功率谱估计的现代方法
- 格式:ppt
- 大小:964.50 KB
- 文档页数:36
第6讲:功率谱估计的现代方法§6.1 AR 模型法谱估计假设一个随机过程可以由AR(p)刻画-=)(n x ∑=+-⋅pk n v k n x k a 1)()()(它的功率谱为2222)()1(1)(fpj fj AR ep a ea f P ππσ--+++=这里]|)([|22n v E =σ给出一组观测数据)}1(),1(),0({-N x x x 得到估计的参数集}ˆ),(ˆ),2(ˆ),1(ˆ{2σp a a a,得到一个估计的功率谱密度PSD 。
2122)(ˆ1ˆ)(ˆ∑=-+=pk fkj ARe k af P πσ§6.1.1最大熵谱估计(MESE )假设已知)}(),1(),0({p r r r ,为了确定PSD ,外推 )2(),1(++p r p r ,有无穷多外推方法,一种原则是使信号熵最大,即有最大随机性。
对于高斯过程,熵可以表示成:⎰-⋅2121)(lndf f P C xx(1)(1)是熵表达式,C 是常数,由已知p+1个自相关值构成如下约束方程:p k k r df ef P fkj xx ,1,0)()(21212==⎰-π且知:∑+∞-∞=-⋅=k fkj xx ek r f P π2)()(用Lagrangian 乘积法构成目标函数。
⎰⎰∑--=+=2121212120)()(ln df ef P df f P S fkj xx pk ixx πλ并且求:0)(=∂∂k r S ,2,1||++=p p k经计算的得:1||0)(2+≥=⎰--p k df f P exx fmj πππ这隐含着:∑-=-=ppk fkj k xx ef P πλ2)(1和k k -=λλ*以确保)(f p xx 是实的。
即求得:∑-=-=ppk fkj k xx ef P πλ21)(上式带回p+1个约束方程,经过整理, 最后求得:2122)(1)(∑=-⋅+=pk fkj xx ek a f P πσ这里2σ和)(k a 必须满足:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅)(*)2(*)1(*)()2()1(p r r r p a a a R和:∑=+⋅+=pk k r k a r 12)()()0(σ这正是Yule-Walker 方程,由此得到结论:在Gaussian 随机过程情况下,最大熵估计和AR谱估计是一致的,在非Gaussian 情况下,这一结论并不成立。
功率谱估计方法的比较1.周期图法周期图法是最简单直观的功率谱估计方法之一,通过将信号分成多个长为N的区间,计算每个区间内信号的一维傅里叶变换,然后将这些变换结果平方并取平均得到功率谱。
该方法简单快速,但由于其需要使用多个区间的数据进行平均,因此对信号长度有较高的要求,且在信号存在非平稳性时,该方法不适用。
2.自相关法自相关法是一种经典的功率谱估计方法,通过计算信号的自相关函数来估计功率谱。
具体步骤是将信号与其自身的延迟序列进行点乘,并取平均得到自相关函数。
然后对自相关函数进行傅里叶变换,得到功率谱估计值。
该方法计算简单,但精度一般,且在信号长度较长时计算复杂度较高。
3.傅里叶变换法傅里叶变换法是一种经典的功率谱估计方法,通过对信号直接进行傅里叶变换得到功率谱。
该方法计算简单,精确度高,但对信号的长度存在要求,较长的信号长度能提供更高的分辨率。
此外,傅里叶变换法只适用于周期性信号。
4.平均周期图法平均周期图法是一种对周期图法的改进。
它将信号分为多段,并对每一段进行周期图计算,然后将计算结果平均得到平均周期图。
与周期图法相比,平均周期图法可以降低误差,提高估计精度。
然而,该方法仍然对信号长度有一定要求,并且计算复杂度较高。
5.移动平均法移动平均法是一种基于滑动窗口的功率谱估计方法,其基本思想是通过对信号进行多次滑动窗口处理,将窗口内信号的傅里叶变换结果平方并取平均得到功率谱估计值。
该方法在计算复杂度上较低,适用于非平稳信号的功率谱估计。
但是,由于窗口大小的选择存在权衡,需要根据实际情况进行合理设置。
总结起来,各种功率谱估计方法各有优劣。
