8.7非线性瞬态分析步骤帮助学习
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
非线性电路分析技巧在电子领域中,非线性电路的分析是十分重要的。
与线性电路不同,非线性电路的元件特性与电压和电流之间的关系不是线性的。
因此,针对非线性电路的分析方法需要更为复杂和精确。
本文将介绍一些非线性电路分析的技巧,帮助读者更好地理解和应用于实践。
一、利用近似法分析非线性电路中,非线性元件的特性曲线通常很复杂,很难直接得到解析解。
此时,我们可以利用近似法来简化问题,使其更易于分析。
最常用的近似方法之一是泰勒级数展开。
通过将非线性特性曲线在某个工作点处展开,可以得到一个线性近似,进而使用线性分析方法进行求解。
其他常用的近似方法还包括小信号模型和大信号模型等。
二、使用等效电路模型为了更方便地分析非线性电路,我们可以将其等效为线性电路。
这样,我们就可以使用线性电路的分析方法进行求解。
等效电路模型可以通过查找手册、仿真软件或实验数据来获取。
常见的等效电路模型包括二极管的小信号模型、伏安特性曲线拟合模型等。
通过将非线性元件替换为等效线性元件,可以将问题简化并应用线性电路分析法。
三、使用迭代法对于复杂的非线性电路,我们可以使用迭代法逐步逼近真实解。
迭代法通常结合着近似法和等效电路模型。
步骤如下:首先,根据近似法建立初始的线性近似电路;然后,通过求解线性近似电路得到数值解;接着,将数值解代入非线性元件中得到新的特性曲线;最后,根据新的特性曲线更新线性近似电路,并重复上述步骤直到收敛为止。
四、考虑非线性电路的稳定性非线性电路的稳定性问题是在分析时需要特别关注的。
由于非线性电路的元件特性会随着电压和电流变化,系统可能会失去稳定性。
为了确保电路正常工作,我们需要对非线性电路进行稳定性分析。
常见的稳定性判断方法包括利用极点分布法、利用Bode图分析法和利用Lyapunov稳定性判据等。
五、利用仿真软件进行分析随着计算机技术的不断发展,仿真软件已经成为非线性电路分析的重要工具。
利用仿真软件,我们可以建立电路的数学模型,并模拟其电压、电流和功率等参数的变化。
有限元分析丨瞬态动力学分析瞬态动力学分析(Transient Structural)是结构有限元分析中非常重要的模块,下文是学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录9.1 瞬态动力学分析简介瞬态动力学分析(Transient Structural)是用于分析载荷随时间变化的结构的动力学响应的方法。
用于确定结构在受到稳态载荷、瞬态载荷和简谐载荷的随意组合下随时间变化的位移、应变和应力。
惯性力和阻尼在瞬态动力学中非常重要,如果惯性力和阻尼可以忽略,则可以用静力学分析代替瞬态动力学分析。
瞬态动态分析比静态分析更复杂,计算消耗和时间消耗较大。
通过做一些初步的工作来理解问题的物理性质,可以节省大量的资源。
9.2 瞬态动力学分析应用承受各种冲击载荷的结构,如:汽车中的门、导弹发射阶段等;承受各种随时间变化载荷的结构,如:桥梁、地面移动装置等;承受撞击和颠簸设备,如:机器设备运输过程。
9.3 瞬态动力学行业标准GB/T 2423.35-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GJB 150-18 军用设备环境试验方法:冲击试验表9.1 脉冲加速度和持续时间(1)半正弦波半正弦形脉冲适用于模拟线性系统的撞击或线性系统的减速所引起的冲击效应,例如弹性结构的撞击。
图半正弦脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击为例图 workbench中输入半正弦波输入载荷类型为加速度(Acceleration)条件,其中Define By选择Components,在Z Component处选择函数(Function),在等号后输入:Asin(ωt),ω=2π/Ta=14700*sin(2π*time/0.022)=14700*sin(2*180*time/0.022)=14700*sin((16363.636*time)^2)^0.5)mm/s2。
注意:单位为角度制,由于此处函数符号不支持绝对值运算符(abs)。
非线性的分析方法
非线性分析方法指的是对非线性系统进行分析和研究的方法。
在非线性系统中,输出与输入之间的关系不是通过简单的线性函数表达,而是通过复杂的非线性函数来描述。
常见的非线性分析方法包括:
1. 相图(Phase Portrait)分析:通过画出系统状态的相轨迹来分析系统的稳定性和周期性。
2. 极限环(Limit Cycle)分析:寻找和分析系统中存在的极限环,用于描述系统的周期性行为。
3. 哈密顿系统(Hamiltonian System)分析:通过引入哈密顿量和广义动量来描述非线性系统的运动。
4. 哈特曼系统分析:将非线性系统转化为哈特曼系统,并利用哈特曼系统的性质进行分析。
5. 建模与仿真:利用数学建模和仿真技术对非线性系统进行分析和研究。
6. 级数展开法:将非线性系统的输出进行级数展开,通过保留几个重要的项来
近似描述系统的行为。
7. 非线性控制方法:包括反馈线性化、滑模控制、自适应控制等方法,用于设计和实现对非线性系统的控制。
非线性分析方法在物理学、化学、生物学等领域的研究中得到广泛应用,有助于深入理解和掌握非线性系统的行为。
非线性分析简介非线性分析是一种研究非线性系统行为的方法。
在许多实际问题中,线性模型无法准确描述系统的行为,因此需要使用非线性分析方法来研究系统的动力学特性。
非线性分析可以帮助我们理解和预测复杂系统的行为,包括生物系统、物理系统、经济系统等。
一、非线性系统的特点非线性系统与线性系统相比,具有以下几个特点:1. 非线性关系:非线性系统的输入和输出之间存在非线性关系,即系统的响应不是简单的比例关系。
2. 多稳定状态:非线性系统可以具有多个稳定状态,即系统可以在不同的状态之间切换。
3. 非周期性行为:非线性系统的行为可以是非周期性的,即系统的响应不会在一定时间内重复。
4. 敏感依赖:非线性系统对初始条件和参数的微小变化非常敏感,即微小的扰动可能导致系统行为的巨大变化。
二、非线性分析方法非线性分析方法主要包括以下几种:1. 相图分析:相图是描述系统状态随时间变化的图形,通过绘制相图可以观察系统的稳定状态、周期行为和混沌行为等。
2. 非线性动力学方程:非线性动力学方程是描述非线性系统行为的数学模型,通过求解非线性动力学方程可以得到系统的解析解或数值解。
3. 傅里叶分析:傅里叶分析是将非线性系统的输入和输出信号分解为一系列正弦波的叠加,通过分析各个频率分量的振幅和相位可以了解系统的频率响应特性。
4. 非线性回归分析:非线性回归分析是通过拟合非线性模型到实验数据来估计模型的参数,从而得到系统的数学模型。
三、应用领域非线性分析方法在许多领域都有广泛的应用,包括:1. 生物学:非线性分析方法可以用于研究生物系统的动力学行为,如神经网络、生物钟等。
2. 物理学:非线性分析方法可以用于研究物理系统的混沌行为,如流体力学、天体力学等。
3. 经济学:非线性分析方法可以用于研究经济系统的非线性行为,如金融市场、经济周期等。
4. 工程学:非线性分析方法可以用于研究工程系统的稳定性和可靠性,如结构力学、控制系统等。
总结:非线性分析是一种研究非线性系统行为的方法,可以帮助我们理解和预测复杂系统的行为。
ANSYS 非线性分析指南(1) 基本过程第一章结构静力分析1. 1 结构分析概述结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。
结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。
在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力,可通过节点位移导出。
七种结构分析的类型分别是:a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。
静力分析包括线性和非线性分析。
