高等数学上复习提纲
- 格式:pdf
- 大小:64.07 KB
- 文档页数:2
高等数学上复习提纲高数第七版教材第一章函数与极限知识要点:函数的定义域、函数的几种特性、极限的定义、左右极限、无穷小量的比较、极限的运算、两个重要极限、极限存在准则、函数的连续性与间断点P16 D1(5)(9),D6; P26 D1; P33 D2, D3; P44例8;P45 D1(5)(7)(14); D3(1);P52 D1(5)(6), D2(2)(4), D4(1);P55 D3,D5(1)(3);P59 例4,例5;P61 D3( 1 ); P66 D3(7), D5;P70总习题D1(1)(4), D3(2), D9(2)(4);第二章导数与微分知识要点:导数,函数的求导法则,高阶导数,复合函数的求导,隐函数求导,微分(含复合函数的微分),基本初等函数的求导公式,可导与连续的关系等P81 例9; P97 例4;P99 例8;P101例1、2;P108 1(3)、(4);P115 例4、5;第三章微分中值定理与导数的应用知识要点:罗尔定理,拉格朗日中值定理,洛必达法则,函数的单调性、凸凹性,函数的极值与最值P132 D6、D8、D12;P134 例3;P136 例8、例10;P137 D1(13);P146例4;P148例6;P148例8、例9;P181 D2;总复习三D2;第四章不定积分知识要点:不定积分的概念与性质;第一、二换元法,分部积分法,基本积分表P189 例7;P190 例8;P192 D2(15) (17) (25);P207 D2(35);P197 例11;P212例9;P214 例2;P222 D4(4);第五章定积分知识要点:定积分的性质,变上限函数的定义,导数及其应用,牛-莱公式,定积分换元法和分部积分,反常积分P236 D7; P243 例8;P244 D8(8); P245 D11(1);P249例5;P253例12;P255 D1(17,19,23);P262 D1(3);P273 D14;题型分布:选择10题,共20分;填空5题,共10分;计算10题,共50分;应用2题,共20分。
1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。
第一章复习提要 第一节 映射与函数1、注意几个特殊函数:符号函数,取整函数,狄利克雷函数;这些函数通常用于判断题中的反例2、注意无界函数的概念3、了解常用函数的图像和基本性质(特别是大家不太熟悉的反三角函数) 第二节 数列的极限 会判断数列的敛散性 第三节 函数的极限1、函数极限存在的充要条件:左右极限存在并相等。
(重要)2、水平渐近线的概念,会求函数的水平渐近线(p37)。
(重要)3、了解函数极限的局部有界性、局部保号性。
第四节 无穷大和无穷小1、无穷小和函数极限的关系:⇔=∞→→A x f x x x )(lim 0α+=A x f )(,其中α是无穷小。
2、无穷大和无穷小是倒数关系3、铅直渐近线的概念(p41), 会求函数的铅直渐近线4、无界与无穷大的关系:无穷大一定无界,反之不对。
5、极限为无穷大事实上意味着极限不存在,我们把它记作无穷大只是为了描述函数增大的这种状态 第五节 极限的运算法则1、极限的四则运算法则:两个函数的极限都存在时才能用。
以乘法为例比如x x g x x f 1)(,)(==。
0)(lim 0=→x f x ,∞=→)(lim 0x g x 。
但是1)()(lim 0=⨯→x g x f x2、会求有理分式函数)()(x q x p 的极限(P47 例3-例7)(重要) 0x x →时:若分母0)(0≠x q ,则极限为函数值若分子和分母同时为零,则为型极限,约去公因子 若只是分母为零,则极限为无穷大。
(p75页9(1))∞→x 时,用抓大头法,分子、分母同时约去x 的最高次幂。