周期图法和自相关法计算简单,但方法的精度较低,受信号长度限制且无法处理非平稳信号。
傅里叶变换法具有较高的计算精度,但对信号的长度和周期性要求较高。
平均周期图法和移动平均法对周期图法进行了改进,在精度上有所提高,但计算复杂度较高。
因此,在实际应用中,需要根据具体的信号特点和处理要求选取合适的功率谱估计方法。
现代功率谱估计
现代功率谱估计是一种使用现代信号处理技术来计算信号功率谱的方法。
功率谱表示信号在频率域上的能量分布情况,描述了信号在不同频率上的能量或功率的分布。
在现代信号处理中,有几种方法可以用于功率谱估计:
周期图法(Periodogram Method):这是最简单的功率谱估计方法之一。
通过对信号进行傅里叶变换,然后取幅度的平方得到功率谱估计。
但是在实际应用中,可能需要对信号进行分段并对每个段进行周期图法计算,最后取平均值来获得更准确的估计结果。
Welch方法:这是一种常用的功率谱估计方法,它通过将信号分成多个段并对每个段进行周期图法计算,最后对所有段的结果进行平均来减小估计的方差,提高估计的准确性。
改进的周期图法:包括Bartlett、Hanning、Hamming等窗口函数来改进周期图法,减小泄漏效应leakage effect,提高频谱估计的分辨率和准确性。
自回归AR模型:利用信号的自相关性建立AR模型,然后通过这个模型来计算功率谱。
这种方法在非平稳信号和具有明显谱峰或特定频率成分的信号表现上较好。
这些现代功率谱估计方法可以根据不同的信号特点和应用需求选择合适的方法,并在工程、信号处理和科学领域有着广泛的应用。
AR 模型的功率谱估计BURG 算法的分析与仿真一.引言现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。
现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。
目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。
现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。
基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。
在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。
这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。
本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。
实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。
功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。
信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。
功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。
现代谱估计法(殷恒刚 107010254)1. 现代谱估计简介经典谱估计法可以利用FFT 计算,因而有计算效率高的优点,在谱分辨力要求不是太高的地方常用这种方法。
但频率分辨率地是经典谱估计的一个无法回避的缺点。
如周期图法在计算中把观测到的有限长的N 个数据以外的数据认为是零,而BT 法仅利用N 个有限的观测数据作自相关函数估计,实质上也就是假设除已知数据外的自相关函数全为零,这些显然都是与事实不符的。
为了克服以上缺点,人们提出了平均,加窗平滑等方法,在一定程度上改善了经典谱估计的性能。
但是,经典谱估计,始终无法解决,频率分辨率与谱估计稳定性之间的矛盾,特别是在数据记录长度比较短时,这一矛盾尤其突出。
现代谱估计理论也就是在这种背景下产生的,以1967年Burg 提出的最大熵谱分析法为代表的现代谱估计法,不认为在观察到的N 个数据以外的数据全为零。
