北京课改版数学九下24.2《圆的切线》word教案
- 格式:doc
- 大小:264.00 KB
- 文档页数:5
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。
《圆的切线》教案第一课时教学目标知识与技能探究切线与过切点的半径之间的关系和切线的判定方法,会判断一条直线是否为圆的切线.数学思考与问题解决积极引导学生从事观察、探究、推理证明等活动,提高学生的推理判断能力.情感与态度经历探究圆的切线的性质和判定的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,丰富学生对现实空间及图形的认识,增强运用数学的意识.重点难点重点圆的切线的性质定理和判定定理.难点圆的切线的性质定理和判定定理的应用.教学设计一、创设情境蒸汽机车的车轮在铁轨上滚动,铁轨可以看成直线,它与车轮所对应的圆是相切的.车轮上过切点的那根辐条所对应的直线与表示铁轨的直线有怎样的位置关系呢?二、合作探究试验:OA为⊙O的半径,过A作l丄OA.可以发现:(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径OA.总结:经过半径的外端,并且垂直于这条半径的直线是圆的切线.思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?请学生说明作图过程,切线是如何作出来的?它满足哪些条件?引导学生总结出:①经过半径外端;②垂直于这条半径.请学生继续思考:这两个条件缺少一个行不行?(学生画出反例图)图(1)中直线l经过半径外端,但不与半径垂直;图(2)、(3)中直线l与半径垂直,但不经过半径外端.从以上反例可以看出,只满足其中一个条件的直线不是圆的切线.探究:如图,直线AB是⊙O的一条切线,点T是切点,连接OT.问题:(1)这个图形是轴对称图形吗?如果是,找出它的对称轴.(2)测量∠OTA和∠OTB的度数,并与同学交流测量的结果.(3)猜想:切线AB与过切点的半径OT有怎样的位置关系,你能证明这个结论吗?总结:圆的切线垂直于过切点的半径.例题解析例1已知:如图22-6,AB为⊙O的直径,AB=1cm,BC=2cm,AC=1cm.判断直线A C与⊙O是否相切,并说明理由.例2已知:如图22-9,AB为半圆O的直径,CD为半圆O的一条切线,C为切点,AD⊥CD,垂足D.求证:AC平分∠DCB.三、引导、总结在解决有关圆的切线问题时,常常需要:(1)作出过切点的半径,利用切线的性质解决问题(2)过圆心作直线的垂线段,证明该垂线段等于半径,以证明一条直线为圆的切线.四、课堂小结说说本节课的收获.第二课时教学目标1、使学生掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力.2、使学生了解切线长的概念和切线长定理.会根据切线长的知识解决简单的问题.教学重、难点重点:1、切线的性质定理和判定定理概念.2、切线长定理概念.3、理解内切圆的概念.难点:1、理解运用切线的判定定理解决问题.2、切线长定理的应用.3、运用内切圆的概念解题.教学过程一、切线长定理1、切线长的概念.如图,P是⊙O外一点,P A,PB是⊙O的两条切线,我们把线段P A,PB叫做点P到⊙O 的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用PPT来展示P的位置的变化,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中P A是否等于PB.P A=PB.4、证明猜想,形成定理.猜想是否正确.需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明P A=PB.想一想:根据图形,你还可以得到什么结论?∠OP A=∠OPB(如图),连接AB,有AD=BD等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.如图,点P为⊙O外一点,过点P作直线与⊙O相切.作法1.连接OP.2.以OP为直径作圆,设此圆交⊙O于点A,.B.3.连接P A,PB.则直线P A,PB即为所作.已知:如图,四边形ABCD的边AB,.BCCD,.DA和⊙O分别相切于点E,.F,.G,.H.求证:AB+CD=DA+BC.证明∵AB,BC,CD,DA都与⊙O相切,E,F,G,H是切点,∴AE=AH,BE=BF,CG=CF,DG=DH.二、内切圆和外切三角形出示图形,给出三角形的内切圆、三角形的内心和外切三角形的概念,怎样作已知△A BC的内切圆?学生进行讨论,作图.中间教师可适时地用圆的切线、角的平分线的性质进行引导,最后出示正确的作图步骤.三、例题解析例3 ⊙O表示皮带传动装置的一个轮子,传动皮带MA,NB分别切⊙O于点A,B.延长MA,NB,相交于点P.已知∠APB=60°,AP=24cm,求两切点间的距离和弧AB的长(精确到1cm).例4 如图22-25,⊙O是△ABC的内切圆,切点分别为E,F,G,AB=9,BC=13,AC=10.求AE,BF和CG的长.四、课堂小结通过本节课你学会了什么,引导学生进行课堂小结,因此得出:判定直线与圆的位置关系的方法有两种:(1)根据定义,定义法:由直线与圆的公共点的个数来判断;(2)根据性质,数量法:由圆心到直线的距离d与半径r的关系来判断.让学习了圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力,并能通过作简单的辅助线去解决某些问题.理解切线长定理,会灵活运用它解决问题.。
圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。
让学生掌握圆的切线的性质。
1.2 教学内容圆的切线的定义。
圆的切线的性质。
1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。
1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。
讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。
1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。
1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。
章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。
让学生能够运用判定定理判断一条直线是否为圆的切线。
2.2 教学内容圆的切线的判定定理。
判定定理的应用。
2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。
2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。
讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。
2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。
2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。
章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。
让学生能够运用求法求出圆的切线方程。
3.2 教学内容圆的切线方程的求法。
切线方程的求法应用。
3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。
3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。
讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。
3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。
3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。
《圆》的切线及综合应用成都石室联中 何家明教学目标:《圆》的切线及综合应用教学重点:1.直线与圆相切;2.与圆有关的全等、相似的应用及相关计算教学难点:直线与圆相切及相关计算一、 知识回顾:直线和圆的位置关系:圆的切线的判定:定理:经过直径的一端(或半径的外端)并且垂直..于这条直径(或半径)的直线是圆的切线 圆的切线证明的两种思路:1.有点连圆心.当直线和圆的公共点已知时,根据切线的判定定理,只要将该点与圆心连结,再证明该半径与直线 .即连半径,证 ;2.无点作垂线要证明是切线时,若条件中未告之与圆有交点,则联想切线的定义,过圆心作该直线的垂线,证明垂足到圆心的距离等于 . 即作垂直,证 (过半径或直径外端).定理: 圆的切线垂直..于经过切点的半径 推论1 经过圆心且垂直于切线的直线必经过切点 .推论2 经过切点且垂直于切线的直线必经过圆心依据性质定理及两个推论的条件和结论间的关系,总结出如下结论(3.2.1定理):如果一条直线具备下列三个条件中的任意两个,就可推出第三个.(1)垂直于切线; (2)过切点; (3)过圆心.二、典例讲解:类型一 圆的切线的判定例1 如图,线段AB 经过圆心O ,交⊙O 于A 、C 两点,点D 在⊙O 上,∠A =∠B =30°.求证:BD 是⊙O 的切线;变式练习:如图,点D 是∠AOB 的平分线OC 上任意一点,过D 作DE ⊥OB 于E ,以DE 为半径作⊙D ,判断⊙D 与OA 的位置关系, 并证明你的结论.A BC D •O类型二圆的切线的判定及综合应用例2 如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)若∠A+∠CDB=90°,求证:BD是⊙O的切线;(2)若AD:AE=4:5,BC=6,连接DE,求DE的长.