转速电流双闭环控制的直流调速系统仿真
- 格式:doc
- 大小:1.75 MB
- 文档页数:8
双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
题目:直流电机双闭环调速系统姓名:学号:专业班级:电气工程及其自动化指导教师:一、直流电机双闭环调速系统模块功能图1直流电机双闭环调速系统框图图2直流电机双闭环提速系统原理图如图1为直流电机速度、电流双闭环调速系统框图,图2为直流电机速度、电流双闭环调速系统原理图。
该调速系统包括两个反馈控制闭环,内环为电流控制环,外环为速度控制环。
速度调节器与电流调节器均为PI调节器,可以实现直流电机转速的静态无差调节与快速动态响应。
以图2所示由硬件构成的双闭环调速系统为例,介绍该系统的工作原理。
直流电机给定速度信号ug与反馈速度信号ufn进行比较,形成速度输入信号Δun=ug-ufn,进入速度PI调节器ST,其输出信号为电流给定信号un,与电流反馈信号ufi进行比较,得到电流PI调节器LT的输入信号Δui=un-ufi,输出信号uk 作为触发器CF的移相电压,从而控制整流桥的移相角a,进而控制直流电机的电枢电压U d、电枢电流I d以及输出转矩T。
如图3为MATLAB中直流电机速度、电流双闭环调速系统的Simulink仿真模型。
接下来对该模型各个模块的功能进行描述。
图3双闭环调速系统Simulink仿真模型1、速度给定模块图1如图4所示为速度给定模块,为一阶跃信号,由表1的模块参数表可知速度给定信号的阶跃时间Step time为0.8s,阶跃信号初始值Initial value为120rad/s,稳定值Final value为160rad/s。
该模块的功能为产生一个阶跃的速度给定信号wef输入到速度调节器中。
表12、速度调节器图5图5为速度调节器模块,是一个PI调节器,输入信号为速度给定信号wef 与速度反馈信号wm,输出信号Iref作为电流调节器的电流给定信号。
通表2的模块参数表可知该PI调节器的比例系数kp=1.6,积分系数ki=16,最大输出限幅值Current limit为30A。
该模块的功能为通过对电机速度的闭环控制输出电流调节器的给定信号Iref。
本科毕业设计(论文)题目:双闭环直流调速系统的设计与仿真研究Graduation Design (Thesis)Design and Simulation of Double Loop DC Motor Control SystemByWu JieSupervised byAssociate Prof. Zhang zhenyanDepartment of Automation EngineeringNanjing Institute of TechnologyMay, 2014摘要为了提高运动控制系统在实际工程中的应用效率,本文介绍了直流调速系统的工程设计方法[1],利用 MATLAB软件,对直流调速系统进行数学建模和系统仿真的研究。
所给出的仿真方法,可以灵活地调节系统的参数,从而获得理想的设计结果,并对设计出的系统进行分析。
建立调节器工程设计方法所遵循的原则是:1)概念清楚、易懂。
2)计算公式简明、好记。
3)不仅给出参数计算公式,而且指明参数调节方向。
4)能考虑饱和非线性控制的情况,同时给出简单的计算公式。
5)适合于各种可以简化成典型系统的反馈控制系统[2]。
由于这个课题相对简单,我在里面加入了相关性的内容以丰富本课题的广度和深度。
在本设计中,我加入了三种简单的单闭环直流调速系统,并且通过对它们进行仿真分析,比较找出了它们的不足之处,从而更明显地体现了双闭环直流调速系统的优越性。
并且通过对两种典型的双闭环直流调速系统进行仿真分析,从而更好地理解和运用双闭环直流调速系统[3]。
关键词:直流电动机;双闭环调速;MATLAB;仿真;直流调速系统;直流脉宽调制;工程设计方法ABSTRACTIn order to raise application efficiency of the motion control system in actual project ,this article discussed the engineering design methods of the speed-governing system of DC motor. The mathematical modeling and system simulation of direct current governor system are researched by means of MATLAB platform . The simulation method can adjust the system controller parameters flexibly, so as to achieve the ideal design results, and the design of the system are analyzed.A controller design method is the principles of:(1)The concept of clear, easy to understand.(2)Simple formula, easy to remember.(3)Not only gives the parameter calculation formula, and indicates the parameter adjustment direction.(4)Can consider the saturation nonlinear control, and gives a simple formula.