能量代谢与心肌缺血损伤与治疗
- 格式:pptx
- 大小:123.87 KB
- 文档页数:17
心肌缺血与糖代谢心肌缺血可以描述为心肌能量需要和能量供给之间失平衡, 这一病理状态使心肌能量代谢转为以外源葡萄糖为主要代谢底物, 代谢效率由高效转向低效。
越来越多的实验室和临床研究表明: 改善心肌能量代谢对减少心肌缺血所引起的损害有积极的作用。
加强心肌碳水化合物代谢有可能改善心功能和/ 或减少组织损害。
1 正常心肌的能量代谢正常心肌代谢的底物主要是碳水化合物和脂肪酸。
在饥饿状态下, 血游离脂肪酸水平高, 心肌对游离脂肪酸的摄取增加, 并抑制葡萄糖氧化代谢, 此时游离脂肪酸成为心肌能量的主要来源。
而摄取的葡萄糖则主要转化为糖原储存[ 脂肪酸氧化的葡萄糖节约作用( glucose sparing effect ) ] 。
进食后, 心肌的能量代谢底物由以脂肪酸为主转向以碳水化合物为主。
脂肪酸氧化代谢和葡萄糖氧化代谢之间存在相互反馈调节关系。
脂肪酸氧化代谢增强可以抑制葡萄糖氧化。
这是由于( 1) 脂肪酸代谢增强使心肌细胞柠檬酸含量增加, 后者可以抑制磷酸果糖激酶(PFK) 活性; ( 2) 脂肪酸代谢可以增加线粒体水平乙酰辅酶A 和还原型辅酶I( NADH) 水平,抑制丙酮酸脱氢酶( PDH) 活性; 进而抑制葡萄糖酵解反应。
反之, 血浆中葡萄糖或乳酸浓度增加, 或者血胰岛素水平增加, 能够促进乙酰辅酶A( Acetyl CoA) 的合成,进一步刺激丙二酰辅酶A( Malonyl CoA) 的生成, 抑制脂肪酸氧化代谢。
尽管和其他能量代谢底物比较, 脂肪酸( 如软脂酸) 单位分子的底物氧化代谢后生成ATP 最多( 一分子葡萄糖经过充分氧化生成31分子ATP, 一分子软脂酸充分氧化生成105 分子ATP) , 但脂肪酸氧化代谢的一个重要缺点是脂肪酸氧化生成相同分子ATP 的需氧量较大。
实验证实,单一脂肪酸灌注的心脏生成相同量的ATP 比单一葡萄糖灌注的心脏耗氧量大17%。
这是因为脂肪酸氧化每一次循环产生等量的FADH2 和NADH2, FADH2 进入呼吸链的位置晚于NADH2 进入的位置,相应生成ATP 较少。
心肌缺血造成的代谢变化心肌缺血是指心脏供血不足,导致心肌细胞的代谢发生变化。
心肌细胞需要大量的氧和营养物质来维持正常的代谢活动,当心肌供血不足时,会导致心肌细胞代谢的异常变化。
心肌缺血造成的代谢变化主要表现在以下几个方面。
1. 能量代谢异常:心肌细胞需要大量的能量来维持正常的收缩和舒张功能。
当心肌缺血发生时,由于供血不足,心肌细胞无法获得足够的氧和营养物质,导致能量代谢发生紊乱。
在心肌缺血的早期,心肌细胞会通过增加糖酵解途径来提供能量,但这种途径产生的能量较少且效率低下。
随着缺血时间的延长,心肌细胞开始通过氧化磷酸化途径来供能,但由于供血不足,氧化磷酸化的效率也会下降。
2. 酸碱平衡失调:心肌缺血导致代谢产物的积累,使得细胞内外pH值发生改变,酸碱平衡失调。
在心肌缺血时,由于能量供应不足,心肌细胞会产生大量的乳酸,导致细胞内乳酸浓度升高,使pH值下降,形成酸性环境。
酸性环境会影响细胞内外的离子平衡,干扰细胞内外的代谢过程,进一步加剧心肌缺血的损害。
3. 氧化应激增加:心肌缺血导致氧供应不足,使心肌细胞内氧化应激增加。
氧化应激是指细胞内氧自由基产生过多,超过抗氧化系统的清除能力,导致氧自由基对细胞膜、DNA和蛋白质等分子的氧化损伤。