第六节 极限存在的准则,两个重要极限(重要) 1、利用夹逼准则求极限: 例 p56也习题4(1)(2),及其中考试题(B )卷第三题(1) 2、利用两个重要极限求其他的极限(p56习题2)3 注意下面几个极限:01sin lim 0=→x x x ;0sin lim=∞→x x x ;1sin lim 0=→xxx 第七节 无穷小的比较(重要)1、会比较两个无穷之间的关系(高阶、低阶、同阶,k 阶还是等价穷小)2、常见的等价无穷小:x x x x ~arcsin ,tan ,sin ;2~cos 12x x -x e x ~1-;nx x n~)1(1+ 3、若)(x ϕ为无穷小,则)(~)(sin x x ϕϕ,nx x n )(~))(1(1ϕϕ+,)(~))(1ln(x x ϕϕ+,)(~1)(x e x ϕϕ-。
《高等数学上册》复习重点(注意:此文件仅供教师复习课用,不能给学生拷贝!即教师上复习课时以此为纲,让学生通过听课记笔记(而不是抄或拷贝)了解此重点。
)第一章函数与极限1.朴素的极限概念,极限四则运算法则2.两个重要极限3.无穷小定义,无穷小的阶,等价无穷小代换4.求间断点及判别间断点的类型5.连续和极限的关系,连续函数的极限6.利用零点定理验证解的存在性第二章导数与微分1.导数的定义和几何意义2.导数的四则运算法则和复合函数的求导法则3.二阶导数4.隐函数求导5.参数方程所确定的函数的求导6.微分的定义和几何意义,求微分,一阶微分形式不变性7.连续、可导与可微的关系第三章微分中值定理与导数的应用1.拉格朗日中值定理及其应用2.利用洛必达法则求未定式的极限3.判断函数的单调性,利用单调性证明不等式4.判断函数图形的凹凸性,求拐点5.求函数极值点和极值,求解较简单的最值应用问题第四章不定积分1.原函数与不定积分的概念,不定积分的性质2.不定积分的第一换元法(简单的凑微分法)3.不定积分的第二换元法(不含三角代换)4.典型的分部积分法问题,换元法与分部法的结合5.简单的有理函数的积分(简单地试凑可分解为部分分式的)第五章定积分1.定积分的概念及性质2.变限积分的概念及其求导3.牛顿-莱布尼兹公式,定积分的换元法和分部积分法4.简单的无穷限的反常积分第六章定积分的应用1.平面图形面积(直角坐标方程)2.绕坐标轴旋转的旋转体的体积(直角坐标方程)第七章微分方程(注意:讲课按教学大纲要求讲,不可删减内容)1.微分方程解的概念,线性微分方程解的结构2.可分离变量的微分方程3.一阶线性微分方程4.二阶常系数齐次线性微分方程5.二阶常系数非齐次线性微分方程的特解形式6.简单的微分方程应用问题。
高考数学复习提纲一、数与代数1. 数系及其性质a. 自然数、整数、有理数、实数、复数的定义和性质b. 数轴的表示和运算2. 代数运算a. 加、减、乘、除法则及其性质b. 开平方、立方及其运算规则c. 绝对值与模的计算3. 代数式与方程a. 代数式的定义与基本性质b. 一次方程、二次方程的解法c. 线性方程组与非线性方程的解法二、函数与方程1. 函数的概念与性质a. 函数的定义及其表示方法b. 奇偶函数与周期函数c. 函数图像的性质和变换2. 幂函数与指数函数a. 幂函数与指数函数的定义和图像特征b. 幂函数与指数函数的性质和运算规律c. 对数函数的定义和性质3. 三角函数a. 三角函数的定义和基本性质b. 三角函数的图像特征和变换c. 三角函数的运算规律和恒等式4. 二次函数与反函数a. 二次函数的定义和性质b. 二次函数的图像特征和变换c. 反函数的定义和性质三、几何与空间1. 几何基本概念a. 点、线、面、角的定义及其性质b. 相关几何概念的关系和运算2. 直线与曲线a. 直线的方程及其性质b. 圆和椭圆的概念和性质c. 抛物线和双曲线的概念和性质3. 三角形与多边形a. 三角形的性质和判定定理b. 正多边形的性质和计算c. 圆与多边形的关系和计算4. 空间几何a. 空间点、直线的位置关系和计算b. 空间图形的管理与计算四、统计与概率1. 数据统计与分析a. 数据的收集、整理和展示b. 平均数、中位数和众数的计算c. 方差与标准差的概念和计算2. 概率相关概念a. 随机事件与样本空间b. 概率的定义及其运算规则c. 条件概率和独立事件的计算3. 排列与组合a. 排列与组合的概念和计算方法b. 二项式定理和多项式展开式五、解答技巧与考试技巧1. 高考数学解题技巧a. 分析题目和建立数学模型b. 