(5)Suitable for all kinds of feedback control systems can be simplified into a typical system.Because this subject is relatively simple, I joined the correlation content inside to enrich the breadth and depth of the subject. In this design, I added three simple single loop DC speed regulation system, and then analyze them, compared to find their deficiencies, and thus more clearly showed the superiority of double closed loop DC speed regulating system. And through the simulation analysis of two kinds of typical double loop DC speed control system, so as to better understand and use the double loop DC speed control system.Keywords: DC motor, double closed loop,MATLAB,Simulation,V-M,PWM-M,The engineering design method目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 直流调速系统国内外研究现状 (1)1.3 研究双闭环直流调速系统的意义 (2)1.4 论文的主要研究内容 (2)第二章仿真软件以及相关硬件简介 (3)2.1 MATLAB/Simulink仿真平台 (3)2.2 仿真的数值算法 (3)2.3 工程设计法 (4)2.4 直流电动机 (4)第三章简单闭环调速系统的设计与仿真 (5)3.1 单闭环有静差转速负反馈调速系统的设计与仿真 (5)3.2 单闭环无静差转速负反馈调速系统的设计与仿真 (11)3.3 带电流截止负反馈的转速反馈系统的设计与仿真 (13)3.4 简单闭环调速系统的优缺点比较 (15)第四章转速、电流双闭环直流调速系统的设计与仿真 (17)4.1 转速、电流双闭环调速系统的设计与仿真 (17)4.2 V-M直流调速系统的设计与仿真 (19)4.3 PWM-M直流调速系统的设计与仿真 (26)第五章总结与展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 课题研究背景在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能[4]。
运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。
《运动控制系统》课程设计转速电流双闭环可逆直流调速系统的仿真与设计专业:****年级:****学号:***姓名:***指导老师:***转速电流双闭环可逆直流调速系统的仿真与设计一、设计目的1、应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
2、应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
3、在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、系统设计参数直流电动机控制系统设计参数:(直流电动机(3) )输出功率为:5.5Kw电枢额定电压220V 电枢额定电流30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数1S电枢允许过载系数 =1.5 额定转速970rpm直流电动机控制系统设计参数环境条件:电网额定电压:380/220V; 电网电压波动:10%; 环境温度:-40~+40摄氏度; 环境湿度:10~90%.控制系统性能指标: 电流超调量小于等于5%; 空载起动到额定转速时的转速超调量小于等于30%;调速范围D =20; 静差率小于等于0.03.1、设计内容和数据资料某直流电动机拖动的机械装置系统。
主电动机技术数据为:V U N 220=,A I N 30=,m in 970r n N =,电枢回路总电阻Ω=2.0R ,机电时间常数s T m 1=,电动势转速比r V C e m in 221.0•=,Ks=40,ms T l 5.0=,Ts=0.0017ms ,电流反馈系数A V 85.0=β,转速反馈系数r V m in 5.1•=α,试对该系统进行初步设计。
2、 技术指标要求电动机能够实现可逆运行。
“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。
打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。
图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。
将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。
图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。
点击OK ,参数设置完成。
如图12。
图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。
在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。
本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。
二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。
内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。
电流调节器的给定信号un。
与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压的作用下电机的电流及转矩将相应地发生变化。
电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。
这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。
当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。