而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。
b. 模态分析- 用于计算结构的固有频率和模态。
c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。
d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。
e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入随机振动引起的应力和应变。
f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。
g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。
除了前面提到的七种分析类型,还有如下特殊的分析应用:? 断裂力学? 复合材料? 疲劳分析? p-Method结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。
单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元1.2 结构线性静力分析静力分析的定义:静力分析计算在固定不变的载荷作用下结构的响应。
它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。
可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。
电路中的瞬态分析方法总结在电路设计和分析过程中,瞬态分析方法是至关重要的工具。
通过瞬态分析,我们可以了解电路中电压和电流的动态变化情况,有助于判断电路的稳定性和响应速度。
本文将对常见的电路瞬态分析方法进行总结,包括直流瞬态分析和交流瞬态分析两方面。
一、直流瞬态分析方法直流瞬态分析主要是分析电路在开关状态发生改变时,电压和电流的快速响应过程。
常用的直流瞬态分析方法包括Step Response分析、Pulse Response分析和Transient Noise分析。
1. Step Response分析Step Response分析是通过输入直流方波信号来观察电路的响应情况。
步骤一般为:a) 在电路的输入端施加一个幅度固定的方波信号。
b) 观察电路在信号输入变化时,各个节点的电压和电流变化情况。
通过Step Response分析,我们可以了解电路在切换状态时的稳定性和响应时间。
2. Pulse Response分析Pulse Response分析主要是通过输入一个窄脉冲信号来观察电路的响应。
步骤一般为:a) 在电路的输入端施加一个窄脉冲信号。
b) 观察电路在信号输入变化时,各个节点的电压和电流变化情况。
通过Pulse Response分析,可以评估电路的带宽和响应速度。
3. Transient Noise分析Transient Noise分析主要是分析电路在瞬态干扰下的响应情况。
瞬态干扰可以来自电源噪声、开关时产生的电磁干扰等。
步骤一般为:a) 在电路的输入端施加一个瞬态噪声信号。
b) 观察电路在噪声信号输入时,各个节点的电压和电流变化情况。
二、交流瞬态分析方法交流瞬态分析主要是分析电路在交流信号变化时的响应情况,包括频率响应和相位响应。
常用的交流瞬态分析方法包括Frequency Response分析和Small-signal AC Response分析。
1. Frequency Response分析Frequency Response分析是通过输入正弦信号的不同频率来观察电路的响应,得到电路的频率特性。
8.7. Performing a Nonlinear Transient AnalysisMany of the tasks that you need to perform in a nonlinear transient analysis are the same as (or similar to) those that you perform in nonlinear static analyses (described in Performing a Nonlinear Static Analysis) and linear full transient dynamic analyses (described in Structural Static Analysis). However, this section describes some additional considerations for performing a nonlinear transient analysis.Remember that the Solution Controls dialog box, which is the method described in Performing a Nonlinear Static Analysis, cannot be used to set solution controls for a thermal analysis. Instead, you must use the standard set of ANSYS solution commands and the standard corresponding menu paths.8.7.1. Build the ModelThis step is the same as for a nonlinear static analysis. However, if your analysis includes time-integration effects, be sure to include a value for mass density [MP,DENS]. If you want to, you can also definematerial-dependent structural damping [MP,DAMP].8.7.2. Apply Loads and Obtain the Solution1.Specify transient analysis type and define analysis options as youwould for a nonlinear static analysis:∙New Analysis or Restart [ANTYPE]∙Analysis Type: Transient [ANTYPE]∙Large Deformation Effects [NLGEOM]∙Large Displacement Transient (if using the Solution Controls dialog box to set analysis type)2.Apply loads and specify load step options in the same manner as youwould for a linear full transient dynamic analysis. A transient loadhistory usually requires multiple load steps, with the first loadstep typically used to establish initial conditions (see the BasicAnalysis Guide). The general, nonlinear, birth and death, andoutput control options available for a nonlinear static analysisare also available for a nonlinear transient analysis.In a nonlinear transient analysis, time must be greater than zero.See Transient Dynamic Analysis for