运用合理的解题方法和步骤c. 考虑特殊情况和边界条件2. 高考数学考试技巧a. 熟悉高考数学考试的题型和出题规律b. 如何正确阅读和理解题目c. 如何合理分配时间和避免常见错误六、习题训练和模拟考试1. 高考数学习题训练a. 完成各个章节的习题集和试卷b. 对错误的题目进行仔细分析与订正c. 多做模拟考试,提高解题速度和应对能力2. 高考数学模拟考试a. 模拟高考数学卷的编写和答题过程b. 严格按照考试时间和规则进行模拟c. 对模拟考试结果进行评估和反思七、知识巩固和复习策略1. 知识点总结与梳理a. 对每个章节的重点知识进行总结和梳理b. 制作知识点归纳表和思维导图2. 复习计划和时间安排a. 制定合理的复习计划和时间表b. 按照计划进行有针对性的复习3. 经典习题和考点分析a. 整理经典习题和典型例题b. 分析高考数学的重点考点和难点4. 合理安排休息和调整心态a. 注意保持良好的作息和饮食习惯b. 学会放松和调整心态,保持积极的心态面对高考以上是《高考数学复习提纲》的内容安排,希望对你的复习有所帮助。
高等数学复习提纲第一章 函数与极限 复习重点: 1、求极限1)四则运算法则 注意:四则运算法则适用的函数个数是有限个;四则运算法则的条件是充分条件有理分式函数求极限公式:2)两个重要极限))01(()11(lim )1(lim )sin (1sin lim1100+=+=+=∞→→→e xx x x x x xx x3)两个准则准则一:准则二:单调有界数列必有极限单调递增有上界的数列其极限为最小的上界(上确界) 单调递减有下界的数列其极限为最大的下界(下确界) 4)无穷小量a.无穷小量的定义,注意其是变量,谈及无穷小量时一定要注明自变量的变化趋势。
唯一的例外是0永远是无穷小量;b.掌握何为高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小;c.利用无穷小量求极限无穷小量与有界函数的乘积是无穷小量等价无穷小量替代求极限 注意:下面给出关系式是在0→x 时才成立 等价无穷小量替代求极限只在积、商时成立,加减时不行2、连续性和间断点 1)连续定义)()(lim ,0lim 00x f x f y x x x ==∆→→∆n n n n m m m m x b x b x b x b a x a x a x a ++++++++----∞→11101110lim ⎪⎪⎩⎪⎪⎨⎧>∞<==++++++++=----∞→nm n m m n b a xb x x b x x b x x b x a x x a x x a x x a n nn n n n n n n m n m n m n m x 0lim 0011101110 az y N n z x y n n n n n n n ==∈∀≤≤∞→∞→lim lim )(2 )1(若ax x n n n =∞→lim ,}{且有极限则n x x x x a x a x x x e x x x x x x nx x~11~)1ln(ln ~1~tan ~1~arcsin 21~cos 1~sin 2-++--- 要求会用定义讨论分段函数分段点的连续性2)间断点间断点的疑似点:使函数没有意义的点和分段函数分段点要求:判断函数的间断点,若是第一类的要写出是跳跃还是可去,第二类只需写出是第二类间断点即可。
《高等数学》(上)复习大纲一、函数与极限1、了解函数、单射、满射及双射的概念;掌握反函数与复合函数的概念;掌握函数的有界性、单调性、奇偶函数、周期性的概念;了解初等函数的概念.2、了解数列极限的直观定义;掌握数列极限的N -ε定义, 会证明01l i m =∞→nn 和)1|(|0lim <=∞→q q n n ; 了解收敛数列的唯一性、有界性、保号性及与子数列的关系.3、掌握函数极限A x f x x =→)(lim 0的δε-定义, 会证明c c x x =→0lim 和00lim x x x x =→; 了解函数的左、右极限的定义;掌握函数极限A x f x =∞→)(lim 的X -ε定义, 会证明01lim=∞→xx ;了解A x f x =-∞→)(lim 和A x f x =+∞→)(lim 的定义;了解函数极限的唯一性和局部保号性.4、了解无穷小的概念以及函数极限与无穷小的关系;了解无穷大的概念以及无穷大与无穷小的关系.5、掌握无穷小与有界函数乘积是无穷小的定理;掌握极限的四则运算法则,会使用一定的技巧计算一些函数的极限. 