光伏系统简单介绍
- 格式:docx
- 大小:446.28 KB
- 文档页数:8
简述光伏系统的组成
光伏系统主要由太阳能电池阵列、汇流箱、逆变器、电网外电源、接线箱以及环境保护装置组成:
(1)太阳能电池阵列:使用个体太阳能电池片组成的大规模微电网系统。
(2)汇流箱:用于将太阳能电池阵列中的电流进行汇总,并将太阳能电池阵列与逆变器之间的电流连接起来。
(3)逆变器:将太阳能电池阵列所产生的直流电能转换成高压、高频的交流电能,供市电家庭配用。
(4)电网外电源:用于将太阳能系统产生的交流电能输送至市电网,自身采用双向调节功能,使太阳能电池阵列的输出电流等参数保持在规定的范围内。
(5)接线箱:在太阳能电池阵列、汇流箱里存储保护开关,并对太阳能电池阵列及汇流箱进行检测及安全保护。
(6)环境保护装置:用于合理安置太阳能系统,采取有效的止水及降噪设施,合理保护太阳能系统设备,避免野外设备因过暑过冷等因素而受损耗。
光伏发电系统介绍光伏发电系统由光伏电池组件、支架、逆变器和电网连接组成。
光伏电池组件是最核心的部分,它由多个光伏电池板组成。
光伏电池板是由硅材料制成的,它可以将太阳光转换为直流电能。
光伏电池板一般安装在支架上,以便将其固定在太阳光直射的地方。
逆变器则起到将直流电转换为交流电的作用。
最后,交流电被接入电网,供电给用户。
光伏发电系统有很多优点。
首先,它是一种清洁的能源,不会产生二氧化碳等有害气体。
这有助于减少大气污染和气候变化。
其次,光伏发电系统可以在任何地方使用,只要有阳光就可以发电。
这对于偏远地区和缺电的地方非常有益。
再次,光伏发电系统的维护成本较低。
一旦安装好,它几乎不需要维护,只需定期清洁和检查。
最后,光伏发电系统可以降低电费。
用户可以将多余的电能出售给电网,从而获得回报。
不过,光伏发电系统也存在一些挑战和限制。
首先,它的效率仍然有限。
目前最高效的光伏电池板的转换效率约为20-25%。
其次,光伏发电系统对太阳光的依赖性较强。
在阴雨天气或夜间,系统的发电效果会大大降低。
再次,光伏发电系统在建设和安装时需要一定的投资。
尽管随着技术的发展,光伏电池板的成本不断降低,但对于一些贫困地区来说,仍然存在经济上的困难。
为了克服这些问题,科研人员和工程师们一直在努力改善光伏发电技术。
他们致力于提高光伏电池板的效率和稳定性,以便更好地利用太阳能资源。
此外,他们还研究如何将光伏发电系统与储能技术结合,以便在夜间或阴雨天气仍然能够供电。
此外,在政策层面,一些国家已经出台了鼓励和支持光伏发电的措施,包括补贴和优惠价格。
这些政策有助于推动光伏发电的发展。
总之,光伏发电系统是一种利用太阳能转换为电能的可再生能源技术。
它具有许多优点,如环保、适用范围广、低维护成本和降低电费。
但是,它仍然面临一些挑战和限制,包括效率低、天气依赖性强和高初投资等。
为了克服这些问题,科研人员和工程师们正在努力改善技术,并且政府也出台了相关政策来推动光伏发电的发展。
太阳能光伏系统分为离网光伏发电系统、并网光伏发电系统和分布式光伏发电系统:
1、离网光伏发电系统。
主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。
2、并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。
并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,还没有太大发展。
而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网发电的主流。
3、分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。
其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。
太阳能光伏发电系统
太阳能光伏发电系统是将太阳能转换成电能,并储存能量供给负载电能或逆变并网的系统,按其运行方式可分为两类:独立发电系统和并网发电系统。
一、太阳能光伏发电系统的设计原理
1、独立发电系统
独立发电系统由太阳能电池组件方阵、蓄电池组、控制器组成,可为直流负载供电。
如负载为交流型的,发电系统还包括逆变器.