因此克服了经典法的这个缺点,提高了谱估计的分辨率。
后来发现线性预测自回归模型法(简称AR 模型法)与Burg 的最大熵谱分析法是等价的,它们都可归结为通过Yule-Walker 方程求解自回归模型的系数问题。
目前常用的求自回归模型系数的算法有三种:①为Levinson 递推算法;②为Burg 递推算法;③为正反向线性预测最小二乘算法。
2.现代谱估计的三种模型由信号与系统相关知识可知,任何具有有理功率谱密度的随机信号都可以看成是由一白噪声激励一物理网络所形成。
如图一所示。
我们可以先假设一个模型,然后根据已记录数据估计参数值,这样就不用假设N 以外的所有数据全为零,这就克服了经典谱估计的缺点。
图1一个系统的Z 域传递函数的一般形式如下:00()()ba n jjj n i ii bzY z X z a z-=-==∑∑ (1.1)参数建模的任务也就是如何确定阶数a n 和b n 以及系统数组(1,,)i a a i n = 和(1,,)j b b i n = 。
功率谱估计的方法
功率谱估计是信号处理中常用的一种方法,用于分析信号在频域内的特点,通常可以分为以下几种方法:
一、经典方法
1.傅里叶变换法:将时域信号通过傅里叶变换变换到频域,然后计算功率谱密度。
2.自相关法:通过自相关函数反映信号的统计平稳性,然后通过傅里叶变换计算功率谱密度。
3.周期图法:将信号分解为若干个周期波形,然后对每个周期波形进行傅里叶变换计算周期功率谱,最后汇总得到整个信号的功率谱。
二、非经典方法
1. 时-频分析法:如短时傅里叶变换(STFT)、小波变换等,将信号分解为时域和频域两个维度的分量,从而可以分析信号在时间和频率上的变化。
2. 基于协方差矩阵的特征值分解法:通过建立协方差矩阵,在张成空
间中求解特征向量,从而达到计算信号功率谱的目的。
3. 基于频率锁定法:如MUSIC法、ESPRIT法等,是一种利用特定信号空间中的特定模式进行处理的方法。
以上方法各有特点,根据实际需求选择不同的方法可以得到相应的功率谱估计结果。
功率谱密度估计
功率谱密度估计是一种用于估计信号的功率谱密度的方法。
功率谱密度指的是一个信号在频域上的能量分布情况。
常见的功率谱密度估计方法有:
1. 周期图法:将信号分成一系列周期为N的子段,对每个子
段进行傅里叶变换,然后求平均得到估计的功率谱密度。
2. 平均势谱法:将信号分成若干个重叠的子段,对每个子段进行傅里叶变换,然后对各个子段的功率谱密度进行平均得到估计的功率谱密度。
3. Welch方法:在平均势谱法的基础上,将信号分成多个子段,并对每个子段进行窗函数加权处理,然后对加权后的子段功率谱密度进行平均得到估计的功率谱密度。
4. 自相关法:通过计算信号的自相关函数来估计功率谱密度。
自相关函数表示信号的不同时间点之间的相关性。
这些方法在实际应用中有各自的优缺点,选择合适的方法需要考虑信号的特点以及其他要求,例如信号的长度、频率分辨率等。
用burg 法实现功率谱估计参数模型法是现代谱估计中的主要内容,AR 模型参数的求解有三种方法:自相关法、Burg 递推算法和改进协方差法。
Burg 算法不是直接估计AR 模型的参数,而是先估计反射系数Km,再利用Levinson 关系式求得AR 模型的参数。
Burg 算法采用的数据加窗方法是协方差法,不含有对已知数据段之外的数据做人为的假设。
1.其原理如下:Burg 算法是使前向预测误差和后向预测误差均方误差之和最小来求取Km 的,它不对已知数据段之外的数据做认为假设。
计算m 阶预测误差的递推表示公式如下:x(n)(n)(n)(n)1)-(n (n)1)-(n (n)(n)0f 0f 1-m m 1-b m 1-m f 1-m m e e e e ==+=+=e k e e k e b b m b m f求取反射系数的公式如下:}1)]-(n [(n)]{[1)]-(n (n)[2-2b 1-m 2f 1-m b 1-m f 1-m m e e e e +=E E k 对于平稳随机过程,可以用时间平均代替集合平均,因此上式可写成:[][][][]{}p ,2,1,1)-(n (n)1)-(n (n)2-1-21-21-1-mn 1-1-,⋯=+=∑∑==m N m n b m f m N b m f m m e e e e k 这样便可求得AR 模型的反射系数。