了解复合函数的极限的计算方法.6、了解夹逼准则,记住重要极限1sin lim0=→xxx ;了解单调有界准则,记住重要极限e 11lim =⎪⎭⎫⎝⎛+∞→xx x 及其变形()e 1lim 10=+→x x x .7、了解高阶无穷小、同阶无穷小、k 阶无穷小、等价无穷小的概念.8、了解增量的概念;掌握函数f (x )在点x 0处连续的定义及判定方法;了解初等函数在其定义域内连续的结论;了解函数点x 0处左、右连续的概念;了解函数的常见的几种间断点(无穷间断点、振荡间断点、可去间断点及跳跃间断点)及函数的第一类间断点与第二类间断点;. 9、了解函数的和、差、积、商的连续性及反函数、复合函数的连续性. 10、掌握闭区间上连续函数的最值定理(有界性定理)、介值定理(零点定理).二、导数与微分1、结合速度问题和切线问题掌握)(x f 在点0x 的导数的概念;会推导简单函数的求导公式;了解单侧(左、右)导数的概念;掌握)(0'x f 的几何意义;了解可导与连续的关系. 2、掌握函数的和、差、积、商的求导法则;掌握反函数以及复合函数的求导法则;掌握常见函数(x x x x x x C x f xarctan ,arcsin ,ln ,e ,cos ,sin ,,)(μ=)的求导公式.3、了解高阶导数的计算.4、掌握隐函数及由参数方程所确定的函数的求导方法.5、掌握函数)(x f y =在点0x 处的微分y d 的定义;了解可微与连续的关系;掌握微分与导数的关系,特别是xyx f d d )('=的含义;了解微分的几何意义;掌握常见函数的微分公式以及函数的和、差、积、商及复合的微分法则.(本节内容是以后学习积分等有关内容的基础.)三、微分中值定理与导数的应用1、了解罗尔定理、拉格朗日中值定理以及柯西中值定理.2、掌握使用洛必达法则计算未定式极限的方法.3、了解泰勒公式(泰勒中值定理).4、掌握利用导数对函数的单调性判定的方法,会证明一些不等式;了解函数的凹凸性的判定方法以及曲线拐点的计算.5、掌握函数的极大(小)值的计算;了解函数的最大(小)值的计算.6、了解根据函数的特性描绘函数图形的方法.7、了解曲率的概念.8、了解方程的近似计算.四、不定积分1、掌握不定积分的定义及性质;记住常见函数⎰⎰⎰⎰⎰⎰⎰⎰+-≠x x osx x x x x x x x x x x x k xd e ,d c ,d sin ,d 11,d -11,d 1),1(d ,d 22μμ的积分公式(尽管不定积分本质上与求导公式相同).2、掌握第一类换元法(凑微分方法)与第二类换元法( 变量替换法),了解积分公式:()⎰⎰++-=-+++=+,ln d 1,ln d 122222222C a x x x a x C a x x x a x()⎰⎰+++++=++=-.ln 22d ,2arcsin 2d 2222222222C a x x a a x x x a x C x a x x a3、掌握分部积分公式.4、掌握有理函数以及可以化为有理函数的积分.5、了解积分表的使用.五、定积分1、结合曲边梯形的面积计算理解定积分的定义;理解定积分的性质.2、掌握积分上限函数⎰=xax x f x Φd )()(的性质;掌握牛顿-莱布尼茨公式.3、掌握定积分的换元法和分部积分法.4、了解反常积分.六、定积分的应用1、了解定积分元素法的思想.2、理解利用定积分计算平面图形的面积、(旋转体、平行截面面积已知的)立体的体积、平面曲线的弧长的方法.3、了解定积分在物理上的应用.七、空间解析几何与向量代数1、了解向量的概念及其线性运算;了解空间直角坐标系的建立;掌握向量的坐标表示及利用坐标做线性运算的方法;掌握向量的长度(模)、两点间的距离公式、向量的方向角及方向余弦.2、掌握向量的数量积(内积)及向量积的定义及计算.3、了解曲面的概念;掌握旋转曲面(特别是球面)、柱面(特别是圆柱面)的方程;了解其他二次曲面的方程.4、掌握空间曲线的一般方程及参数方程;掌握空间曲线在坐标面上的投影.5、掌握平面的点法式方程及一般方程;了解两平面间的夹角;掌握点到平面的距离.6、掌握空间直线的一般方程、点向式方程及经过两点的直线方程;了解两直线的夹角及直线与平面的夹角.。