2、并网发电系统
并网发电系统由太阳能电池组件方阵、并网逆变器及连接器组成,可发电并把电能送上电网。
并网发电系统还可以为负载供电。
二、系统各部分功能
(一)太阳能电池组件方针:由若干太阳能电池组件串联或并联而成,主要功能为利用太阳能进行发电。
(二)蓄电池组:一般采用免维护铅酸蓄电池作为储能装置,用来储蓄太阳能光伏组件发出的电能。
(三)控制器:用来充、放电和其他方面的自动控制。
(四)逆变器:是将直流和交流相互转换的设备.
三、太阳能发电系统应用实例
1、大型太阳能光伏发电系统
太阳能板功率:4000Wp
并网逆变器:5000W
负载功率: 小于3000W
使用地点:别墅、旅游度假村、草原牧区、偏远山村、高山岛屿、沙漠区等。
2、小型太阳能发电系统
太阳能板功率:600Wp
蓄电池:8个12V200Ah
控制器: 24V40A
逆变器:1000VA
负载功率: 小于600W
使用地点:无电山村、学校、医院、私人住房、边防哨所、部队及野外作业等。
一、光伏系统的组成和原理组成:光伏系统基本上由四部分组成:1、太阳能电池组件;2、蓄电池组;3、蓄电池充放电控制器或称直流控制器;4、直流负载或交流负载。
此外,如果负载是交流的,还要为交流负载配备交流逆变电源,可以将交流逆变电源连同交流负载共同视为一个直流负载子系统。
如图所示。
原理:(1)太阳能电池组件在阳光照射下会产生光伏电压和光生电流,是光伏系统的发电装置。
它输出的是直流电,经充放电控制器整定后用来为蓄电池充电;充电的过程是储能的过程。
(2)蓄电池是光伏系统的储能装置。
白天,太阳能被光电池转化为电能,通过给蓄电池充电,电能又转化为化学能。
到了晚上,太阳能电池停止发电和充电,蓄电池开始对负载放电,化学能又转化为电能供给光源工作。
所以,一个完整的光伏系统在一昼夜间发生了一系列能量的转化:太阳辐射能→电能→电化学能→电能→电光照明。
(3)智能化充放电控制器在光伏系统能量转化中起着极其重要的控制作用。
这个控制器具有先进的充电控制、放电控制以及过充电保护、过放电保护、过载保护反接保护等一系列保护功能。
光伏系统的性能好坏与控制器有着重大关系,可以说充放电控制器是光伏系统的心脏。
目前光伏系统用充放电控制器都以单片机对充放电过程尤其是充电过程进行严密监控,大大提高了系统可靠性。
太阳能电池组件蓄电池智能化充放电控制二.光伏系统的分类一般我们将光伏系统分为独立系统、并网系统和混合系统。
并网系统独立系统混合系统三种光伏系统的比较如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。
还可以将光伏系统细分为如下几种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能发电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。
下面就每种系统的工作原理和特点进行说明。
光伏系统基础知识一、概要当我们谈论光伏系统时,我们是在谈论利用太阳能转换为我们生活所需的电力的系统。
光伏系统简单说,就是太阳能发电的装置。
你可能会好奇,这个神奇的系统是如何工作的?它有哪些重要的部分?又有什么是需要注意的?别急让我们来一起探索一下光伏系统的奇妙世界吧!从基础的入门知识开始,让我们一起领略太阳能的魅力,为绿色地球出一份微薄之力。
跟着我让我们轻松理解光伏系统的基础知识!1. 光伏系统的定义和重要性光伏系统就是我们通常说的太阳能发电系统,它是利用太阳能转换成电能的装置。
听起来好像很复杂,但其实它的原理很简单。
就是那些闪闪发光的太阳能板,它们能够接收太阳的光,然后把光转化成我们可以用的电。
这个过程就像是把太阳光变成我们家里的灯光一样,是个神奇的转化过程。
光伏系统的出现和使用对我们人类来说非常重要,你知道为什么吗?因为我们一直在寻找一种清洁、可再生的能源来替代那些会造成污染的能源。
煤炭和石油是我们目前使用最多的能源,但它们产生的废气会污染我们的空气和环境。
而太阳能是一种永远不会耗尽的能源,它清洁、无污染,而且取之不尽用之不竭。
所以光伏系统的出现,对我们来说,真的是个很棒的消息。
它不仅能帮助我们减少对环境的污染,还能让我们的能源更加可持续,更好地守护我们的地球家园。
我们真的可以好好利用这个神奇的系统,为我们的未来创造一个更好的环境。