将m 阶AR 模型的反射系数和m-1阶AR 模型的系数代入到Levinson 关系式中,可以求得AR 模型其他的p-1个参数。
Levinson 关系式如下:1-m 1,2,i i),-(m (i)(i)1-m 1-m m ,⋯=+=a k a a mm 阶AR 模型的第m+1个参数G ,ρm 2G =,其中ρm 是预测误差功率,可由递推公式)-(12m 1-m m k ρρ= 求得。
易知为进行该式的递推,必须知道0阶AR 模型误差功率ρ0 ρ0=[](0)(n)E x 2R x = 可知该式由给定序列易于求得。
功率谱估计方法的比较与评价功率谱估计是信号处理领域的重要工具,用于分析信号的频率内容和能量分布。
随着科技的进步,出现了多种功率谱估计方法,例如经典的周期图法、快速傅里叶变换法以及最小二乘法等。
本文将对这些方法进行比较与评价,旨在找出最适合于不同应用场景的功率谱估计方法。
一、周期图法周期图法是一种常用的功率谱估计方法,它利用信号的自相关函数来计算功率谱。
该方法适用于稳态信号,并能够较好地估计信号的频谱特征。
但周期图法在非稳态信号的估计上存在一定的局限性,并且计算复杂度较高,需要较长的计算时间。
二、快速傅里叶变换法快速傅里叶变换(FFT)法是一种高效的功率谱估计方法,通过将信号从时域转换为频域,可以快速计算出信号的功率谱。
FFT法的优点是计算速度快,适用于大数据量的处理。
然而,由于FFT法是基于信号的离散采样点进行计算的,对于非周期信号的估计效果可能不够准确。
三、最小二乘法最小二乘法是一种经典的信号处理方法,可以用于估计信号的功率谱密度函数。
该方法利用样本点间的相关性来估计信号的频谱分布,并通过最小化误差的平方和来求解最优的谱估计。
最小二乘法的优点是估计结果较为准确,对于非稳态信号的估计效果也较好。
然而,最小二乘法在计算复杂度上稍高,并且对于信噪比较低的信号,估计结果可能受到较大影响。
四、窗函数法窗函数法是一种常见的功率谱估计方法,它通过在时域上对信号进行窗函数加权来减小频谱泄露的影响。
窗函数法对于非周期性和非稳态信号的功率谱估计具有一定的优势,可以提供更准确的估计结果。
然而,在窗函数选择上需要权衡分辨率和频谱失真的平衡,不同的窗函数选择会对结果产生一定的影响。
综上所述,不同的功率谱估计方法适用于不同的应用场景。
周期图法适用于稳态信号的估计;快速傅里叶变换法适用于大数据量的处理;最小二乘法适用于需要较高估计准确度的场景;窗函数法适用于非周期性和非稳态信号的估计。
在具体应用中,需要根据信号特性和实际需求选择合适的功率谱估计方法,以获得准确可靠的结果。
功率谱估计模型法汇总1.短时傅里叶变换(STFT)短时傅里叶变换是一种常见的功率谱估计方法,它将信号分成若干小段,并分别对每一小段进行傅里叶变换。
通过将时域信号转换为频域信号,可以得到信号在不同频率上的能量分布。
然后,对每一小段的频谱进行平均,得到整个信号的频谱估计结果。
2.自相关法自相关法是一种通过计算信号与其自身的相关性来估计功率谱的方法。
自相关函数表示信号在不同时刻的相似程度,通过对自相关函数进行傅里叶变换,可以得到信号的功率谱估计结果。
自相关法适用于平稳信号的功率谱估计。
3.平均周期图法(APM)平均周期图法是一种通过信号的周期平均来估计功率谱的方法。
该方法将信号分成若干个周期,并对每个周期的波形进行傅里叶变换。
然后,对每个周期的频谱进行平均,得到整个信号的频谱估计结果。
平均周期图法适用于具有明显周期性的信号,如正弦信号或周期性脉冲信号。
4.基于模型的方法基于模型的方法是一种通过对信号进行建模来估计功率谱的方法。
常见的模型包括自回归模型(AR)和最大似然估计(MLE)模型。
通过拟合信号模型,可以得到模型参数,进而估计信号的功率谱。
基于模型的方法适用于非平稳信号的功率谱估计。
5.基于窗函数的方法基于窗函数的方法是一种通过对信号进行加窗来估计功率谱的方法。
常见的窗函数包括矩形窗、汉明窗和凯泽窗等。
通过对信号进行加窗,可以抑制信号的频谱泄漏效应,提高功率谱估计的精度。