变式练习:如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE (1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.本例小结:类型三圆的切线的性质及应用例3 如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.变式练习:如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC 于E.(1)求证:BE=CE;(2)求证:BC2=BD•BA;本例小结:四、当堂小结:五、课后练习:1.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为E,连接AC、AD,延长AB交过点C的直线于点P,且∠DCP=∠DAC.(1)求证:PC是⊙O的切线;(2)若AC=5,CD=6,求PC的长.2.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求OF的长.3.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.。
《圆的切线〉教学设计课题:圆的切线设计者:王殿永教学版本:北京市义务教育课程改革实验教材第18册教材分析:1、本节课的内容是在第17册圆的有关概念和性质的基础上,从点和圆、直线和圆、圆和圆的位置关系学习圆的系统知识的过程中,直线和圆的位置关系一章的第二课时的内容。
2、本章共分两小节:直线和圆的位置关系、圆的切线。
教材通过让学生“做一做”引入直线和圆的相对运动,得出直线和圆的三种位置关系,抓住圆心和直线的距离与圆的半径之间的大小关系,直观地说明了直线和圆的三种位置关系的性质和判定。
教材重点研究了直线和圆相切的情况,给出了切线的判定定理和性质定理。
在此基础上,学习三角形内切圆、内心和切线长定理。
最后,通过“探究与应用”,介绍了与圆有关的比例线段。
3、本节课是在学习了直线和圆的位置关系,知道圆的切线的定义,理解“如果圆心到直线的距离等于半径,那么直线和圆相切”的知识基础上重点学习及应用圆的切线的判定定理的知识。
教学目标:知识与技能方面:了解切线的概念,能判定一条直线是否是圆的切线,会过圆上一点画圆的切线;能运用切线的判定进行推理证明;过程与方法方面:探索切线与过切点的半径之间的关系;情感、态度与价值观方面:通过观察思考获得数学猜想,体验数学活动的探索性和创造性,感受证明的严谨性及结论的确定性。
教学重点:能判定一条直线是否是圆的切线,能运用切线的判定进行推理证明教学难点:能运用切线的判定进行推理证明教学方式;自主探索与合作交流教学手段:动手操作小组合作教学过程:教师活动学生活动设计意图一、复习:填空1、直线与圆有_____种位置关系,分别是______。
2、当________与一个圆有_______公共点时,这条直线和圆相切。
这条直线叫做圆的______,这个公共点叫________。
3、如图,圆心O到直线l的距离d与圆的半径r之间的数量关系可以表示为:学生完成填空复习直线与圆的位置关系lo drlo drlo dr⑴直线l 与⊙o ⇔ d_____r ⑵直线l 与⊙o ⇔ d_____r (3)直线l 与⊙o ⇔ d_____r二、引言:直线和圆有三种位置关系。
初中数学《圆的切线》教案教学内容 24.2圆的切线(1)课型新授课课时 32 执教教学目标使学生掌握切线的识别方法,并能初步运用它解决有关问题通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力教学重点切线的识别方法教学难点方法的理解及实际运用教具准备投影仪,胶片教学过程教师活动学生活动(一)复习情境导入: 1、复习、回顾直线与圆的三种位置关系.2、请学生判断直线和圆的位置关系.学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切线的其它方法.(板书课题) 抢答学生总结判别方法(二)实践与探索1:圆的切线的判断方法 1、由上面的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1定义法:与圆只有一个公共点的直线是圆的切线.2、当然,我们还可以由上节课所学的用圆心到直线的距离与半径之间的关系来判断直线与圆是否相切,即:当时,直线与圆的位置关系是相切.以此作为识别切线的方法2数量关系法:圆心到直线的距离等于半径的直线是圆的切线.3、实验:作⊙O的半径OA,过A作lOA可以发现:(1)直线经过半径的外端点;(2)直线垂直于半径.这样我们就得到了从位置上来判断直线是圆的切线的方法3位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线.理解并识记圆的切线的几种方法,并比较应用。
通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。
