第4章 图像的增强 4.2 直接灰度变换 章
g (x, y) Mg d A c 0 a b f (x, y) Mf 0 a Mg
2. 分段线性变换
g (x, y) A f (x, y) b Mf
1) 对比度扩展
g (x, y) Mg f (x, y) 0 a Mf 0 Mg
2) 削波
g (x, y)
1 将非均匀密度变换为均匀密度 r
第4章 图像的增强 章
4.3 直方图修正法
2. 直方图均衡化
由概率论理论可知,如果已知随机变量 的概率密度为 的概率密度为p 由概率论理论可知,如果已知随机变量r的概率密度为 r(r),而 而 随机变量s是 的函数 的函数, 的概率密度 的概率密度p 可以由 可以由p 求出 求出。 随机变量 是r的函数,则s的概率密度 s(s)可以由 r(r)求出。 假定随机变量s的分布函数用 表示, 假定随机变量 的分布函数用Fs(s)表示,根据分布函数定义 的分布函数用 表示
f (x, y) a Mf
3) 阈值化
4) 灰度窗口变换
第4章 图像的增强 章
1. 灰度直方图 图像灰度直方图 直方图的作法
4.3 直方图修正法
1. 灰度直方图
直方图反映了图像的像素的灰度分布
rk = k , k = 0,1,L , L − 1 L −1
a)将图像的灰度级归一化 将图像的灰度级归一化
0.21 0.16 0.08 0.06 0.65 0.81 0.89 0.95 6 5 6 7 2→5 3,4→6 3,4→6 1023 0.25
5,6,7→7 850 985 448 0.21 0.24 0.11
第4章 图像的增强 章
pr(rk)