心肌缺血时,由于氧供应不足,心肌细胞内氧自由基的产生增加,使细胞的抗氧化能力不足以对抗氧化应激,导致心肌细胞的氧化损伤加剧。
4. 脂质代谢紊乱:心肌缺血会导致心肌细胞内脂质代谢紊乱。
正常情况下,心肌细胞通过脂肪酸氧化来提供能量。
但在心肌缺血时,由于供血不足,心肌细胞无法正常利用脂肪酸进行氧化代谢,导致脂质堆积。
脂质堆积会引起细胞内脂质过氧化反应的增加,产生大量的脂质过氧化产物,进一步损伤心肌细胞。
心肌缺血造成的代谢变化是心肌缺血过程中的重要表现,这些代谢变化直接影响了心肌细胞的功能和生存。
了解心肌缺血造成的代谢变化,有助于我们更好地理解心肌缺血的发生机制,并为心肌缺血的治疗提供新的思路和方法。
试从心脏生理的角度分析心肌缺血再灌注损伤的发生机制,对机体的损伤及其防治原则(1)【摘要】心脏起着泵血的功能,推动血液循环。
心脏的这种功能是由于心肌进行节律性的收缩与舒张及瓣膜的活动而实现的。
心肌的收缩活动又决定心肌具有兴奋性.传导性等生理特性。
心肌细胞膜的生物电活动是兴奋性和传导性等生理特性的基础。
心肌缺血,是指心脏的血液灌注减少,导致心脏的供氧减少,心肌能量代谢不正常,不能支持心脏正常工作的一种病理状态。
心脏的供血不是一成不变的,而是始终存在着波动,但这种波动经过机体自身调节,促使血液供需相○5对恒定,保证心脏正常工作。
如果任何一种原因引起心肌缺血,经机体调节不能满足心脏工作需要,这就构成了真正意义上的心肌缺血。
【关键字】心脏生理心肌缺血心肌缺血再灌注损伤防治原则心脏的生物电活动心脏的主要功能是泵血。
与骨骼肌一样,细胞膜的兴奋是触发心肌收缩的始动因素。
心肌的动作电位也与骨骼肌动作电位有明显差异,使得心脏的收缩也具有自身特点。
因此,掌握心肌生物电活动规律,对于理解心肌的生理特性、心脏收缩活动规律及心律失常的发生机制都有重要意义。
一心肌的电生理特性1兴奋性兴奋性(excitability)是指具有对刺激产生兴奋的能力或特性,兴奋性的高低可用阈值作为衡量指标。
阈值大表示兴奋性低,阈值小表示兴奋性高。
2自律性组织、细胞能够在没有外来刺激的条件下自动发生节律性兴奋的特性称为自动节律性(auto-rhythmicity),简称自律性。
具有自动节律性的组织或细胞称为自律组织或自律细胞。
自律性的高低可用单位时间(每分钟)内自动发生兴奋的次数,即自动兴奋的频率来衡量。
3传导性心肌细胞具有传导兴奋的能力,称为传导性(conductivity)。
传导性的高低可用兴奋的传播速度来衡量。
4心肌收缩的特点对细胞外液Ca2+的依赖性心肌收缩强度因细胞外Ca2+内流量而变化,其机制:在心肌的兴奋-收缩脱耦联中有赖于平台期细胞外Ca2+的内流→钙诱导钙释放(calcium-induced calcium release)触发肌浆网释放大量的Ca2+→收缩。
心肌缺血如何选择治疗药物
一、概述
心肌缺血是指心脏的血液灌注减少,导致心脏的供氧减少,心系能量代谢不正常,不能支持心脏正常工作的一种病理状态。
心脏活动所需要的能量几乎完全靠有氧代谢提供,所以即便在安静的时候,心肌的血量摄取率也很高,正常情况下,机体可以通过自身调节,促使血液供需相对恒定,保证心脏正常工作,当某种原因导致心肌血液供需失恒,就构成了真正意义上的心肌缺血。
二、步骤/方法:
1、抗血小板药物,防治血栓形成,预防冠状动脉和脑动脉血栓栓塞,降低稳定性心绞痛,患者心肌梗死,脑卒中和心血管性死亡的危险,如无禁忌症,均应该长期服用,常用的药物有阿司匹林,氯吡格雷等。