2. 光伏技术的发展历程及现状好的接下来为您编写《光伏系统基础知识》中关于“光伏技术的发展历程及现状”的部分。
说起光伏技术,其实它的发展历史可是相当悠久了。
早在很久之前,人们就发现了某些物质在光照下能够产生电流的特性,也就是我们现在说的光伏效应。
不过真正让这项技术飞速发展起来,还是在最近几十年里。
从一开始的探索研究到逐步实际应用,再到现在的大规模的商业化生产,光伏技术可以说是日新月异,发展势头非常迅猛。
目前全球都在大力推广清洁能源,光伏技术可谓是站在了风口上。
随着技术的进步,光伏电池的效率不断提高,成本却不断降低,这让更多的人和企业开始使用光伏发电。
太阳能光伏系统的工作原理太阳能光伏系统是一种利用太阳能将太阳辐射能转化为电能的设备。
它由太阳能电池板、逆变器和电池组等组件组成,通过光伏效应将光能转化为电能。
下面将详细介绍太阳能光伏系统的工作原理。
一、光伏效应原理光伏效应是太阳能光伏系统能够将光能转化为电能的基础。
光伏效应是指当太阳光照射到半导体材料时,光子与半导体原子发生相互作用,激发出电子和空穴产生离子化的现象。
这些电子和空穴随着半导体材料的结构形成电场,并形成阳极和阴极的电势差,从而产生电流。
二、太阳能电池板的工作原理太阳能电池板是太阳能光伏系统的核心部件,它是由多个太阳能电池组成的。
太阳能电池是一种半导体材料制成的器件,常见的有硅、硒化铟和镓砷化镓等。
当太阳光照射到太阳能电池板上时,光子与太阳能电池中的半导体材料发生光伏效应,产生电荷载流子。
这些载流子通过材料内部的PN结和外部的电路连接起来,形成电流,供电给逆变器和电池组。
三、逆变器的工作原理逆变器是太阳能光伏系统中的重要组件,它主要用于将直流电能转化为交流电能。
在太阳能光伏系统中,电池板产生的是直流电能,而大部分家庭和工业设备需要使用交流电能。
逆变器通过将直流电能经过逆变的过程,将其转化为与电网频率和电压相匹配的交流电能。
逆变器中的关键元件是晶闸管和电容器等。
晶闸管具有控制电路和开关功能,能够将直流电能根据需要转化为交流电能,并将其正向输送到电网供电使用。
四、电池组的工作原理电池组是太阳能光伏系统的能量储存部分,主要用于在太阳能不足或夜间无光时供电使用。
电池组由多个电池串联或并联而成,常用的电池类型有铅酸电池、镍铁电池和锂电池等。
它们能够将由太阳能电池板产生的电能储存起来,并在需要时释放出来,为用户提供持续的电能供应。
电池组内部通过化学反应将电能转化为化学能,并储存起来。
当系统需要供电时,电池组释放储存的能量,将化学能转化为电能供给逆变器。
这样就实现了太阳能光伏系统在太阳能不足或夜间无光时的持续供电。
光伏系统基础知识光伏系统概况光伏系统(PhotoVoItaiCSyStem)主要由光伏组件、汇流箱、配电柜、逆变器、变压器等设备组成。
光伏如件光伏如件光伏i1•件光伏皿件光伏皿件光伏组件■■■■89■■■■■■■■■■■■⅝∣MBn■!1■■■■■■■■■光伏系统设备组成图・汇流箱作用:将若干个光伏串列并联接入汇流,兼有监控和保护作用。
汇流箱可减少光伏组件与逆变器之间的接线,方便维护,提高系统的可靠性。
23.配电柜作用:二级汇流,在应用中可以对上下级起到保护。
4.逆变器作用:太阳能光伏阵列产生的直流电,经逆变器(Inverter)转换成正弦波交流电,从而输入电网。
5.变压器作用:变压器(TranSfOnner)能够起到升降压得作用。
当其使电压升高,可有效减少电压的损耗。
6.光伏组件7.1光伏组件定义光伏组件的基本单元是电池片,单体太阳能电池不能直接做电源使用,须将若干单体电池串、并联连接和严密封装成组件。
光伏组件(或称太阳能电池板So1arPaneI)是光伏发电系统中的最重要的部分,其作用是将太阳能转化为电能,以推动负载工作。
8.2光伏组件分类目前光伏电站常用的电池组件为:单晶硅光伏组件、多晶硅光伏组件及薄膜光伏组件。
从外观上看,单晶硅光伏组件为深蓝色,近乎黑色,单晶电池片四角呈圆弧状。
多晶硅为天蓝色,多晶电池片呈正方形,表面有类似冰花一样的花纹。
薄膜光伏组件主要包括钙钛矿、碎化镉(CdTe)、铜钢钱硒(CIGS)>碑化线(GaAs)o非晶硅电池包含在薄膜电池内。
此外,最近较火的异质结(HnyHJT)为晶体硅上沉积非晶硅薄膜,属于单晶硅电池与非晶硅电池的结合产物。
从使用性能上来说,单晶硅光伏组件光电转化效率为21%左右,最高达24%,但制作成本大。