procedures for defining nonzeroinitial conditions.For a nonlinear transient analysis, you must specify whether you want stepped or ramped loads [KBC]. See the Basic Analysis Guide for further discussion about ramped vs. stepped loads.You can also specify dynamics options: alpha and beta damping, time integration effects, and transient integration parameters.Command(s): ALPHAD, BETAD, TIMINT, TINTPGUI: Main Menu> Solution> Analysis Type> Sol'n Control ( : Transient Tab)Main Menu> Solution> Unabridged Menu> Load Step Opts> Time/Frequenc> DampingMain Menu> Solution> Unabridged Menu> Load Step Opts> Time/Frequenc> Time IntegrationAn explanation of the dynamics options follows.∙DampingRayleigh damping constants are defined using the constantmass [ALPHAD] and stiffness [BETAD] matrix multipliers. Ina nonlinear analysis the stiffness may change drastically -do not use BETAD, except with care. See Damping for detailsabout damping.∙Time Integration Effects [TIMINT]Time integration effects are ON by default in a transientanalysis. For creep, viscoelasticity, viscoplasticity, orswelling, you should turn the time integration effects off(that is, use a static analysis). These time-dependenteffects are usually not included in dynamic analyses becausethe transient dynamic time step sizes are often too short forany significant amount of long-term deformation to occur.Except in kinematic (rigid-body motion) analyses, you willrarely need to adjust the transient integration parameters[TINTP], which provide numerical damping to the Newmark andHHT methods. (See your Theory Reference for the MechanicalAPDL and Mechanical Applications for more information aboutthese parameters.)ANSYS' automatic solution control sets the defaults to a newtime integration scheme for use by first order transientequations. This is typically used for unsteady state thermalproblems where θ= 1.0 (set by SOLCONTROL, ON); this is thebackward Euler scheme. It is unconditionally stable and morerobust for highly nonlinear thermal problems such as phasechanges. The oscillation limit tolerance defaults to 0.0, sothat the response first order eigenvalues can be used to moreprecisely determine a new time step value.Note: If you are using the Solution Controls dialog box to set solution controls, you can access all of these options[ALPHAD, BETAD, KBC, TIMINT, TINTP, TRNOPT] on the Transienttab.3.Write load data for each load step to a load step file.Command(s):LSWRITEGUI: Main Menu> Solution> Load Step Opts> Write LS File4.Save a backup copy of the database to a named file.Command(s):SAVEGUI: Utility Menu> File> Save As5.Start solution calculations. Other methods for multiple load stepsare described in "Getting Started with ANSYS"in the Basic Analysis Guide.Command(s):LSSOLVEGUI: Main Menu> Solution> Solve> From LS Files6.After you have solved all load steps, leave SOLUTION.Command(s):FINISHGUI: Close the Solution menu.8.7.3. Review the ResultsAs in a nonlinear static analysis, you can use POST1 to postprocess results at a specific moment in time. Procedures are much the same as described previously for nonlinear static analyses. Again, you should verify that your solution has converged before you attempt to postprocess the results.Time-history postprocessing using POST26 is essentially the same for nonlinear as for linear transient analyses. See the postprocessing procedures outlined in Transient Dynamic Analysis.More details of postprocessing procedures can be found in the Basic Analysis Guide.。