高数复习知识点及提纲第一篇:高数复习知识点及提纲高数复习知识点及提纲1.瑕积分的判别,广义积分和Γ(n)的计算。
6分2.罗必达法则求未定式。
6分3.利用导数研究函数的单调性和极值,凸凹性和拐点。
10’4.利用定积分求解封闭图形的面积7分5.多元函数连续与可微的关系3分6.多元函数的一阶、二阶偏导数的计算;二元函数的全微分,多元函数复合函数的求导及隐函数求导。
20分7.二元函数极值的经济应用7分8.二重积分的计算以及交换积分次序10分9.利用级数的收敛性证明极限,求幂级数的收敛域和函数,函数的幂级数展开18分10.微分方程解的概念,一阶线性的微分方程的求解。
13’--------------------第二篇:高数知识点高等数学B2知识点1、二元函数的极限、连续、偏导数、全微分;微分法在几何上的应用;二元函数的方向导数与梯度;二元函数的极值。
2、二重积分的计算(直角坐标、极坐标);三重积分的计算(直角坐标、柱面坐标)。
3、曲线积分、曲面积分的计算;格林公式;高斯公式。
4、数项级数收敛性的判别;幂级数的收敛半径、收敛域。
第三篇:高数知识点总结高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y ax),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x2+xx=lim=13、无穷小:高阶+低阶=低阶例如:limx→0x→0xxsinx4、两个重要极限:(1)lim=1x→0x(2)lim(1+x)=ex→01x⎛1⎫lim 1+⎪=e x→∞⎝x⎭g(x)x经验公式:当x→x0,f(x)→0,g(x)→∞,lim[1+f(x)]x→x0=ex→x0limf(x)g(x) 例如:lim(1-3x)=ex→01xx→0⎝⎛3x⎫lim -⎪x⎭=e-35、可导必定连续,连续未必可导。
例如:y=|x|连续但不可导。
6、导数的定义:lim∆x→0f(x+∆x)-f(x)=f'(x)∆xx→x0limf(x)-f(x0)=f'(x0)x-x07、复合函数求导:df[g(x)]=f'[g(x)]•g'(x)dx例如:y=x+x,y'=2x=2x+1 2x+x4x2+xx1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx x2+y2=1例如:解:法(1),左右两边同时求导,2x+2yy'=0⇒y'=-x ydyx法(2),左右两边同时微分,2xdx+2ydy⇒=-dxy9、由参数方程所确定的函数求导:若⎨⎧y=g(t)dydy/dtg'(t)==,则,其二阶导数:dxdx/dth'(t)⎩x=h(t)d(dy/dx)d[g'(t)/h'(t)]dyd(dy/dx)dtdt===2dxdxdx/dth'(t)210、微分的近似计算:f(x0+∆x)-f(x0)=∆x•f'(x0)例如:计算sin31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y=sinx(x=0x是函数可去间断点),y=sgn(x)(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f(x)=sin ⎪(x=0是函数的振荡间断点),y=数的无穷间断点)12、渐近线:水平渐近线:y=limf(x)=cx→∞⎛1⎫⎝x⎭1(x=0是函xlimf(x)=∞,则x=a是铅直渐近线.铅直渐近线:若,x→a斜渐近线:设斜渐近线为y=ax+b,即求a=limx→∞f(x),b=lim[f(x)-ax]x→∞xx3+x2+x+1例如:求函数y=的渐近线x2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数上册复习考试2013年1月1日第一章 函数与极限一、函数1.认识一些常用函数和初等函数。