由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此坚固耐用,使用寿命一般可达15年,最高可达25年。
多晶硅光伏组件光电转化效率则降低不少,约为17%左右,但制作成本较低,因此得到大量发展。
光伏发电系统介绍概要光伏发电系统是一种利用太阳能将光能转化为电能的装置,它直接将太阳辐射能转化为电能,是一种清洁、可再生的能源利用方式。
光伏发电系统主要由太阳能电池板、逆变器、电池、控制器和电网组成,通过将太阳能转换为电能,可以为家庭、商业和工业单位提供电力需求。
光伏发电系统的核心是太阳能电池板,它由多个太阳能电池组成,将太阳光转化为直流电能。
太阳能电池板的主要材料是硅,其中掺杂了磷和硼等杂质,形成正负电荷的层。
当太阳光照射到太阳能电池板上时,光子将硅中的电子激发,使其从低能级跃迁到高能级,形成光生电流。
由于太阳能电池板的正负电荷分布,光生电流形成电势差,从而产生直流电。
太阳能电池板产生的直流电需要经过逆变器进行转换,将直流电转换为交流电。
逆变器起到了箱变的作用,可以将太阳能发电系统产生的电能接入到电网中,也可以储存为电池中的电能。
逆变器还具有隔离和保护的作用,可以防止电能逆流和电压波动。
电池是光伏发电系统的组成部分之一,它可以储存光伏发电系统产生的电能。
电池通常是铅酸蓄电池或锂电池,能够储存电能并在需要时释放。
当太阳能电池板产生的电能超过负荷需求时,多余的电能可以储存在电池中,以备不时之需。
电池还可以提供持续的电能,以满足夜晚或阴天等光伏电力不足的情况。
控制器是光伏发电系统的重要组成部分,它负责监控、管理和保护光伏发电系统的运行。
控制器可以监测太阳能电池板的输出电压和电流,控制逆变器的运行,并对电池进行充放电控制。
此外,控制器还可以记录系统的发电量、电池的电量和运行状态等信息,帮助用户了解和管理系统的性能。
光伏发电系统还可以通过电网供电,只要系统产生的电能不足以满足负荷需求,可以从电网中获取电能。
当系统发电过剩时,多余的电能也可以倒送到电网中,实现并网发电。
并网发电可以获得电网的补偿,使光伏发电系统的投资回报更加可观。
总之,光伏发电系统是一种利用太阳能将光能转化为电能的装置,通过太阳能电池板、逆变器、电池、控制器和电网等部件的配合作用,可以为家庭、商业和工业单位提供清洁、可再生的能源。
一、光伏系统的组成和原理组成:光伏系统基本上由四部分组成:1、太阳能电池组件;2、蓄电池组;3、蓄电池充放电控制器或称直流控制器;4、直流负载或交流负载。
此外,如果负载是交流的,还要为交流负载配备交流逆变电源,可以将交流逆变电源连同交流负载共同视为一个直流负载子系统。
如图所示。
原理:(1)太阳能电池组件在阳光照射下会产生光伏电压和光生电流,是光伏系统的发电装置。
它输出的是直流电,经充放电控制器整定后用来为蓄电池充电;充电的过程是储能的过程。
(2)蓄电池是光伏系统的储能装置。
白天,太阳能被光电池转化为电能,通过给蓄电池充电,电能又转化为化学能。
到了晚上,太阳能电池停止发电和充电,蓄电池开始对负载放电,化学能又转化为电能供给光源工作。
所以,一个完整的光伏系统在一昼夜间发生了一系列能量的转化:太阳辐射能→电能→电化学能→电能→电光照明。
(3)智能化充放电控制器在光伏系统能量转化中起着极其重要的控制作用。
这个控制器具有先进的充电控制、放电控制以及过充电保护、过放电保护、过载保护反接保护等一系列保护功能。
光伏系统的性能好坏与控制器有着重大关系,可以说充放电控制器是光伏系统的心脏。
目前光伏系统用充放电控制器都以单片机对充放电过程尤其是充电过程进行严密监控,大大提高了系统可靠性。
太阳能电池组件蓄电池智能化充放电控制二.光伏系统的分类一般我们将光伏系统分为独立系统、并网系统和混合系统。
并网系统独立系统混合系统三种光伏系统的比较如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。
还可以将光伏系统细分为如下几种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能发电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。
下面就每种系统的工作原理和特点进行说明。