三、课堂练习思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?请学生回顾作图过程,切线是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径.请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)(图1)(图2)图(3)图(1)中直线经过半径外端,但不与半径垂直;图(2)中直线与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.最后引导学生分析,方法3实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式.试验体会圆的位置判别方法。
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引导学生回顾圆的定义,理解圆上所有点到圆心的距离相等。
引入切线的概念:与圆相切且与圆心的连线垂直的直线。
1.2 圆的切线判定条件利用几何图形和实际情境,引导学生理解切线的判定条件。
判定条件1:直线过圆外一点,且与圆的切点在圆的直径上。
判定条件2:直线过圆内一点,且与圆的切点在圆的半径上。
第二章:圆的切线性质2.1 圆的切线性质1:切线与半径垂直通过几何证明和实际情境,引导学生理解切线与半径垂直的性质。
引导学生运用性质1解决相关问题。
2.2 圆的切线性质2:切线与圆心连线垂直通过几何证明和实际情境,引导学生理解切线与圆心连线垂直的性质。
引导学生运用性质2解决相关问题。
第三章:圆的切线方程3.1 圆的切线方程的定义引导学生理解切线方程的概念:描述切线位置和方向的方程。
3.2 圆的切线方程的求法引导学生运用点斜式和一般式求解切线方程。
引导学生运用判定条件和性质求解切线方程。
第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切引导学生理解圆的切线与圆相切的概念。
引导学生运用判定条件和性质判断圆的切线与圆相切。
4.2 圆的切线与圆相离引导学生理解圆的切线与圆相离的概念。
引导学生运用判定条件和性质判断圆的切线与圆相离。
第五章:圆的切线应用5.1 圆的切线长度引导学生理解圆的切线长度的概念。
引导学生运用切线性质和几何证明求解切线长度。
5.2 圆的切线与弦的关系引导学生理解圆的切线与弦的关系。
引导学生运用切线性质和几何证明解决相关问题。
第六章:圆的切线与圆的切点6.1 圆的切线与圆的切点的定义引导学生理解圆的切线与圆的切点的概念。
强调切线与圆的切点是切线与圆的唯一交点。
6.2 圆的切线与圆的切点的性质引导学生理解圆的切线与圆的切点的性质。
性质1:切线与圆的切点,圆心与切点的连线垂直。
性质2:切线与圆的切点,切线与半径的交点在圆心与切点连线上。
圆的切线判定和性质(教案)章节一:圆的切线判定教学目标:1. 理解圆的切线的定义2. 学习圆的切线的判定方法教学内容:1. 圆的切线的定义2. 圆的切线的判定方法教学步骤:1. 引入圆的切线的定义,引导学生理解圆的切线与圆的关系。
2. 讲解圆的切线的判定方法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的定义。
2. 组织学生进行小组讨论,探讨圆的切线的判定方法。
教学评价:1. 通过测试题检查学生对圆的切线的定义的理解。
2. 通过解答题检查学生对圆的切线的判定方法的掌握。
章节二:圆的切线性质教学目标:1. 理解圆的切线的性质2. 学习圆的切线的性质的证明和应用教学内容:1. 圆的切线的性质2. 圆的切线的性质的证明和应用教学步骤:1. 引入圆的切线的性质,引导学生理解圆的切线的性质。
2. 讲解圆的切线的性质的证明和应用,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的性质。
2. 组织学生进行小组讨论,探讨圆的切线的性质的证明和应用。
教学评价:1. 通过测试题检查学生对圆的切线的性质的理解。
2. 通过解答题检查学生对圆的切线的性质的证明和应用的掌握。
章节三:圆的切线方程教学目标:1. 理解圆的切线的方程2. 学习圆的切线的方程的求法教学内容:1. 圆的切线的方程2. 圆的切线的方程的求法教学步骤:1. 引入圆的切线的方程,引导学生理解圆的切线的方程的概念。
2. 讲解圆的切线的方程的求法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的方程的概念。
2. 组织学生进行小组讨论,探讨圆的切线的方程的求法。
教学评价:1. 通过测试题检查学生对圆的切线的方程的理解。
2. 通过解答题检查学生对圆的切线的方程的求法的掌握。
章节四:圆的切线与圆的位置关系教学目标:1. 理解圆的切线与圆的位置关系2. 学习圆的切线与圆的位置关系的判定方法教学内容:1. 圆的切线与圆的位置关系2. 圆的切线与圆的位置关系的判定方法教学步骤:1. 引入圆的切线与圆的位置关系,引导学生理解圆的切线与圆的位置关系的概念。