2.求函数的自然定义域。
二、极限1.极限的计算(1)善于恒等化简和极限的四则运算法则 (2)常用的计算方法 (a )常用极限0lim =∞→n a n ,)1(0lim <=∞→q q n n ,1lim =∞→n n n ,)0(1lim >=∞→a a n n ,e n f n f n =⎥⎦⎤⎢⎣⎡+∞→)()(11lim(∞→)(n f ),[]e n g n g n =+∞→)(1)(1lim (0)(→n g ), )()(sin limn f n f n ∞→ = 1 (0)(→n f )。
(b )一些常用的处理方法(i)分子分母都除以n 的最高次幂。
例如:3562366742n n n n n n −+++ = 343116117142n n n n −+++,3562346742n n n n n n −+++ = 34321161171412nn n n n −+++ 43432523nn n n n ++++ =433215121131nn n n ++++(ii)根号差的消除。
例如:)(n f -)(n g =)()()()(n g n f n g n f +−,3)()()(n g n f n h − =()()()()()()()()[][]235343332233345)()()()()()()()()()()()()(n g n f n g n g n f n g n f n g n f n g n f n f n h −⎥⎦⎤⎢⎣⎡+++++(iii)指数函数的极限。
)()(lim n v n n u ∞→ = [])(lim )(lim n v n n n u ∞→∞→ (都存在))(lim ,0)(lim n v n u n n ∞→∞→>。
(iv)利用指数函数的极限。
高等数学上复习提纲
高数第七版教材
第一章函数与极限知识要点:
函数的定义域、函数的几种特性、极限的定义、左右极限、无穷小量的比较、极限的运算、两个重要极限、极限存在准则、函数的连续性与间断点
P16 D1(5)(9),D6; P26 D1; P33 D2, D3; P44例8;P45 D1(5)(7)(14); D3(1);P52 D1(5)(6), D2(2)(4), D4(1);P55 D3,D5(1)(3);P59 例4,例5;P61 D3( 1 ); P66 D3(7), D5;P70总习题D1(1)(4), D3(2), D9(2)(4);
第二章导数与微分知识要点:
导数,函数的求导法则,高阶导数,复合函数的求导,隐函数求导,微分(含复合函数的微分),基本初等函数的求导公式,可导与连续的关系等
P81 例9; P97 例4;P99 例8;P101例1、2;P108 1(3)、(4);P115 例4、5;
第三章微分中值定理与导数的应用知识要点:
罗尔定理,拉格朗日中值定理,洛必达法则,函数的单调性、凸凹性,函数的极值与最值
P132 D6、D8、D12;P134 例3;P136 例8、例10;P137 D1(13);P146例4;P148例6;P148例8、例9;P181 D2;总复习三D2;
第四章不定积分知识要点:
不定积分的概念与性质;第一、二换元法,分部积分法,基本积分表
P189 例7;P190 例8;P192 D2(15) (17) (25);P207 D2(35);P197 例11;P212例9;P214 例2;P222 D4(4);
第五章定积分知识要点:
定积分的性质,变上限函数的定义,导数及其应用,牛-莱公式,定积分换元法和分部积分,反常积分
P236 D7; P243 例8;P244 D8(8); P245 D11(1);P249例5;P253例12;P255 D1(17,19,23);P262 D1(3);P273 D14;
题型分布:
选择10题,共20分;填空5题,共10分;计算10题,共50分;应用2题,共20分。
考试时间:120分钟。