1.小型太阳能供电系统(Small DC)该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。
其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。
如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。
2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控 制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。
其常用于PV 水 泵系统、一3.大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定 的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的太阳能蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供 电,航标灯塔、路灯等。
我国在西部一些无电地区建设的部分些白天临时设备用电和一些旅游设施中。
下图显示的就是一个简单直流的PV水泵系统。
这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。
乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。
如山西万家寨的通讯基站工程。
4.交流、直流供电系统(AC/DC)与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。
通常这种系统的负载耗电量也比较大,从而系统的规模也较大。
在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。
5.并网系统(Utility GridConnect)此种系统最大的特点就是光伏阵列产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入市电网络,并网系统中PV方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。
这种系统通常能够并行使用市电和太阳能光伏组件阵列作为本地交流负载的电源。
降低了整个系统的负载缺电率。
而且并网PV系统可以对公用电网起到调峰作用。
但是,并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。
6.混合供电系统(Hybrid)这种太阳能光伏系统中除了使用太阳能光伏组件阵列之外,还使用了油机作为备用电源。
使用混合供电系统的目的就是为了综合利用各种发电技术的优点,避免各自的缺点。
比方说,上述的几种独立光伏系统的优点是维护少,缺点是能量的输出依赖于天气,不稳定。
综合使用柴油发电机和光伏阵列的混合供电系统和单一能源的独立系统相比就可以提供不依赖于天气的能源,它的优点是:1. 使用混合供电系统的还可以达到可再生能源的更好的利用。
因为使用可再生能源的独立系统通常是按照最坏的情况进行设计,因为可再生能源是变化的,不稳定的,所以系统必须按照能量产生最少的时期进行设计。
由于系统是按照最差的情况进行设计,所以在其他的时间,系统的容量是过大的。
在太阳辐照最高峰时期产生的多余的能量没法使用而浪费了。
整个独立系统的性能就因此而降低。
如果最差月份的情况和其他月份差别很大,有可能导致浪费的能量等于甚至超过设计负载的需求。
2. 具有较高的系统实用性。
在独立系统中因为可再生能源的变化和不稳定会导致系统出现供电不能满足负载需求的情况,也就是存在负载缺电情况,使用混合系统则会大大的降低负载缺电率。
3. 和单用柴油发电机的系统相比,具有较少的维护和使用较少的燃料。
4. 较高的燃油效率。
在低负荷的情况下,柴油机的燃油利用率很低,会造成燃油的浪费。
在混合系统中可以进行综合控制使得柴油机在额定功率附近工作,从而提高燃油效率。
5. 负载匹配更佳的灵活性。
使用混合系统之后,因为柴油发电机可以即时提供较大的功率,所以混合系统可以适用于范围更加广泛的负载系统,例如可以使用较大的交流负载,冲击载荷等。
还可以更好的匹配负载和系统的发电。