除了以上列举的几种方法,还存在其他一些功率谱估计模型,如周期图法、周期图平均法、波尔兹曼机等。
每种方法都有其适用的场景和优缺点。
在实际应用中,根据信号特性和需求选择合适的功率谱估计模型非常重要。
总而言之,功率谱估计模型是信号处理领域中常用的方法,用于分析信号的频谱特征。
不同的模型适用于不同的信号特性,根据实际需求选择合适的估计方法可以提高功率谱估计的准确性和可靠性。
《现代信号处理》姓名:李建强学号:2专业:电子科学与技术作业内容:在MATLAB平台上对一个特定的平稳随机信号进行经典功率谱估计和现代功率谱估计的比较一、前言功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
在许多工程应用中,它能给出被分析对象的能量随频率的分布情况。
平滑周期图是一种计算简单的经典方法,它的主要特点是与任何模型参数无关,但估计出来的功率谱很难与信号的真是功率谱相匹配。
与周期图方法不同,现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其使用参数化的模型,能够给出比周期图方法高得多的频率分辨率。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
二、总体概述本次实验分别使用经典的功率谱估计(如周期图法)与AR模型法对某一特定的平稳随机信号进行其功率谱估计,由图像得到信号的频率。
利用MATLAB平台,直观形象地观察并比较二者估计效果的区别,以便于加深对功率谱估计的理解和掌握。
三、具体的实现步骤1、经典法功率谱估计周期图法又称直接法,它是从随机信号x(n)中截取N长的一段,把它视为能量有限的真实功率谱的估计的一个抽样。
1.1、实现步骤(1)、模拟系统输出参数x(n)=A*sin(2πf1*n)+B*sin(2πf2*n),包括序列长度N(128或512或1024,加性高斯白噪声(AGWN)功率一定,设置A,B,f1,f2,n的值。
(2)、应用周期图法(不加窗)对信号的功率谱密度进行估计,使用直接法在MATLAB 平台上进行编程实现。
(3)、输出相应波形图,进行观察,记录。
1.2 MATLAB源代码实现clear all; %清除工作空间所有之前的变量close all; %关闭之前的所有的figureclc; %清除命令行之前所有的文字n=1:1:128; %设定采样点n=1-128f1=0.2; %设定f1频率的值0.2f2=0.213; %设定f2频率的值0.213A=1; %取定第一个正弦函数的振幅B=1; %取定第一个正弦函数的振幅a=0; %设定相位为0x1=A*sin(2*pi*f1*n+a)+B*sin(2*pi*f2*n+a); %定义x1函数,不添加高斯白噪声x2=awgn(x1,3); %在x1基础上添加加性高斯白噪声,信噪比为3,定义x2函数temp=0; %定义临时值,并规定初始值为0temp=fft(x2,128); %对x2做快速傅里叶变换pw1=abs(temp).^2/128; %对temp做经典功率估计k=0:length(temp)-1;w=2*pi*k/128;figure(1); %输出x1函数图像plot(w/pi/2,pw1) %输出功率谱函数pw1图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)添加高斯白噪声后的,周期图法功率频谱分析');grid;%-------------------------------------------------------------------------pw2=temp.*conj(temp)/128; %对temp做向量的共轭乘积k=0:length(temp)-1;w=2*pi*k/128;figure(2);plot(w/pi/2,pw2); %输出功率谱函数pw2图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)自相关法功率谱估计');grid;1.3 matlab仿真图形(1)、用直接法,功率谱图像,采样点N=128。