反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。
另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。
这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。
直流电机双闭环调速系统仿真分析姓名:曾宇航学号:20114346班级:电气弘深班指导老师:姚骏目录1 理想可控电压源供电的直流双闭环调速仿真模型及其仿真分析 (3)1.1 恒转矩负载变速仿真分析: (3)1.2 恒转速变转矩仿真分析: (5)1.3 速度环与电流环变参数仿真分析: (6)2 斩波器驱动的直流上闭环调速系统仿真模型及其仿真分析 (12)课程感悟 (15)1 理想可控电压源供电的直流双闭环调速仿真模型及其仿真分析本系统以他励直流电机作为控制对象,并采用电枢电流和转速双闭环负反馈控制。
其中内环为电流调节环,外环为转速调节环。
均利用PI调节器进行控制。
转速环和电流环的PI调节器系数分别为(Kp_n,Ki_n)与(Kp_i,Ki_i)。
利用matlab建立的仿真模型如图1.1所示:+图1.1 直流电机双闭环调速系统仿真模型上述仿真模型中电机参数如表1.1所示:表1.1 直流电机参数PI(s)图1.2 PI调节器封装内部图1.1 恒转矩负载变速仿真分析:直流电机带负载30Nm。
转速从500rpm阶跃至1000rpm,然后再从1000rpm 阶跃至300rpm,仿真研究该过程下直流电机转速控制系统的静态和动态特性。
参照讲义仿真实例以及一系列仿真分析,确定电流环PI 调节器参数为:Kp_i=100;Ki_i=4000。
速度环PI 调节器的参数为:Kp_n=50;Ki_n=0.1。
在保持负载转矩为30Nm 不变的条件下,让转速从500rpm —1000rpm —300rpm 的系统仿真结果如图1.3所示:图1.3 恒转矩负载变速仿真分析仿真结果可知,在转速外环负反馈的作用下,电机启动时电枢电流参考指令迅速达到电流饱和值(100A )左右。
在电流内环的作用下,电枢电流跟踪指令迅速增加到100A 左右,并产生最大电磁转矩拖动电机以最快速度加速。
当电动机转速逐渐加大到转速指令给定值(500r/min )时,转速外环退出饱和,电动机电枢电流和输出电磁转矩相应减小。
双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。
二、初始条件:...........................................错误!未定义书签。
三、设计要求:...........................................错误!未定义书签。
四、设计基本思路.........................................错误!未定义书签。
五、系统原理框图.........................................错误!未定义书签。
六、双闭环调速系统的动态结构图...........................错误!未定义书签。
七、参数计算.............................................错误!未定义书签。
1. 有关参数的计算 ...................................错误!未定义书签。
2. 电流环的设计 .....................................错误!未定义书签。
3. 转速环的设计 .....................................错误!未定义书签。
七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。
1.系统主电路图 ......................................错误!未定义书签。
2.触发电路 ..........................................错误!未定义书签。
3.控制电路 ..........................................错误!未定义书签。
目录直流电机双闭环PID调速系统仿真 (1)1 转速、电流双闭环直流调速系统的组成及工作原理 (2)2 双闭环调速系统的动态数学模型 (2)3 调节器的设计 (4)3.1 电流调节器的设计 (4)3.2 转速调节器的设计 (6)4 搭建模型 (8)5 参数计算 (10)5.1 参数的直接计算 (10)5仿真具体参数 (13)6 仿真结果 (13)7 结束语 (14)8 参考文献 (16)直流电机双闭环PID调速系统仿真摘要在工程的应用中,直流电动机的占有很大的比例,同时对于直流系统的调速要求日益增长。
在直流调速系统中比较成熟并且比较广泛的是双闭环调速系统,本文对于直流双闭环的PID调速系统作简要的设计,同时利用Matlab/Simulink 仿真软件进行仿真处理。
关键词: 直流双闭环 PID调速在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。
而直流调速系统调速范围广、静差率小、稳定性好,过载能力大,能承受频繁的冲击负载,可实现频率的无级快速起制动和反转等良好的动态性能,能满足生产过程自动化系统中各种不同的特殊运行要求。
在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
开环直流调速由于自身的缺点几乎不能满足生产过程的要求,在应用广泛地双闭环直流调速系统中,PID控制已经得到了比较成熟的应用。
Matlab是目前国际上流行的一种仿真工具,它具有强大的矩阵分析运算和编程功能,建模仿真可视化功能Simulink是Matlab五大公用功能之一,他是实现动态系统仿真建模的一个集成环境,具有模块化、可重载、图形化编程、可视化及可封装等特点,可以大大提高系统仿真的效率和可靠性。
Simulink提供了丰富的模型库供系统仿真使用,它的仿真工具箱可用来解决某些特定类型的问题,也包括含有专门用于电力电子与电气传动学科仿真研究的电气系统模型库。
此外,用户可根据自己的需要开发并封装模型以扩充现有的模型库。