导方法来推导谓词逻辑公式的推导系统。
三、逻辑推导逻辑推导是谓词逻辑的核心内容之一,它主要研究如何用逻辑规则和演绎推理方法来推导出新的谓词逻辑公式。
在逻辑推导中,我们主要研究形式系统中的推理规则和推导方法,包括假言推理、析取推理、量词引入和消去等基本推理规则。
通过逻辑推导,我们可以推导出符合逻辑规律的结论,从而解决一些具体的逻辑问题。
四、完全正式系统完全正式系统是谓词逻辑的一个重要概念,它主要指的是一个完全形式化的逻辑系统,包括语法、语义和推导等方面。
在完全正式系统中,我们可以用严格的形式化方法来表示和分析逻辑语言和推理,从而解决一些具体的数理逻辑问题。
完全正式系统的建立对于谓词逻辑的发展具有重要意义,它不仅为逻辑学理论的研究提供了统一的规范框架,同时也为数理逻辑在实际应用中的推广提供了重要的理论基础。
五、争议在谓词逻辑的发展过程中,一些争议性问题也是不可避免的。
比如,有关谓词逻辑的语言和推理的形式化方法,不同的学者有着不同的观点和理论,针对谓词逻辑公式的语法和语义,也存在一些争议性问题。