2、β受体阻断剂,可减慢心率,减少心肌的耗氧预防猝死,如美托洛尔或其缓释片。
β受体阻滞剂为稳定型心绞痛的首选,与硝酸酯类合用,可互相取长补短,一般应该从小剂量开始,根据治疗反应以及心理变化调整剂量。
3、钙离子拮抗剂,可抑制心肌收缩,减少心肌耗氧,扩张冠状动脉,解除冠状动脉痉挛,改善心肌供血,常用药物有维拉帕米硝苯地平等。
他汀类药物,降低血浆中的胆固醇,稳定动脉斑块,防止斑块脱落,形成血栓,如阿托伐他汀,瑞舒伐他汀等。
三、注意事项:
RAS系统阻断剂可预防心室重构,改善性功能如,贝那普利和,缬沙坦等。
硝酸酯类药物,扩张冠状动脉,增加心肌供血,如单硝酸异山梨酯。
针刺干预心肌缺血再灌注损伤的作用机制
1. 改善心肌血液循环:针刺干预可以通过促进血液循环,改善心肌供氧情况,减轻
心肌缺血再灌注损伤。
针刺可以刺激穴位,促进血液循环,增加心肌灌流量,减少心肌缺氧。
2. 减轻心肌细胞损伤:心肌缺血再灌注损伤主要是由于氧化应激引起的细胞损伤和
凋亡。
研究发现,针刺可以通过调节多种相关的信号通路,抑制心肌细胞的氧化应激反应,减少自由基的生成,抑制氧化应激性损伤,从而保护心肌细胞免受损伤。
3. 抑制炎症反应:心肌缺血再灌注损伤后,会引发一系列的炎症反应,释放多种炎
症介质,导致组织损伤。
针刺干预可以抑制炎症反应的发生,减少炎症介质的释放,降低
炎症反应的程度,从而减少心肌损伤。
4. 调节心肌细胞能量代谢:心肌缺血再灌注损伤时,由于缺氧和能量不足,心肌细
胞能量代谢紊乱,细胞功能受到严重影响。
针刺干预可以通过调节心肌细胞的能量代谢通路,提高心肌细胞的能量供应,提高细胞抗缺氧和抗损伤的能力。
针刺干预心肌缺血再灌注损伤的作用机制主要包括改善心肌血液循环、减轻心肌细胞
损伤、抑制炎症反应和调节心肌细胞能量代谢。
这些作用机制相互作用,共同发挥保护心
肌的作用,提高心肌缺血再灌注损伤的治疗效果。
心肌缺血损伤机制
心肌缺血损伤机制包括多种因素。
首先,当心肌的需氧量增加时,如身体运动、心跳过快或情绪激动等情况下,心肌的供血需求不能得到满足,这可能导致心肌缺血的症状以及心电图表现出缺血状况。
另外,冠状动脉的严重狭窄或粥样斑块形成也可能导致供氧性心肌缺血。
心肌缺血后,心肌细胞由有氧代谢转变成无氧代谢,线粒体的能量生成减少,作为心肌细胞代谢能量直接来源的ATP生成量也会减少。
如果心肌细胞一直处于缺血缺氧状态,会导致ATP严重缺乏,引起心肌细胞凋亡,最终导致一系列代谢异常与紊乱。
同时,心肌缺血可以直接诱发心肌细胞DNA变异,促使其凋亡。
此外,还有一些其他因素可能导致心肌缺血损伤,如高年龄、高血压、糖尿病、肥胖、情绪波动、烟酒嗜好,以及某些药物发生的不良反应等。
以上信息仅供参考,建议咨询专业医生或查阅相关文献资料,获取更全面准确的信息。
46特别策划 科普文章心脏抗缺血,就得优化能量代谢近年来,冠心病已经为越来越多的人所熟知。
其实,冠心病作为缺血性心脏病大家族中的一员,它的根本问题是心肌缺血。
文/首都医科大学附属北京安贞医院心内科主治医师许晓晗一、什么情况下会产生心肌缺血呢?这个受到“供”、“需”两方面因素的影响:一是为心脏供血的冠状动脉所能提供血液的多少,二是心肌所需要血液和氧气的多少。
正常的冠状动脉能满足各种状态下的心肌血氧需求,也就是达到“供需平衡”,不大可能引起心肌缺血。