只要在负载的高峰时期打开备用能源即可简单的办到。
有时候,负载的大小决定了需要使用混合系统,大的负载需要很大的电流和很高的电压。
如果只是使用太阳能成本就会很高。
混合系统还有其自身的缺点:1. 控制比较复杂。
因为使用了多种能源,所以系统需要监控每种能源的工作情况,处理各个子能源系统之间的相互影响、协调整个系统的运作,这样就导致其控制系统比独立系统复杂,现在多使用微处理芯片进行系统管理。
2. 初期工程较大。
混合系统的设计,安装,施工工程都比独立工程要大。
3. 比独立系统需要更多的维护。
油机的使用需要很多的维护工作,比如更换机油滤清器,燃油滤清器,火花塞等,还需要给燃油箱添加燃油等。
4. 污染和噪音。
光伏系统是无噪音,无排放的洁净能源利用,但是因为混合系统中使用了柴油机,这样就不可避免的产生噪音和污染。
很多在偏远无电地区的通信电源和民航导航设备电源,因为对电源的要求很高,都是采用的混合系统供电,以求达到最好的性价比。
我国新疆、云南建设的很多乡村光伏电站就是采用光/柴混合系统。
7.并网混合供电系统(Hybrid)随着太阳能光电子产业的发展,出现了可以综合利用太阳能光伏组件阵列,市电和备用油机的并网混合供电系统。
这种系统通常是控制器和逆变器集成一体化,使用电脑芯片全面控制整个系统的运行,综合利用各种能源达到最佳的工作状态,并还可以使用蓄电池进一步提高系统的负载供电保障率,例如AES的SMD 逆变器系统。
该系统可以为本地负载提供合格的电源,并可以作为一个在线的UPS(不间断电源)工作。
还可以向电网供电或者从电网获得电力。
系统的工作方式通常的是将市电和太阳能电源并行工作,对于本地负载而言,如果光伏组件产生的电能足够负载使用,它将直接使用光伏组件产生的电能供给负载的需求。
如果光伏组件产生的电能超过即时负载的需求还能将多余的电能返回到电网;如果光伏组件产生的电能不够用,则将自动启用市电,使用市电供给本地负载的需求,而且,当本地负载的功率消耗小于SMD逆变器的额定市电容量的60%时,市电就会自动给蓄电池充电,保证蓄电池长期处于浮充状态;如果市电产生故障,即市电停电或者是市电的品质不合格,系统就会自动的断开市电,转成独立工作模式,由蓄电池和逆变器提供负载所需的交流电能。
一旦市电恢复正常,即电压和频率都恢复到上述的正常状态以内,系统就会断开蓄电池,改为并网模式工作,由市电供电。
有的并网混合供电系统中还可以将系统监控、控制和数据采集功能集成在控制芯片中。
这种系统的核心器件是控制器和逆变器。
1.并网的意义并网系统要比离网系统安全可靠、不受天气的影响,白天为负载供电,多余的电能馈入市电网,如果遇上阴雨天,由市电为负载供电,避免了独立光伏系统受天气影响的弊端。
光伏并网系统彻底甩掉了庞大而且沉重的蓄电池包袱,也就免去了蓄电池场地占用,同时免去了蓄电池复杂的充放电管理制度,免去了充放电控制器环节,也免除了循环蓄电池寿命太短而造成的系统维护费用。
所以说并网更加科学合理、经济实用。
大力推广光伏并网发电,就是为推广绿色环保并可持续发展做贡献;大力推广光伏并网发电,就是为人类现在及未来明亮、洁净、健康的美好生活添砖铺瓦。
2.并网的前景研究人员认为,要破解太阳能"并网难的顽疾,首先要克服认识上的一大误区。
"很多人认为并网是电力部门一家的事,实际上新能源和传统能源截然不同,怎样满足电网的安全稳定,也是需要太阳能企业考虑的。
国家电网能源研究院副院长蒋莉萍说,在并网环节需要电网企业、制造企业,开发商(发电企业)形成一个共同取向。
电力部门加强电网建设的同时,光伏行业亦需提高产品质量,制定出合理入网标准。
专家们建议:(1)将电网建设提升为国家工程,加大投入的同时设定合理建设目标。
蒋莉萍认为,如果不考虑投入,光从技术层面出发,建设"智能电网是可以实现的。
但要考虑到我国的能源建设还在发展中,每年大部分投入仍被用于新建电力项目,因此在电网建设上要以"安全可靠、经济高效为原则。
"由国家来牵头,制定出电网发展的目标,对技术、管理各方面都提出具体要求。
蒋莉萍说。
(2)统一规划电网和电厂建设,光伏电站布局不能各搞各的,要围绕电网规划进行。
江西电力公司高级工程师彭莉萍建议,要让电网建设适应光伏产业的快速发展,在光伏产业规划和前期工作中就要有地方供电公司参与,并将配套电网设施作为产业的一个组成部分,同步办理相关用地等手续,以便电网项目和光伏产业能同步核准,同步建设。