但当冠状动脉硬化导致管腔狭窄,并且使心肌的血流增加受到限制时,就会造成“供需失衡”,引起心肌缺血,临床上表现为心绞痛的发作。
因此,冠状动脉狭窄与血液供应减少是主要矛盾,只有消除冠脉狭窄对血流增加的限制,才能从根本上解决心肌缺血的问题。
二、怎么治疗心肌缺血呢?目前治疗心肌缺血的方法主要有三种,即药物治疗、介入支架手术治疗和外科搭桥手术治疗。
每种治疗手段都有自身的特点,具体患者的治疗选择需根据自身情况来定。
每一患者的年龄、性别、病程、心血管系统的结构和功能状态不同、伴随的心血管危险因素和伴发疾病不同,选择某种治疗模式时他们面临的风险、近期和远期疗效以及费用支出也不相同,因此治疗模式的选择必须个体化。
三、支架和搭桥手术能够一劳永逸吗?临床经验告诉我们:对很多药物治疗效果欠佳的病人,选择支架与搭桥手术解决冠状动脉的狭窄确实有非常显著的作用,尤其是在急性心肌梗死等危及生命的情况下,往往可以起到立竿见影的效果。
但是不容忽视的是,有些患者在支架或者搭桥手术之后虽然坚持按照医生的要求口服很多扫码获取本文链接2019年第9期药物治疗,但由于不按照健康的生活方式去做,还是复发了心绞痛,依然在忍受着病痛的折磨。
还有一些患者受到某些因素的限制(如病变广泛或全身情况不能耐受手术治疗等)而无法通过手术治疗消除冠脉狭窄,我们不禁会问“有没有别的办法来改善这些患者的症状呢”。
这时医生与患者的希望便再次回归到我们的药物治疗上来。
代谢调控在心血管疾病中的作用心血管疾病一直是威胁人类健康的“头号杀手”,其发病机制复杂多样。
近年来,随着医学研究的不断深入,代谢调控在心血管疾病中的关键作用逐渐被揭示。
首先,我们来了解一下什么是代谢调控。
简单来说,代谢调控就是生物体对自身代谢过程的调节和控制,以确保细胞和机体能够正常运转。
在心血管系统中,代谢调控涉及到多个层面,包括能量的产生与利用、物质的合成与分解等。
能量代谢在心血管疾病中扮演着重要角色。
心脏作为人体最重要的泵血器官,其能量需求极高,主要依赖脂肪酸和葡萄糖的氧化来提供能量。
然而,在心血管疾病发生时,这种能量代谢平衡往往会被打破。
例如,在心肌缺血的情况下,由于氧气供应不足,脂肪酸氧化受到抑制,葡萄糖的无氧酵解增加。
但无氧酵解产生的能量有限,无法满足心肌细胞的需求,从而导致心肌功能障碍。
脂质代谢异常也是心血管疾病的重要诱因。
血液中胆固醇、甘油三酯等脂质水平过高,容易在血管壁上沉积,形成动脉粥样硬化斑块。
这些斑块会逐渐增大,使血管腔狭窄,影响血流,甚至可能破裂引发血栓,导致心肌梗死或脑卒中等严重后果。
此外,脂蛋白的代谢紊乱也与心血管疾病密切相关。
例如,低密度脂蛋白(LDL)被认为是“坏胆固醇”,其水平升高会增加心血管疾病的风险;而高密度脂蛋白(HDL)则被称为“好胆固醇”,能够将多余的胆固醇从血管壁转运回肝脏进行代谢,对心血管具有保护作用。
糖代谢异常同样不容忽视。
糖尿病是心血管疾病的独立危险因素,高血糖状态会损伤血管内皮细胞,促进动脉粥样硬化的形成。
同时,胰岛素抵抗也在心血管疾病的发展中起到了推波助澜的作用。
胰岛素抵抗不仅会导致血糖升高,还会影响脂质代谢和血管功能,增加心血管疾病的发生风险。
除了上述常见的代谢过程,氨基酸代谢、核苷酸代谢等在心血管疾病中也具有一定的作用。
例如,同型半胱氨酸水平升高与心血管疾病的发生密切相关,通过调控其代谢途径可以降低心血管疾病的风险。
那么,针对心血管疾病中的代谢异常,我们有哪些调控策略呢?饮食调整是基础且重要的一环。